1
|
Wieber J, Preece A, Rein R, Braunstein B. Knee angle reproduction tests: influences of body orientation, movement direction and limb dominance. Int J Sports Med 2025. [PMID: 39978350 DOI: 10.1055/a-2526-9372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Applying joint position sense tests under different test conditions may introduce reproduction error bias, which can result in different therapeutic consequences. This study investigated the effects of body orientation, movement direction, and limb dominance on the active knee angle reproduction error. Subjects underwent active contralateral knee angle reproduction tests in a seated versus prone position, from a starting point of knee flexion versus knee extension, and with the dominant versus nondominant limb setting the target angle. The test order was randomly determined for each subject. The primary outcome was the absolute active knee angle reproduction error (°). The data of 54 healthy subjects (mean±standard deviation, age: 26±5 years, height: 174±11 cm, body mass: 69.9±14.4 kg, and Tegner activity score: 5.8±1.9) showed that the reproduction error was greater in the seated position than in the prone position. The use of the dominant limb as the reference limb was associated with significantly greater errors in the seated position, but not in the prone position. In conclusion, directly comparing the results obtained in the prone and seated positions is not recommended. However, the dominance of the reference limb might be relevant when testing patients and comparing healthy and injured knees.
Collapse
Affiliation(s)
- Juliane Wieber
- Exercise Physiology and Sports Medicine, Olympic Training Centre Berlin, Berlin, Germany
- Sports and Exercise Medicine, University of Hamburg Faculty of Education Psychology and Physical Science, Hamburg, Germany
| | - Abigail Preece
- Institute of Movement and Neuroscience, German Sport University Cologne, Cologne, Germany
- Institute of Exercise Training and Sport Informatics, German Sport University Cologne, Cologne, Germany
| | - Robert Rein
- Institute of Exercise Training and Sport Informatics, German Sport University Cologne, Cologne, Germany
| | - Bjoern Braunstein
- Institute of Movement and Neuroscience, German Sport University Cologne, Cologne, Germany
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
- German Research Centre of Elite Sport, German Sport University Cologne, Cologne, Germany
- Centre for Health and Integrative Physiology in Space, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
2
|
Kitchen NM, Dexheimer B, Yuk J, Maenza C, Ruelos PR, Kim T, Sainburg RL. The complementary dominance hypothesis: a model for remediating the 'good' hand in stroke survivors. J Physiol 2025; 603:663-683. [PMID: 38733166 PMCID: PMC11610521 DOI: 10.1113/jp285561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The complementary dominance hypothesis is a novel model of motor lateralization substantiated by decades of research examining interlimb differences in the control of upper extremity movements in neurotypical adults and hemisphere-specific motor deficits in stroke survivors. In contrast to earlier ideas that attribute handedness to the specialization of one hemisphere, our model proposes complementary motor control specializations in each hemisphere. The dominant hemisphere mediates optimal control of limb dynamics as required for smooth and efficient movements, whereas the non-dominant hemisphere mediates impedance control, important for countering unexpected mechanical conditions and achieving steady-state limb positions. Importantly, this model proposes that each hemisphere contributes its specialization to both arms (though with greater influence from either arm's contralateral hemisphere) and thus predicts that lesions to one hemisphere should produce hemisphere-specific motor deficits in not only the contralesional arm, but also the ipsilesional arm of stroke survivors - a powerful prediction now supported by a growing body of evidence. Such ipsilesional arm motor deficits vary with contralesional arm impairment, and thus individuals with little to no functional use of the contralesional arm experience both the greatest impairments in the ipsilesional arm, as well as the greatest reliance on it to serve as the main or sole manipulator for activities of daily living. Accordingly, we have proposed and tested a novel intervention that reduces hemisphere-specific ipsilesional arm deficits and thereby improves functional independence in stroke survivors with severe contralesional impairment.
Collapse
Affiliation(s)
- Nick M. Kitchen
- Department of Neurology, College of MedicinePennsylvania State UniversityHersheyPennsylvaniaUSA
- Department of KinesiologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Brooke Dexheimer
- Department of Occupational TherapyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Jisung Yuk
- Department of KinesiologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Candice Maenza
- Department of Neurology, College of MedicinePennsylvania State UniversityHersheyPennsylvaniaUSA
| | - Paul R. Ruelos
- Department of KinesiologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Taewon Kim
- Department of KinesiologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Department of Physical Medicine and Rehabilitation, College of MedicinePennsylvania State UniversityHersheyPennsylvaniaUSA
- Huck Institute of the Life SciencesPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Robert L. Sainburg
- Department of Neurology, College of MedicinePennsylvania State UniversityHersheyPennsylvaniaUSA
- Department of KinesiologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Huck Institute of the Life SciencesPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
3
|
Massara M, Delogu C, Cardinale L, Livoti V, Liso A, Cainelli E, Sarlo M, Begliomini C, Ceolin C, De Rui M, Bisiacchi P, Sergi G, Mapelli D, Devita M. The lateralized cerebellum: insights into motor, cognitive, and affective functioning across ages: a scoping review. J Neurol 2025; 272:122. [PMID: 39812809 DOI: 10.1007/s00415-024-12884-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025]
Abstract
Research on the cerebellum and its functional organization has significantly expanded over the last decades, expanding our comprehension of its role far beyond motor control, including critical contributions to cognition and affective processing. Notably, the cerebellar lateralization mirrors contralateral brain lateralization, a complex phenomenon that remains unexplored, especially across different stages of life. The present work aims to bridge this gap by providing a comprehensive scoping review of the lateralization of motor, cognitive, and affective functioning within the cerebellum across the lifespan. A methodical search in electronic databases (i.e., PubMed, Embase, and PsycINFO) was conducted up to October 2024, focusing on neuroimaging studies with healthy participants of all ages performing motor, cognitive, or affective tasks. Our selection process, which involved multiple independent reviewers, identified 128 studies reporting cerebellar asymmetries in individuals from early childhood to older age, with a significant portion of studies regarding young-middle adults (19-45 years old). The majority of the findings confirmed established lateralization patterns in motor and language processing, such as ipsilateral motor control and right-lateralized language functions. However, less attention has been paid to other cognitive functions and affective processing where more heterogeneous and less consistent asymmetries have been observed. To the best of our knowledge, this scoping review is the first to comprehensively investigate the motor, cognitive, and affective functional lateralization of the cerebellum across lifespan, highlighting previously overlooked dimensions of cerebellar contributions.
Collapse
Affiliation(s)
- Matilde Massara
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
| | - Carla Delogu
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
| | - Luca Cardinale
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
| | - Vincenzo Livoti
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
- Padova Neuroscience Center (PNC), University of Padua, Via Orus 2/B, 35129, Padua, Italy
| | - Alba Liso
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 64, 44121, Ferrara, Italy
| | - Elisa Cainelli
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
| | - Michela Sarlo
- Department of Communication Sciences, Humanities and International Studies, University of Urbino Carlo Bo, Via Saffi 15, 61029, Urbino, Italy
| | - Chiara Begliomini
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
- Padova Neuroscience Center (PNC), University of Padua, Via Orus 2/B, 35129, Padua, Italy
| | - Chiara Ceolin
- Geriatrics Division, Department of Medicine (DIMED), University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Marina De Rui
- Geriatrics Division, Department of Medicine (DIMED), University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Patrizia Bisiacchi
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
- Padova Neuroscience Center (PNC), University of Padua, Via Orus 2/B, 35129, Padua, Italy
| | - Giuseppe Sergi
- Geriatrics Division, Department of Medicine (DIMED), University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Daniela Mapelli
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
| | - Maria Devita
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy.
- Geriatrics Division, Department of Medicine (DIMED), University of Padua, Via Giustiniani 2, 35128, Padua, Italy.
| |
Collapse
|
4
|
Drigny J, Rolland M, Remilly M, Guermont H, Reboursière E, Hulet C, Gauthier A. Knee proprioception four months after anterior cruciate ligament reconstruction: Impact of limb dominance, anterolateral procedure, and association with readiness to return to sport. Phys Ther Sport 2025; 71:61-68. [PMID: 39653012 DOI: 10.1016/j.ptsp.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Knee proprioception may be compromised after anterior cruciate ligament reconstruction (ACLR), but associated factors and impact remain unclear. This study evaluated knee proprioception 4 months after primary ACLR, compared with healthy controls, and explored the impacts of leg dominance, anterolateral procedures (AEAPs), and their association with psychological readiness to return to sports. METHODS This prospective cohort study included 30 ACLR participants and 20 healthy controls. Isokinetic testing measured knee strength and proprioception, using passive joint position sense (JPS1: detection, JPS2: repositioning) and kinesthesia (threshold to detection of passive motion). At 8 months, ACLR participants completed the ACL-RSI scale to assess psychological readiness to return to sports. RESULTS At 4 months postoperative, kinesthesia was better in the operated limb than the non-operated limb (p = 0.008), but position sense did not differ significantly. There were no significant differences in kinesthesia or position sense between ACLR participants and controls. The operated limb had worse JPS2 if the ACLR was on the non-dominant side. Proprioception was unaffected by AEAPs, and only repositioning showed a moderate, non-significant correlation with ACL-RSI (r = -0.377). CONCLUSION At 4 months post-ACLR, kinesthesia improved in the operated leg; dominance influenced position sense, highlighting the need for personalized rehabilitation.
Collapse
Affiliation(s)
- Joffrey Drigny
- Service de Médecine Physique et de Réadaptation, Service de Médecine du Sport, CHU de Caen Normandie, Normandie Univ, UNICAEN, INSERM, COMETE, GIP CYCERON, 14000, Caen, France.
| | - Marine Rolland
- Service de Médecine Physique et de Réadaptation, Service de Médecine du Sport, CHU de Caen Normandie, 14000, Caen, France
| | - Marion Remilly
- Service de Médecine du Sport, UNICAEN, CHU de Caen Normandie, 14000 Caen, France
| | - Henri Guermont
- Service de Médecine du Sport, UNICAEN, CHU de Caen Normandie, 14000 Caen, France
| | - Emmanuel Reboursière
- Service de Médecine du Sport, UNICAEN, CHU de Caen Normandie, 14000 Caen, France
| | - Christophe Hulet
- Département d'orthopédie et de Traumatologie, Normandie Univ, UNICAEN, INSERM, COMETE 1075, GIP CYCERON, 14000, Caen, France
| | - Antoine Gauthier
- Normandie Univ, UNICAEN, INSERM, COMETE, GIP CYCERON, 14000 Caen, France
| |
Collapse
|
5
|
Chilvers M, Low T, Rajashekar D, Dukelow S. White matter disconnection impacts proprioception post-stroke. PLoS One 2024; 19:e0310312. [PMID: 39264972 PMCID: PMC11392420 DOI: 10.1371/journal.pone.0310312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024] Open
Abstract
Proprioceptive impairments occur in approximately 50-64% of people following stroke. While much is known about the grey matter structures underlying proprioception, our understanding of the white matter correlates of proprioceptive impairments is less well developed. It is recognised that behavioural impairments post-stroke are often the result of disconnection between wide-scale brain networks, however the disconnectome associated with proprioception post-stroke is unknown. In the current study, white matter disconnection was assessed in relation to performance on a robotic arm position matching (APM) task. Neuroimaging and robotic assessments of proprioception were collected for 203 stroke survivors, approximately 2-weeks post-stroke. The robotic assessment was performed in a KINARM Exoskeleton robotic device and consisted of a nine-target APM task. First, the relationship between white matter tract lesion load and performance on the APM task was assessed. Next, differences in the disconnectome between participants with and without impairments on the APM task were examined. Greater lesion load to the superior longitudinal fasciculus (SLF II and III), arcuate fasciculus (all segments) and fronto-insular tracts were associated with worse APM task performance. In those with APM task impairments, there was, additionally, disconnection of the posterior corpus callosum, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus and optic radiations. This study highlights an important perisylvian white matter network supporting proprioceptive processing in the human brain. It also identifies white matter tracts, important for relaying proprioceptive information from parietal and frontal brain regions, that are not traditionally considered proprioceptive in nature.
Collapse
Affiliation(s)
- Matthew Chilvers
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Trevor Low
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Deepthi Rajashekar
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sean Dukelow
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Yuan K, Okuyama T, Hortobágyi T, Nagatomi R, Négyesi J. Heart rate-related physiological changes induced by classical music-elicited emotions do not underlie alterations in healthy adults' ankle joint target-matching strategy. Sci Rep 2024; 14:16482. [PMID: 39014070 PMCID: PMC11252265 DOI: 10.1038/s41598-024-67467-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024] Open
Abstract
Emotions have the potential to modulate human voluntary movement by modifying muscle afferent discharge which in turn may affect kinesthetic acuity. We examined if heart rate (HR)-related physiological changes induced by music-elicited emotions would underlie alterations in healthy young adults' ankle joint target-matching strategy quantified by joint position sense (JPS). Participants (n = 40, 19 females, age = 25.9 ± 2.9 years) performed ipsilateral-, and contralateral ankle target-matching tasks with their dominant and non-dominant foot using a custom-made foot platform while listening to classical music pieces deemed to evoke happy, sad, or neutral emotions (each n = 10). Participants in the 4th group received no music during the task. Absolute (ABS), constant (CONST), and variable (VAR) target-matching errors and HR-related data were analyzed. Participants performed the contralateral target-matching task with smaller JPS errors when listening to sad vs. happy music (ABS: p < 0.001, d = 1.6; VAR: p = 0.010, d = 1.2) or neutral (ABS: p < 0.001, d = 1.6; VAR: p < 0.001, d = 1.4) music. The ABS (d = 0.8) and VAR (d = 0.3) JPS errors were lower when participants performed the task with their dominant vs. non-dominant foot. JPS errors were also smaller during the ipsilateral target-matching task when participants (1) listened to sad vs. neutral (ABS: p = 0.007, d = 1.2) music, and (2) performed the target-matching with their dominant vs. non-dominant foot (p < 0.001, d = 0.4). Although emotions also induced changes in some HR-related data during the matching conditions, i.e., participants who listened to happy music had lower HR-related values when matching with their non-dominant vs. dominant foot, these changes did not correlate with JPS errors (all p > 0.05). Overall, our results suggest that music-induced emotions have the potential to affect target-matching strategy and HR-related metrics but the changes in HR-metrics do not underlie the alteration of ankle joint target-matching strategy in response to classical music-elicited emotions.
Collapse
Affiliation(s)
- Keqing Yuan
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeshi Okuyama
- Department of Robotics, Tohoku University Graduate School of Engineering, Sendai, Japan
| | - Tibor Hortobágyi
- Department of Kinesiology, Hungarian University of Sports Science, Pf. 69., Budapest, 1525, Hungary
- Department of Human Movement Sciences, Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Institute of Sport Sciences and Physical Education, University of Pécs, Pecs, Hungary
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Biomedical Engineering for Health Maintenance and Promotion, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - János Négyesi
- Department of Kinesiology, Hungarian University of Sports Science, Pf. 69., Budapest, 1525, Hungary.
- Neurocognitive Research Center, Nyírő Gyula National Institute of Psychiatry, and Addictology, Budapest, Hungary.
- CRU Hungary Kft., Budapest, Hungary.
| |
Collapse
|
7
|
Tanabe J, Amimoto K, Sakai K. Brain Activity in Visual-Motor Illusions With Enhanced Joint Motion Intensity. Cureus 2024; 16:e65786. [PMID: 39219877 PMCID: PMC11363815 DOI: 10.7759/cureus.65786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Background Visual-motor illusion (VMI) is a cognitive approach used to evoke kinesthetic sensations. Research suggests that VMI can modulate brain activity depending on the specific joint movement observed. This study aimed to identify differences in brain activity when observing video images of joint movements at different intensities of movement in VMI. Methodology The study included 14 healthy adult participants. Two types of video images were used: pure ankle dorsiflexion movements (Standard-VMI) and ankle dorsiflexion movements with added resistance (Power-VMI). The brain activity measurement protocol employed a block design with one set of 15 seconds rest, 30 seconds VMI task, and 30 seconds follow-up. Each participant performed the VMI task twice, alternating between Standard-VMI and Power-VMI. Brain activity was measured using functional near-infrared spectroscopy, focusing on motor-related regions. Subjective impressions were assessed using visual analog scales (VAS) for kinesthetic illusions. Results The results revealed that Power-VMI stimulated significantly greater brain activity in the premotor and supplementary motor cortex, supramarginal gyrus, and superior parietal lobule compared with Standard-VMI. Power-VMI resulted in higher VAS values for kinesthetic illusion than Standard-VMI. Additionally, a positive correlation was observed between brain activity in the superior parietal lobule and the degree of kinesthetic illusion. Conclusions These findings indicate that Power-VMI enhances both motor-related brain areas and motor-sensory illusions, potentially having a greater impact on improving motor function. This study provides valuable insights for developing VMI interventions for rehabilitation, particularly for individuals with paralysis or movement impairments.
Collapse
Affiliation(s)
- Junpei Tanabe
- Department of Physical Therapy, Hiroshima Cosmopolitan University, Hiroshima, JPN
| | - Kazu Amimoto
- Department of Physical Therapy, Faculty of Rehabilitation, Sendai Seiyo Gakuin College, Sendai, JPN
| | - Katsuya Sakai
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, JPN
| |
Collapse
|
8
|
Rueda Parra S, Perry JC, Wolbrecht ET, Gupta D. Neural correlates of bilateral proprioception and adaptation with training. PLoS One 2024; 19:e0299873. [PMID: 38489319 PMCID: PMC10942095 DOI: 10.1371/journal.pone.0299873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Bilateral proprioception includes the ability to sense the position and motion of one hand relative to the other, without looking. This sensory ability allows us to perform daily activities seamlessly, and its impairment is observed in various neurological disorders such as cerebral palsy and stroke. It can undergo experience-dependent plasticity, as seen in trained piano players. If its neural correlates were better understood, it would provide a useful assay and target for neurorehabilitation for people with impaired proprioception. We designed a non-invasive electroencephalography-based paradigm to assess the neural features relevant to proprioception, especially focusing on bilateral proprioception, i.e., assessing the limb distance from the body with the other limb. We compared it with a movement-only task, with and without the visibility of the target hand. Additionally, we explored proprioceptive accuracy during the tasks. We tested eleven Controls and nine Skilled musicians to assess whether sensorimotor event-related spectral perturbations in μ (8-12Hz) and low-β (12-18Hz) rhythms differ in people with musical instrument training, which intrinsically involves a bilateral proprioceptive component, or when new sensor modalities are added to the task. The Skilled group showed significantly reduced μ and low-β suppression in bilateral tasks compared to movement-only, a significative difference relative to Controls. This may be explained by reduced top-down control due to intensive training, despite this, proprioceptive errors were not smaller for this group. Target visibility significantly reduced proprioceptive error in Controls, while no change was observed in the Skilled group. During visual tasks, Controls exhibited significant μ and low-β power reversals, with significant differences relative to proprioceptive-only tasks compared to the Skilled group-possibly due to reduced uncertainty and top-down control. These results provide support for sensorimotor μ and low-β suppression as potential neuromarkers for assessing proprioceptive ability. The identification of these features is significant as they could be used to quantify altered proprioceptive neural processing in skill and movement disorders. This in turn can be useful as an assay for pre and post sensory-motor intervention research.
Collapse
Affiliation(s)
- Sebastian Rueda Parra
- Department of Electrical Engineering, University of Idaho, Moscow, Idaho, United States of America
- Stratton Veterans Affairs Medical Center, Albany, New York
| | - Joel C. Perry
- Department of Mechanical Engineering, University of Idaho, Moscow, Idaho, United States of America
| | - Eric T. Wolbrecht
- Department of Mechanical Engineering, University of Idaho, Moscow, Idaho, United States of America
| | - Disha Gupta
- Stratton Veterans Affairs Medical Center, Albany, New York
- Department of Electrical and Computer Engineering, University at Albany, State University of New York, Albany, New York, United States of America
| |
Collapse
|
9
|
Crucianelli L, Reader AT, Ehrsson HH. Subcortical contributions to the sense of body ownership. Brain 2024; 147:390-405. [PMID: 37847057 PMCID: PMC10834261 DOI: 10.1093/brain/awad359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/01/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
The sense of body ownership (i.e. the feeling that our body or its parts belong to us) plays a key role in bodily self-consciousness and is believed to stem from multisensory integration. Experimental paradigms such as the rubber hand illusion have been developed to allow the controlled manipulation of body ownership in laboratory settings, providing effective tools for investigating malleability in the sense of body ownership and the boundaries that distinguish self from other. Neuroimaging studies of body ownership converge on the involvement of several cortical regions, including the premotor cortex and posterior parietal cortex. However, relatively less attention has been paid to subcortical structures that may also contribute to body ownership perception, such as the cerebellum and putamen. Here, on the basis of neuroimaging and neuropsychological observations, we provide an overview of relevant subcortical regions and consider their potential role in generating and maintaining a sense of ownership over the body. We also suggest novel avenues for future research targeting the role of subcortical regions in making sense of the body as our own.
Collapse
Affiliation(s)
- Laura Crucianelli
- Department of Biological and Experimental Psychology, Queen Mary University of London, London E1 4DQ, UK
- Department of Neuroscience, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Arran T Reader
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - H Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, Stockholm 171 65, Sweden
| |
Collapse
|
10
|
Tanamachi K, Kuwahara W, Okawada M, Sasaki S, Kaneko F. Relationship between resting-state functional connectivity and change in motor function after motor imagery intervention in patients with stroke: a scoping review. J Neuroeng Rehabil 2023; 20:159. [PMID: 37980496 PMCID: PMC10657492 DOI: 10.1186/s12984-023-01282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND In clinical practice, motor imagery has been proposed as a treatment modality for stroke owing to its feasibility in patients with severe motor impairment. Motor imagery-based interventions can be categorized as open- or closed-loop. Closed-loop intervention is based on voluntary motor imagery and induced peripheral sensory afferent (e.g., Brain Computer Interface (BCI)-based interventions). Meanwhile, open-loop interventions include methods without voluntary motor imagery or sensory afferent. Resting-state functional connectivity (rs-FC) is defined as a significant temporal correlated signal among functionally related brain regions without any stimulus. rs-FC is a powerful tool for exploring the baseline characteristics of brain connectivity. Previous studies reported changes in rs-FC after motor imagery interventions. Systematic reviews also reported the effects of motor imagery-based interventions at the behavioral level. This study aimed to review and describe the relationship between the improvement in motor function and changes in rs-FC after motor imagery in patients with stroke. REVIEW PROCESS The literature review was based on Arksey and O'Malley's framework. PubMed, Ovid MEDLINE, Cochrane Central Register of Controlled Trials, and Web of Science were searched up to September 30, 2023. The included studies covered the following topics: illusion without voluntary action, motor imagery, action imitation, and BCI-based interventions. The correlation between rs-FC and motor function before and after the intervention was analyzed. After screening by two independent researchers, 13 studies on BCI-based intervention, motor imagery intervention, and kinesthetic illusion induced by visual stimulation therapy were included. CONCLUSION All studies relating to motor imagery in this review reported improvement in motor function post-intervention. Furthermore, all those studies demonstrated a significant relationship between the change in motor function and rs-FC (e.g., sensorimotor network and parietal cortex).
Collapse
Affiliation(s)
- Kenya Tanamachi
- Department of Physical Therapy, Graduate School of Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa-Ku, Tokyo, Japan
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Wataru Kuwahara
- Department of Physical Therapy, Graduate School of Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa-Ku, Tokyo, Japan
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Megumi Okawada
- Department of Physical Therapy, Graduate School of Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa-Ku, Tokyo, Japan
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Shun Sasaki
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Fuminari Kaneko
- Department of Physical Therapy, Graduate School of Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa-Ku, Tokyo, Japan.
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
11
|
Doganci N, Iannotti GR, Coll SY, Ptak R. How embodied is cognition? fMRI and behavioral evidence for common neural resources underlying motor planning and mental rotation of bodily stimuli. Cereb Cortex 2023; 33:11146-11156. [PMID: 37804243 PMCID: PMC10687356 DOI: 10.1093/cercor/bhad352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 10/09/2023] Open
Abstract
Functional neuroimaging shows that dorsal frontoparietal regions exhibit conjoint activity during various motor and cognitive tasks. However, it is unclear whether these regions serve several, computationally independent functions, or underlie a motor "core process" that is reused to serve higher-order functions. We hypothesized that mental rotation capacity relies on a phylogenetically older motor process that is rooted within these areas. This hypothesis entails that neural and cognitive resources recruited during motor planning predict performance in seemingly unrelated mental rotation tasks. To test this hypothesis, we first identified brain regions associated with motor planning by measuring functional activations to internally-triggered vs externally-triggered finger presses in 30 healthy participants. Internally-triggered finger presses yielded significant activations in parietal, premotor, and occipitotemporal regions. We then asked participants to perform two mental rotation tasks outside the scanner, consisting of hands or letters as stimuli. Parietal and premotor activations were significant predictors of individual reaction times when mental rotation involved hands. We found no association between motor planning and performance in mental rotation of letters. Our results indicate that neural resources in parietal and premotor cortex recruited during motor planning also contribute to mental rotation of bodily stimuli, suggesting a common core component underlying both capacities.
Collapse
Affiliation(s)
- Naz Doganci
- Laboratory of Cognitive Neurorehabilitation, Department of Clinical Neurosciences, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Giannina Rita Iannotti
- Laboratory of Cognitive Neurorehabilitation, Department of Clinical Neurosciences, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Department of Radiology and Medical Informatics, University Hospitals of Geneva, 1206 Geneva, Switzerland
- Department of Neurosurgery, University Hospitals of Geneva, 1206 Geneva, Switzerland
| | - Sélim Yahia Coll
- Laboratory of Cognitive Neurorehabilitation, Department of Clinical Neurosciences, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Department of Neurosurgery, University Hospitals of Geneva, 1206 Geneva, Switzerland
- Division of Neurorehabilitation, University Hospitals of Geneva, 1206 Geneva, Switzerland
| | - Radek Ptak
- Laboratory of Cognitive Neurorehabilitation, Department of Clinical Neurosciences, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Division of Neurorehabilitation, University Hospitals of Geneva, 1206 Geneva, Switzerland
| |
Collapse
|
12
|
Abi Chebel NM, Gaunet F, Chavet P, Assaiante C, Bourdin C, Sarlegna FR. Does visual experience influence arm proprioception and its lateralization? Evidence from passive matching performance in congenitally-blind and sighted adults. Neurosci Lett 2023; 810:137335. [PMID: 37321387 DOI: 10.1016/j.neulet.2023.137335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
In humans, body segments' position and movement can be estimated from multiple senses such as vision and proprioception. It has been suggested that vision and proprioception can influence each other and that upper-limb proprioception is asymmetrical, with proprioception of the non-dominant arm being more accurate and/or precise than proprioception of the dominant arm. However, the mechanisms underlying the lateralization of proprioceptive perception are not yet understood. Here we tested the hypothesis that early visual experience influences the lateralization of arm proprioceptive perception by comparing 8 congenitally-blind and 8 matched, sighted right-handed adults. Their proprioceptive perception was assessed at the elbow and wrist joints of both arms using an ipsilateral passive matching task. Results support and extend the view that proprioceptive precision is better at the non-dominant arm for blindfolded sighted individuals. While this finding was rather systematic across sighted individuals, proprioceptive precision of congenitally-blind individuals was not lateralized as systematically, suggesting that lack of visual experience during ontogenesis influences the lateralization of arm proprioception.
Collapse
|
13
|
Zhou L, Hu H, Qin B, Zhu Q, Qian Z. Brain activity differences between susceptible and non-susceptible populations under visually induced motion sickness based on sensor-space and source-space analyses. Brain Res 2023; 1815:148474. [PMID: 37393010 DOI: 10.1016/j.brainres.2023.148474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
The neural mechanisms underlying visually induced motion sickness (VIMS) in different susceptible populations are unclear, as it is not clear how brain activity changes in different susceptible populations during the vection section (VS). This study aimed to analyze the brain activity changes in different susceptible populations during VS. Twenty subjects were included in this study and divided into the VIMS-susceptible group (VIMSSG) and VIMS-resistant group (VIMSRG) based on a motion sickness questionnaire. 64-channel electroencephalogram (EEG) data from these subjects during VS were collected. The brain activities during VS for VIMSSG and VIMSRG were analyzed with time-frequency based sensor-space analysis and EEG source imaging based source-space analysis. Under VS, delta and theta energies were significantly increased in VIMSSG and VIMSRG, while alpha and beta energies were only significantly increased in VIMSRG. Also, the superior and middle temporal were activated in VIMSSG and VIMSRG, while lateral occipital, supramarginal gyrus, and precentral gyrus were activated only in VIMSSG. The spatiotemporal differences in brain activity observed between VIMSSG and VIMSRG may be attributed to the different susceptibility of participants in each group and the different severity of MS symptoms experienced. Long-term vestibular training can effectively improve the ability of anti-VIMS. The knowledge gained from this study helps advance understanding of the neural mechanism of VIMS in different susceptible populations.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China
| | - Haixu Hu
- Sports Training Academy, Nanjing Sport Institute, Nanjing, 210016, China
| | - Bing Qin
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China
| | - Qiaoqiao Zhu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China.
| | - Zhiyu Qian
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China.
| |
Collapse
|
14
|
Chilvers MJ, Rajashekar D, Low TA, Scott SH, Dukelow SP. Clinical, Neuroimaging and Robotic Measures Predict Long-Term Proprioceptive Impairments following Stroke. Brain Sci 2023; 13:953. [PMID: 37371431 DOI: 10.3390/brainsci13060953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Proprioceptive impairments occur in ~50% of stroke survivors, with 20-40% still impaired six months post-stroke. Early identification of those likely to have persistent impairments is key to personalizing rehabilitation strategies and reducing long-term proprioceptive impairments. In this study, clinical, neuroimaging and robotic measures were used to predict proprioceptive impairments at six months post-stroke on a robotic assessment of proprioception. Clinical assessments, neuroimaging, and a robotic arm position matching (APM) task were performed for 133 stroke participants two weeks post-stroke (12.4 ± 8.4 days). The APM task was also performed six months post-stroke (191.2 ± 18.0 days). Robotics allow more precise measurements of proprioception than clinical assessments. Consequently, an overall APM Task Score was used as ground truth to classify proprioceptive impairments at six months post-stroke. Other APM performance parameters from the two-week assessment were used as predictive features. Clinical assessments included the Thumb Localisation Test (TLT), Behavioural Inattention Test (BIT), Functional Independence Measure (FIM) and demographic information (age, sex and affected arm). Logistic regression classifiers were trained to predict proprioceptive impairments at six months post-stroke using data collected two weeks post-stroke. Models containing robotic features, either alone or in conjunction with clinical and neuroimaging features, had a greater area under the curve (AUC) and lower Akaike Information Criterion (AIC) than models which only contained clinical or neuroimaging features. All models performed similarly with regard to accuracy and F1-score (>70% accuracy). Robotic features were also among the most important when all features were combined into a single model. Predicting long-term proprioceptive impairments, using data collected as early as two weeks post-stroke, is feasible. Identifying those at risk of long-term impairments is an important step towards improving proprioceptive rehabilitation after a stroke.
Collapse
Affiliation(s)
- Matthew J Chilvers
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Deepthi Rajashekar
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Trevor A Low
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Stephen H Scott
- Department of Biomedical and Molecular Sciences, Queens University, Kingston, ON K7L 3N6, Canada
- Centre for Neuroscience Studies, Queens University, Kingston, ON K7L 3N6, Canada
- Providence Care Hospital, Kingston, ON K7L 3N6, Canada
| | - Sean P Dukelow
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
15
|
Abdulkarim Z, Guterstam A, Hayatou Z, Ehrsson HH. Neural Substrates of Body Ownership and Agency during Voluntary Movement. J Neurosci 2023; 43:2362-2380. [PMID: 36801824 PMCID: PMC10072298 DOI: 10.1523/jneurosci.1492-22.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/18/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023] Open
Abstract
Body ownership and the sense of agency are two central aspects of bodily self-consciousness. While multiple neuroimaging studies have investigated the neural correlates of body ownership and agency separately, few studies have investigated the relationship between these two aspects during voluntary movement when such experiences naturally combine. By eliciting the moving rubber hand illusion with active or passive finger movements during functional magnetic resonance imaging, we isolated activations reflecting the sense of body ownership and agency, respectively, as well as their interaction, and assessed their overlap and anatomic segregation. We found that perceived hand ownership was associated with activity in premotor, posterior parietal, and cerebellar regions, whereas the sense of agency over the movements of the hand was related to activity in the dorsal premotor cortex and superior temporal cortex. Moreover, one section of the dorsal premotor cortex showed overlapping activity for ownership and agency, and somatosensory cortical activity reflected the interaction of ownership and agency with higher activity when both agency and ownership were experienced. We further found that activations previously attributed to agency in the left insular cortex and right temporoparietal junction reflected the synchrony or asynchrony of visuoproprioceptive stimuli rather than agency. Collectively, these results reveal the neural bases of agency and ownership during voluntary movement. Although the neural representations of these two experiences are largely distinct, there are interactions and functional neuroanatomical overlap during their combination, which has bearing on theories on bodily self-consciousness.SIGNIFICANCE STATEMENT How does the brain generate the sense of being in control of bodily movement (agency) and the sense that body parts belong to one's body (body ownership)? Using fMRI and a bodily illusion triggered by movement, we found that agency is associated with activity in premotor cortex and temporal cortex, and body ownership with activity in premotor, posterior parietal, and cerebellar regions. The activations reflecting the two sensations were largely distinct, but there was overlap in premotor cortex and an interaction in somatosensory cortex. These findings advance our understanding of the neural bases of and interplay between agency and body ownership during voluntary movement, which has implications for the development of advanced controllable prosthetic limbs that feel like real limbs.
Collapse
Affiliation(s)
| | - Arvid Guterstam
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Zineb Hayatou
- Université Paris-Saclay, CNRS, Institut Des Neurosciences Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - H Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
16
|
Albanese GA, Marini F, Morasso P, Campus C, Zenzeri J. μ-band desynchronization in the contralateral central and central-parietal areas predicts proprioceptive acuity. Front Hum Neurosci 2023; 17:1000832. [PMID: 37007684 PMCID: PMC10050694 DOI: 10.3389/fnhum.2023.1000832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionPosition sense, which belongs to the sensory stream called proprioception, is pivotal for proper movement execution. Its comprehensive understanding is needed to fill existing knowledge gaps in human physiology, motor control, neurorehabilitation, and prosthetics. Although numerous studies have focused on different aspects of proprioception in humans, what has not been fully investigated so far are the neural correlates of proprioceptive acuity at the joints.MethodsHere, we implemented a robot-based position sense test to elucidate the correlation between patterns of neural activity and the degree of accuracy and precision exhibited by the subjects. Eighteen healthy participants performed the test, and their electroencephalographic (EEG) activity was analyzed in its μ band (8–12 Hz), as the frequency band related to voluntary movement and somatosensory stimulation.ResultsWe observed a significant positive correlation between the matching error, representing proprioceptive acuity, and the strength of the activation in contralateral hand motor and sensorimotor areas (left central and central-parietal areas). In absence of visual feedback, these same regions of interest (ROIs) presented a higher activation level compared to the association and visual areas. Remarkably, central and central-parietal activation was still observed when visual feedback was added, although a consistent activation in association and visual areas came up.ConclusionSumming up, this study supports the existence of a specific link between the magnitude of activation of motor and sensorimotor areas related to upper limb proprioceptive processing and the proprioceptive acuity at the joints.
Collapse
Affiliation(s)
- Giulia Aurora Albanese
- Department of Robotics, Brain and Cognitive Sciences, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genoa, Genoa, Italy
- *Correspondence: Giulia Aurora Albanese,
| | | | - Pietro Morasso
- Department of Robotics, Brain and Cognitive Sciences, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Claudio Campus
- U-VIP Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Jacopo Zenzeri
- Department of Robotics, Brain and Cognitive Sciences, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
- ReWing S.r.l., Milan, Italy
| |
Collapse
|
17
|
Civier O, Sourty M, Calamante F. MFCSC: Novel method to calculate mismatch between functional and structural brain connectomes, and its application for detecting hemispheric functional specialisations. Sci Rep 2023; 13:3485. [PMID: 36882426 PMCID: PMC9992688 DOI: 10.1038/s41598-022-17213-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/21/2022] [Indexed: 03/09/2023] Open
Abstract
We introduce a novel connectomics method, MFCSC, that integrates information on structural connectivity (SC) from diffusion MRI tractography and functional connectivity (FC) from functional MRI, at individual subject level. The MFCSC method is based on the fact that SC only broadly predicts FC, and for each connection in the brain, the method calculates a value that quantifies the mismatch that often still exists between the two modalities. To capture underlying physiological properties, MFCSC minimises biases in SC and addresses challenges with the multimodal analysis, including by using a data-driven normalisation approach. We ran MFCSC on data from the Human Connectome Project and used the output to detect pairs of left and right unilateral connections that have distinct relationship between structure and function in each hemisphere; we suggest that this reflects cases of hemispheric functional specialisation. In conclusion, the MFCSC method provides new information on brain organisation that may not be inferred from an analysis that considers SC and FC separately.
Collapse
Affiliation(s)
- Oren Civier
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, Australia. .,Swinburne Neuroimaging, Swinburne University of Technology, Melbourne, VIC, Australia.
| | - Marion Sourty
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Fernando Calamante
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, Australia.,Sydney Imaging, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
18
|
Abstract
The generation of an internal body model and its continuous update is essential in sensorimotor control. Although known to rely on proprioceptive sensory feedback, the underlying mechanism that transforms this sensory feedback into a dynamic body percept remains poorly understood. However, advances in the development of genetic tools for proprioceptive circuit elements, including the sensory receptors, are beginning to offer new and unprecedented leverage to dissect the central pathways responsible for proprioceptive encoding. Simultaneously, new data derived through emerging bionic neural machine-interface technologies reveal clues regarding the relative importance of kinesthetic sensory feedback and insights into the functional proprioceptive substrates that underlie natural motor behaviors.
Collapse
Affiliation(s)
- Paul D Marasco
- Laboratory for Bionic Integration, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA;
- Charles Shor Epilepsy Center, Cleveland Clinic, Cleveland, Ohio, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Joriene C de Nooij
- Department of Neurology and the Columbia University Motor Neuron Center, Columbia University Medical Center, New York, NY, USA;
| |
Collapse
|
19
|
Strong A, Grip H, Arumugam A, Boraxbekk CJ, Selling J, Häger CK. Right hemisphere brain lateralization for knee proprioception among right-limb dominant individuals. Front Hum Neurosci 2023; 17:969101. [PMID: 36742357 PMCID: PMC9892188 DOI: 10.3389/fnhum.2023.969101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023] Open
Abstract
Introduction Studies indicate that brain response during proprioceptive tasks predominates in the right hemisphere. A right hemisphere lateralization for proprioception may help to explain findings that right-limb dominant individuals perform position matching tasks better with the non-dominant left side. Evidence for proprioception-related brain response and side preference is, however, limited and based mainly on studies of the upper limbs. Establishing brain response associated with proprioceptive acuity for the lower limbs in asymptomatic individuals could be useful for understanding the influence of neurological pathologies on proprioception and locomotion. Methods We assessed brain response during an active unilateral knee joint position sense (JPS) test for both legs of 19 right-limb dominant asymptomatic individuals (females/males = 12/7; mean ± SD age = 27.1 ± 4.6 years). Functional magnetic resonance imaging (fMRI) mapped brain response and simultaneous motion capture provided real-time instructions based on kinematics, accurate JPS errors and facilitated extraction of only relevant brain images. Results Significantly greater absolute (but not constant nor variable) errors were seen for the dominant right knee (5.22° ± 2.02°) compared with the non-dominant left knee (4.39° ± 1.79°) (P = 0.02). When limbs were pooled for analysis, significantly greater responses were observed mainly in the right hemisphere for, e.g., the precentral gyrus and insula compared with a similar movement without position matching. Significant response was also observed in the left hemisphere for the inferior frontal gyrus pars triangularis. When limbs were assessed independently, common response was observed in the right precentral gyrus and superior frontal gyrus. For the right leg, additional response was found in the right middle frontal gyrus. For the left leg, additional response was observed in the right rolandic operculum. Significant positive correlations were found between mean JPS absolute errors for the right knee and simultaneous brain response in the right supramarginal gyrus (r = 0.464, P = 0.040). Discussion Our findings support a general right brain hemisphere lateralization for proprioception (knee JPS) of the lower limbs regardless of which limb is active. Better proprioceptive acuity for the non-dominant left compared with the dominant right knee indicates that right hemisphere lateralization may have meaningful implications for motor control.
Collapse
Affiliation(s)
- Andrew Strong
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, Sweden,*Correspondence: Andrew Strong,
| | - Helena Grip
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Ashokan Arumugam
- Department of Physiotherapy, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Carl-Johan Boraxbekk
- Department of Radiation Sciences, Umeå University, Umeå, Sweden,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark,Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden,Institute of Sports Medicine Copenhagen and Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark,Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Selling
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, Sweden
| | - Charlotte K. Häger
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, Sweden
| |
Collapse
|
20
|
Beyond the Dorsal Column Medial Lemniscus in Proprioception and Stroke: A White Matter Investigation. Brain Sci 2022; 12:brainsci12121651. [PMID: 36552111 PMCID: PMC9775186 DOI: 10.3390/brainsci12121651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Proprioceptive deficits are common following stroke, yet the white matter involved in proprioception is poorly understood. Evidence suggests that multiple cortical regions are involved in proprioception, each connected by major white matter tracts, namely: Superior Longitudinal Fasciculus (branches I, II and III), Arcuate Fasciculus and Middle Longitudinal Fasciculus (SLF I, SLF II, SLF III, AF and MdLF respectively). However, direct evidence on the involvement of these tracts in proprioception is lacking. Diffusion imaging was used to investigate the proprioceptive role of the SLF I, SLF II, SLF III, AF and MdLF in 26 participants with stroke, and seven control participants without stroke. Proprioception was assessed using a robotic Arm Position Matching (APM) task, performed in a Kinarm Exoskeleton robotic device. Lesions impacting each tract resulted in worse APM task performance. Lower Fractional Anisotropy (FA) was also associated with poorer APM task performance for the SLF II, III, AF and MdLF. Finally, connectivity data surrounding the cortical regions connected by each tract accurately predicted APM task impairments post-stroke. This study highlights the importance of major cortico-cortical white matter tracts, particularly the SLF III and AF, for accurate proprioception after stroke. It advances our understanding of the white matter tracts responsible for proprioception.
Collapse
|
21
|
Négyesi J, Petró B, Salman DN, Khandoker A, Katona P, Wang Z, Almaazmi AISQ, Hortobágyi T, Váczi M, Rácz K, Pálya Z, Grand L, Kiss RM, Nagatomi R. Biosignal processing methods to explore the effects of side-dominance on patterns of bi- and unilateral standing stability in healthy young adults. Front Physiol 2022; 13:965702. [PMID: 36187771 PMCID: PMC9523607 DOI: 10.3389/fphys.2022.965702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
We examined the effects of side-dominance on the laterality of standing stability using ground reaction force, motion capture (MoCap), and EMG data in healthy young adults. We recruited participants with strong right (n = 15) and left (n = 9) hand and leg dominance (side-dominance). They stood on one or two legs on a pair of synchronized force platforms for 50 s with 60 s rest between three randomized stance trials. In addition to 23 CoP-related variables, we also computed six MoCap variables representing each lower-limb joint motion time series. Moreover, 39 time- and frequency-domain features of EMG data from five muscles in three muscle groups were analyzed. Data from the multitude of biosignals converged and revealed concordant patterns: no differences occurred between left- and right-side dominant participants in kinetic, kinematic, or EMG outcomes during bipedal stance. Regarding single leg stance, larger knee but lower ankle joint kinematic values appeared in left vs right-sided participants during non-dominant stance. Left-vs right-sided participants also had lower medial gastrocnemius EMG activation during non-dominant stance. While right-side dominant participants always produced larger values for kinematic data of ankle joint and medial gastrocnemius EMG activation during non-dominant vs dominant unilateral stance, this pattern was the opposite for left-sided participants, showing larger values when standing on their dominant vs non-dominant leg, i.e., participants had a more stable balance when standing on their right leg. Our results suggest that side-dominance affects biomechanical and neuromuscular control strategies during unilateral standing.
Collapse
Affiliation(s)
- János Négyesi
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Bálint Petró
- Faculty of Mechanical Engineering, Department of Mechatronics, Optics and Mechanical Engineering Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Diane Nabil Salman
- Biomedical Engineering Department, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Ahsan Khandoker
- Biomedical Engineering Department, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Péter Katona
- Department of Kinesiology, Hungarian University of Sports Science, Budapest, Hungary
| | - Ziheng Wang
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | | | - Tibor Hortobágyi
- Department of Kinesiology, Hungarian University of Sports Science, Budapest, Hungary
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary
- Department of Sport Biology, Institute of Sport Sciences and Physical Education, University of Pécs, Pécs, Hungary
| | - Márk Váczi
- Department of Sport Biology, Institute of Sport Sciences and Physical Education, University of Pécs, Pécs, Hungary
| | - Kristóf Rácz
- Faculty of Mechanical Engineering, Department of Mechatronics, Optics and Mechanical Engineering Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Zsófia Pálya
- Faculty of Mechanical Engineering, Department of Mechatronics, Optics and Mechanical Engineering Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - László Grand
- Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Rita M. Kiss
- Faculty of Mechanical Engineering, Department of Mechatronics, Optics and Mechanical Engineering Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ryoichi Nagatomi
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
22
|
Cole DM, Stämpfli P, Gandia R, Schibli L, Gantner S, Schuetz P, Meier ML. In the back of your mind: Cortical mapping of paraspinal afferent inputs. Hum Brain Mapp 2022; 43:4943-4953. [PMID: 35979921 PMCID: PMC9582373 DOI: 10.1002/hbm.26052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 11/06/2022] Open
Abstract
Topographic organisation is a hallmark of vertebrate cortex architecture, characterised by ordered projections of the body's sensory surfaces onto brain systems. High-resolution functional magnetic resonance imaging (fMRI) has proven itself as a valuable tool to investigate the cortical landscape and its (mal-)adaptive plasticity with respect to various body part representations, in particular extremities such as the hand and fingers. Less is known, however, about the cortical representation of the human back. We therefore validated a novel, MRI-compatible method of mapping cortical representations of sensory afferents of the back, using vibrotactile stimulation at varying frequencies and paraspinal locations, in conjunction with fMRI. We expected high-frequency stimulation to be associated with differential neuronal activity in the primary somatosensory cortex (S1) compared with low-frequency stimulation and that somatosensory representations would differ across the thoracolumbar axis. We found significant differences between neural representations of high-frequency and low-frequency stimulation and between representations of thoracic and lumbar paraspinal locations, in several bilateral S1 sub-regions, and in regions of the primary motor cortex (M1). High-frequency stimulation preferentially activated Brodmann Area (BA) regions BA3a and BA4p, whereas low-frequency stimulation was more encoded in BA3b and BA4a. Moreover, we found clear topographic differences in S1 for representations of the upper and lower back during high-frequency stimulation. We present the first neurobiological validation of a method for establishing detailed cortical maps of the human back, which might serve as a novel tool to evaluate the pathological significance of neuroplastic changes in clinical conditions such as chronic low back pain.
Collapse
Affiliation(s)
- David M Cole
- Integrative Spinal Research, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.,Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - Philipp Stämpfli
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland.,MR-Center of the Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Robert Gandia
- Competence Center Thermal Energy Storage, Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
| | - Louis Schibli
- Competence Center Thermal Energy Storage, Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
| | - Sandro Gantner
- Competence Center Thermal Energy Storage, Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
| | - Philipp Schuetz
- Competence Center Thermal Energy Storage, Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
| | - Michael L Meier
- Integrative Spinal Research, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Abi Chebel NM, Roussillon NA, Bourdin C, Chavet P, Sarlegna FR. Joint Specificity and Lateralization of Upper Limb Proprioceptive Perception. Percept Mot Skills 2022; 129:431-453. [PMID: 35543706 DOI: 10.1177/00315125221089069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Proprioception is the sense of position and movement of body segments. The widespread distribution of proprioceptors in human anatomy raises questions about proprioceptive uniformity across different body parts. For the upper limbs, previous research, using mostly active and/or contralateral matching tasks, has suggested better proprioception of the non-preferred arm, and at the elbow rather than the wrist. Here we assessed proprioceptive perception through an ipsilateral passive matching task by comparing the elbow and wrist joints of the preferred and non-preferred arms. We hypothesized that upper limb proprioception would be better at the elbow of the non-preferred arm. We found signed errors to be less variable at the non-preferred elbow than at the preferred elbow and both wrists. Signed errors at the elbow were also more stable than at the wrist. Across individuals, signed errors at the preferred and non-preferred elbows were correlated. Also, variable signed errors at the preferred wrist, non-preferred wrist, and preferred elbow were correlated. These correlations suggest that an individual with relatively consistent matching errors at one joint may have relatively consistent matching errors at another joint. Our findings also support the view that proprioceptive perception varies across upper limb joints, meaning that a single joint assessment is insufficient to provide a general assessment of an individual's proprioception.
Collapse
Affiliation(s)
| | - Nadege A Roussillon
- Aix Marseille Univ, CNRS, ISM, Marseille, France
- Institut Supérieur de Rééducation Psychomotrice, Marseille, France
- SAMSAH ARRADV, Marseille / Avignon, France
| | | | | | | |
Collapse
|
24
|
Chilvers MJ, Hawe RL, Scott SH, Dukelow SP. Investigating the neuroanatomy underlying proprioception using a stroke model. J Neurol Sci 2021; 430:120029. [PMID: 34695704 DOI: 10.1016/j.jns.2021.120029] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/08/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Abstract
Neuroanatomical investigations have associated cortical areas, beyond Primary Somatosensory Cortex (S1), with impaired proprioception. Cortical regions have included temporoparietal (TP) regions (supramarginal gyrus, superior temporal gyrus, Heschl's gyrus) and insula. Previous approaches have struggled to account for concurrent damage across multiple brain regions. Here, we used a targeted lesion analysis approach to examine the impact of specific combinations of cortical and sub-cortical lesions and quantified the prevalence of proprioceptive impairments when different regions are damaged or spared. Seventy-seven individuals with stroke (49 male; 28 female) were identified meeting prespecified lesion criteria based on MRI/CT imaging: 1) TP lesions without S1, 2) TP lesions with S1, 3) isolated S1 lesions, 4) isolated insula lesions, and 5) lesions not impacting these regions (other regions group). Initially, participants meeting these criteria (1-4) were grouped together into right or left lesion groups and compared to each other, and the other regions group (5), on a robotic Arm Position Matching (APM) task and a Kinesthesia (KIN) task. We then examined the behaviour of individuals that met each specific criteria (groups 1-5). Proprioceptive impairments were more prevalent following right hemisphere lesions than left hemisphere lesions. The extent of damage to TP regions correlated with performance on both robotic tasks. Even without concurrent S1 lesions, TP and insular lesions were associated with impairments on the APM and KIN tasks. Finally, lesions not impacting these regions were much less likely to result in impairments. This study highlights the critical importance of TP and insular regions for accurate proprioception. SIGNIFICANCE STATEMENT: This work advances our understanding of the neuroanatomy of human proprioception. We validate the importance of regions, beyond the dorsal column medial lemniscal pathway and S1, for proprioception. Further, we provide additional evidence of the importance of the right hemisphere for human proprioception. Improved knowledge on the neuroanatomy of proprioception is crucial for advancing therapeutic approaches which target individuals with proprioceptive impairments following neurological injury or with neurological disorders.
Collapse
Affiliation(s)
- Matthew J Chilvers
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| | - Rachel L Hawe
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; School of Kinesiology, University of Minnesota, 1900 University Ave SE, Minneapolis, MN 55455, United States
| | - Stephen H Scott
- Department of Biomedical and Molecular Sciences, Centre for Neuroscience Studies, Queens University, Kingston, ON K7L 3N6, Canada
| | - Sean P Dukelow
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
25
|
Le Franc S, Bonan I, Fleury M, Butet S, Barillot C, Lécuyer A, Cogné M. Visual feedback improves movement illusions induced by tendon vibration after chronic stroke. J Neuroeng Rehabil 2021; 18:156. [PMID: 34717672 PMCID: PMC8556973 DOI: 10.1186/s12984-021-00948-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Illusion of movement induced by tendon vibration is commonly used in rehabilitation and seems valuable for motor rehabilitation after stroke, by playing a role in cerebral plasticity. The aim was to study if congruent visual cues using Virtual Reality (VR) could enhance the illusion of movement induced by tendon vibration of the wrist among participants with stroke. METHODS We included 20 chronic stroke participants. They experienced tendon vibration of their wrist (100 Hz, 30 times) inducing illusion of movement. Three VR visual conditions were added to the vibration: a congruent moving virtual hand (Moving condition); a static virtual hand (Static condition); or no virtual hand at all (Hidden condition). The participants evaluated for each visual condition the intensity of the illusory movement using a Likert scale, the sensation of wrist's movement using a degree scale and they answered a questionnaire about their preferred condition. RESULTS The Moving condition was significantly superior to the Hidden condition and to the Static condition in terms of illusion of movement (p < 0.001) and the wrist's extension (p < 0.001). There was no significant difference between the Hidden and the Static condition for these 2 criteria. The Moving condition was considered the best one to increase the illusion of movement (in 70% of the participants). Two participants did not feel any illusion of movement. CONCLUSIONS This study showed the interest of using congruent cues in VR in order to enhance the consistency of the illusion of movement induced by tendon vibration among participants after stroke, regardless of their clinical severity. By stimulating the brain motor areas, this visuo-proprioceptive feedback could be an interesting tool in motor rehabilitation. Record number in Clinical Trials: NCT04130711, registered on October 17th 2019 ( https://clinicaltrials.gov/ct2/show/NCT04130711?id=NCT04130711&draw=2&rank=1 ).
Collapse
Affiliation(s)
- Salomé Le Franc
- Rehabilitation Medicine Unit, CHU de Rennes, University Hospital of Rennes, 2, rue Henri Le Guilloux, 35000, Rennes, France.
- Hybrid Unity, Inria, University of Rennes, Irisa, 6074 Umr Cnrs, Rennes, France.
| | - Isabelle Bonan
- Rehabilitation Medicine Unit, CHU de Rennes, University Hospital of Rennes, 2, rue Henri Le Guilloux, 35000, Rennes, France
- Empenn Unity U1228, Inserm, Inria, University of Rennes, Irisa, 6074 Umr Cnrs, Rennes, France
| | - Mathis Fleury
- Hybrid Unity, Inria, University of Rennes, Irisa, 6074 Umr Cnrs, Rennes, France
- Empenn Unity U1228, Inserm, Inria, University of Rennes, Irisa, 6074 Umr Cnrs, Rennes, France
| | - Simon Butet
- Rehabilitation Medicine Unit, CHU de Rennes, University Hospital of Rennes, 2, rue Henri Le Guilloux, 35000, Rennes, France
- Empenn Unity U1228, Inserm, Inria, University of Rennes, Irisa, 6074 Umr Cnrs, Rennes, France
| | - Christian Barillot
- Empenn Unity U1228, Inserm, Inria, University of Rennes, Irisa, 6074 Umr Cnrs, Rennes, France
| | - Anatole Lécuyer
- Hybrid Unity, Inria, University of Rennes, Irisa, 6074 Umr Cnrs, Rennes, France
| | - Mélanie Cogné
- Rehabilitation Medicine Unit, CHU de Rennes, University Hospital of Rennes, 2, rue Henri Le Guilloux, 35000, Rennes, France
- Hybrid Unity, Inria, University of Rennes, Irisa, 6074 Umr Cnrs, Rennes, France
| |
Collapse
|
26
|
Schneider C, Marquis R, Jöhr J, Lopes da Silva M, Ryvlin P, Serino A, De Lucia M, Diserens K. Disentangling the percepts of illusory movement and sensory stimulation during tendon vibration in the EEG. Neuroimage 2021; 241:118431. [PMID: 34329723 DOI: 10.1016/j.neuroimage.2021.118431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 01/10/2023] Open
Abstract
Mechanical vibration of muscle tendons in specific frequencies - termed functional proprioceptive stimulation (FPS) - has the ability to induce the illusion of a movement which is congruent with a lengthening of the vibrated tendon and muscle. The majority of previous reports of the brain correlates of this illusion are based on functional neuroimaging. Contrary to the electroencephalogram (EEG) however, such technologies are not suitable for bedside or ambulant use. While a handful of studies have shown EEG changes during FPS, it remains underinvestigated whether these changes were due to the perceived illusion or the perceived vibration. Here, we aimed at disentangling the neural correlates of the illusory movement from those produced by the vibration sensation by comparing the neural responses to two vibration types, one that did and one that did not elicit an illusion. We recruited 40 naïve participants, 20 for the EEG experiment and 20 for a supporting behavioral study, who received functional tendon co-vibration on the biceps and triceps tendon at their left elbow, pseudo-randomly switching between the illusion and non-illusion trials. Time-frequency decomposition uncovered a strong and lasting event-related desynchronization (ERD) in the mu and beta band in both conditions, suggesting a strong somatosensory response to the vibration. Additionally, the analysis of the evoked potentials revealed a significant difference between the two experimental conditions from 310 to 990ms post stimulus onset. Training classifiers on the frequency-based and voltage-based correlates of illusion perception yielded above chance accuracies for 17 and 13 out of the 20 subjects respectively. Our findings show that FPS-induced illusions produce EEG correlates that are distinct from a vibration-based control and which can be classified reliably in a large number of participants. These results encourage pursuing EEG-based detection of kinesthetic illusions as a tool for clinical use, e.g., to uncover aspects of cognitive perception in unresponsive patients.
Collapse
Affiliation(s)
- Christoph Schneider
- Acute Neurorehabilitation Unit (LRNA), Division of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| | - Renaud Marquis
- Acute Neurorehabilitation Unit (LRNA), Division of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Jane Jöhr
- Acute Neurorehabilitation Unit (LRNA), Division of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; Division of Neurorehabilitation and Neuropsychology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Marina Lopes da Silva
- Acute Neurorehabilitation Unit (LRNA), Division of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Philippe Ryvlin
- Division of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Andrea Serino
- MySpace Laboratory, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Marzia De Lucia
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Karin Diserens
- Acute Neurorehabilitation Unit (LRNA), Division of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| |
Collapse
|
27
|
Maurus P, Kurtzer I, Antonawich R, Cluff T. Similar stretch reflexes and behavioral patterns are expressed by the dominant and nondominant arms during postural control. J Neurophysiol 2021; 126:743-762. [PMID: 34320868 DOI: 10.1152/jn.00152.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Limb dominance is evident in many daily activities, leading to the prominent idea that each hemisphere of the brain specializes in controlling different aspects of movement. Past studies suggest that the dominant arm is primarily controlled via an internal model of limb dynamics that enables the nervous system to produce efficient movements. In contrast, the nondominant arm may be primarily controlled via impedance mechanisms that rely on the strong modulation of sensory feedback from individual joints to control limb posture. We tested whether such differences are evident in behavioral responses and stretch reflexes following sudden displacement of the arm during posture control. Experiment 1 applied specific combinations of elbow-shoulder torque perturbations (the same for all participants). Peak joint displacements, return times, end point accuracy, and the directional tuning and amplitude of stretch reflexes in nearly all muscles were not statistically different between the two arms. Experiment 2 induced specific combinations of joint motion (the same for all participants). Again, peak joint displacements, return times, end point accuracy, and the directional tuning and amplitude of stretch reflexes in nearly all muscles did not differ statistically when countering the imposed loads with each arm. Moderate to strong correlations were found between stretch reflexes and behavioral responses to the perturbations with the two arms across both experiments. Collectively, the results do not support the idea that the dominant arm specializes in exploiting internal models and the nondominant arm in impedance control by increasing reflex gains to counter sudden loads imposed on the arms during posture control.NEW & NOTEWORTHY A prominent hypothesis is that the nervous system controls the dominant arm through predictive internal models and the nondominant arm through impedance mechanisms. We tested whether stretch reflexes of muscles in the two arms also display such specialization during posture control. Nearly all behavioral responses and stretch reflexes did not differ statistically but were strongly correlated between the arms. The results indicate individual signatures of feedback control that are common for the two arms.
Collapse
Affiliation(s)
- Philipp Maurus
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Isaac Kurtzer
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| | - Ryan Antonawich
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| | - Tyler Cluff
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
28
|
Naito E, Morita T, Asada M. Importance of the Primary Motor Cortex in Development of Human Hand/Finger Dexterity. Cereb Cortex Commun 2021; 1:tgaa085. [PMID: 34296141 PMCID: PMC8152843 DOI: 10.1093/texcom/tgaa085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/02/2020] [Indexed: 11/18/2022] Open
Abstract
Hand/finger dexterity is well-developed in humans, and the primary motor cortex (M1) is believed to play a particularly important role in it. Here, we show that efficient recruitment of the contralateral M1 and neuronal inhibition of the ipsilateral M1 identified by simple hand motor and proprioceptive tasks are related to hand/finger dexterity and its ontogenetic development. We recruited healthy, right-handed children (n = 21, aged 8–11 years) and adults (n = 23, aged 20–26 years) and measured their brain activity using functional magnetic resonance imaging during active and passive right-hand extension–flexion tasks. We calculated individual active control-related activity (active–passive) to evaluate efficient brain activity recruitment and individual task-related deactivation (neuronal inhibition) during both tasks. Outside the scanner, participants performed 2 right-hand dexterous motor tasks, and we calculated the hand/finger dexterity index (HDI) based on their individual performance. Participants with a higher HDI exhibited less active control-related activity in the contralateral M1 defined by the active and passive tasks, independent of age. Only children with a higher HDI exhibited greater ipsilateral M1 deactivation identified by these tasks. The results imply that hand/finger dexterity can be predicted by recruitment and inhibition styles of the M1 during simple hand sensory–motor tasks.
Collapse
Affiliation(s)
- Eiichi Naito
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan
| | - Tomoyo Morita
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan
| | - Minoru Asada
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan
| |
Collapse
|
29
|
Suárez-Méndez I, Walter S, López-Sanz D, Pasquín N, Bernabé R, Castillo Gallo E, Valdés M, Del Pozo F, Maestú F, Rodríguez-Mañas L. Ongoing Oscillatory Electrophysiological Alterations in Frail Older Adults: A MEG Study. Front Aging Neurosci 2021; 13:609043. [PMID: 33679373 PMCID: PMC7935553 DOI: 10.3389/fnagi.2021.609043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The role of the central nervous system in the pathophysiology of frailty is controversial. We used magnetoencephalography (MEG) to search for abnormalities in the ongoing oscillatory neural activity of frail individuals without global cognitive impairment. Methods: Fifty four older (≥70 years) and cognitively healthy (Mini-Mental State Examination ≥24) participants were classified as robust (0 criterion, n = 34) or frail (≥ 3 criteria, n = 20) following Fried's phenotype. Memory, language, attention, and executive function were assessed through well-validated neuropsychological tests. Every participant underwent a resting-state MEG and a T1-weighted magnetic resonance imaging scan. We performed MEG power spectral analyses to compare the electrophysiological profiles of frail and robust individuals. We used an ensemble learner to investigate the ability of MEG spectral power to discriminate frail from robust participants. Results: We identified increased relative power in the frail group in the mu (p < 0.05) and sensorimotor (p < 0.05) frequencies across right sensorimotor, posterior parietal, and frontal regions. The ensemble learner discriminated frail from robust participants [area under the curve = 0.73 (95% CI = 0.49–0.98)]. Frail individuals performed significantly worse in the Trail Making Test, Digit Span Test (forward), Rey-Osterrieth Complex Figure, and Semantic Fluency Test. Interpretation: Frail individuals without global cognitive impairment showed ongoing oscillatory alterations within brain regions associated with aspects of motor control, jointly to failures in executive function. Our results suggest that some physical manifestations of frailty might partly arise from failures in central structures relevant to sensorimotor and executive processing.
Collapse
Affiliation(s)
- Isabel Suárez-Méndez
- Laboratory of Cognitive and Computational Neuroscience (Complutense University of Madrid - Universidad Politécnica de Madrid), Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Madrid, Spain.,Department of Structure of Matter, Thermal Physics and Electronics, Complutense University of Madrid (UCM), Madrid, Spain.,Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Stefan Walter
- Foundation for Biomedical Research, University Hospital of Getafe, Getafe, Spain.,Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Spain.,Department of Medicine and Public Health, Rey Juan Carlos University, Madrid, Spain
| | - David López-Sanz
- Laboratory of Cognitive and Computational Neuroscience (Complutense University of Madrid - Universidad Politécnica de Madrid), Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Madrid, Spain.,Department of Psychobiology and Methodology in Behavioral Sciences, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Natalia Pasquín
- Foundation for Biomedical Research, University Hospital of Getafe, Getafe, Spain
| | - Raquel Bernabé
- Foundation for Biomedical Research, University Hospital of Getafe, Getafe, Spain
| | | | - Myriam Valdés
- Foundation for Biomedical Research, University Hospital of Getafe, Getafe, Spain.,Geriatric Service, University Hospital of Getafe, Getafe, Spain
| | - Francisco Del Pozo
- Laboratory of Cognitive and Computational Neuroscience (Complutense University of Madrid - Universidad Politécnica de Madrid), Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience (Complutense University of Madrid - Universidad Politécnica de Madrid), Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Madrid, Spain.,Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Leocadio Rodríguez-Mañas
- Foundation for Biomedical Research, University Hospital of Getafe, Getafe, Spain.,Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Spain.,Geriatric Service, University Hospital of Getafe, Getafe, Spain
| |
Collapse
|
30
|
Schmitter CV, Steinsträter O, Kircher T, van Kemenade BM, Straube B. Commonalities and differences in predictive neural processing of discrete vs continuous action feedback. Neuroimage 2021; 229:117745. [PMID: 33454410 DOI: 10.1016/j.neuroimage.2021.117745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 11/16/2022] Open
Abstract
Sensory action consequences are highly predictable and thus engage less neural resources compared to externally generated sensory events. While this has frequently been observed to lead to attenuated perceptual sensitivity and suppression of activity in sensory cortices, some studies conversely reported enhanced perceptual sensitivity for action consequences. These divergent findings might be explained by the type of action feedback, i.e., discrete outcomes vs. continuous feedback. Therefore, in the present study we investigated the impact of discrete and continuous action feedback on perceptual and neural processing during action feedback monitoring. During fMRI data acquisition, participants detected temporal delays (0-417 ms) between actively or passively generated wrist movements and visual feedback that was either continuously provided during the movement or that appeared as a discrete outcome. Both feedback types resulted in (1) a neural suppression effect (active<passive) in a largely shared network including bilateral visual and somatosensory cortices, cerebellum and temporoparietal areas. Yet, compared to discrete outcomes, (2) processing continuous feedback led to stronger suppression in right superior temporal gyrus (STG), Heschl´s gyrus, and insula suggesting specific suppression of features linked to continuous feedback. Furthermore, (3) BOLD suppression in visual cortex for discrete outcomes was specifically related to perceptual enhancement. Together, these findings indicate that neural representations of discrete and continuous action feedback are similarly suppressed but might depend on different predictive mechanisms, where reduced activation in visual cortex reflects facilitation specifically for discrete outcomes, and predictive processing in STG, Heschl´s gyrus, and insula is particularly relevant for continuous feedback.
Collapse
Affiliation(s)
- Christina V Schmitter
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany.
| | - Olaf Steinsträter
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany; Core Facility Brain Imaging, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany.
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany.
| | - Bianca M van Kemenade
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany.
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany.
| |
Collapse
|
31
|
Hok P, Hlustik P. Modulation of the human sensorimotor system by afferent somatosensory input: evidence from experimental pressure stimulation and physiotherapy. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020; 164:371-379. [PMID: 33205755 DOI: 10.5507/bp.2020.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/27/2020] [Indexed: 11/23/2022] Open
Abstract
Peripheral afferent input is critical for human motor control and motor learning. Both skin and deep muscle mechanoreceptors can affect motor behaviour when stimulated. Whereas some modalities such as vibration have been employed for decades to alter cutaneous and proprioceptive input, both experimentally and therapeutically, the central effects of mechanical pressure stimulation have been studied less frequently. This discrepancy is especially striking when considering the limited knowledge of the neurobiological principles of frequently used physiotherapeutic techniques that utilise peripheral stimulation, such as reflex locomotion therapy. Our review of the available literature pertaining to pressure stimulation focused on transcranial magnetic stimulation (TMS) and neuroimaging studies, including both experimental studies in healthy subjects and clinical trials. Our search revealed a limited number of neuroimaging papers related to peripheral pressure stimulation and no evidence of effects on cortical excitability. In general, the majority of imaging studies agreed on the significant involvement of cortical motor areas during the processing of pressure stimulation. Recent data also point to the specific role of subcortical structures, such as putamen or brainstem reticular formation. A thorough comparison of the published results often demonstrated, however, major inconsistencies which are thought to be due to variable stimulation protocols and statistical power. In conclusion, localised peripheral sustained pressure is a potent stimulus inducing changes in cortical activation within sensory and motor areas. Despite historical evidence for modulation of motor behaviour, no direct link can be established based on available fMRI and electrophysiological data. We highlight the limited amount of research devoted to this stimulus modality, emphasise current knowledge gaps, present recent developments in the field and accentuate evidence awaiting replication or confirmation in future neuroimaging and electrophysiological studies.
Collapse
Affiliation(s)
- Pavel Hok
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University Olomouc, and University Hospital Olomouc, Czech Republic
| | - Petr Hlustik
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University Olomouc, and University Hospital Olomouc, Czech Republic
| |
Collapse
|
32
|
Okawada M, Kaneko F, Shibata E. Effect of primary motor cortex excitability changes after quadripulse transcranial magnetic stimulation on kinesthetic sensitivity: A preliminary study. Neurosci Lett 2020; 741:135483. [PMID: 33161107 DOI: 10.1016/j.neulet.2020.135483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 11/16/2022]
Abstract
Muscle spindles provide the greatest contribution to kinesthetic perception. Primary motor cortex (M1) excitability changes in parallel with the intensity of kinesthetic perception inputs from muscle spindles; M1 is therefore involved in kinesthetic perception. However, the causal relationship between changes in kinesthetic sensitivity and M1 excitability is unclear. The purpose of this study was to test whether artificially and sustainably modulated M1 excitability causes changes in kinesthetic sensitivity in healthy individuals. We evaluated motor evoked potentials (MEP) in Experiment 1 and joint motion detection thresholds (JMDT) in Experiment 2 before and after quadripulse transcranial magnetic stimulation (QPS). Nine healthy right-handed male volunteers were recruited. In each experiment, participants received QPS or sham stimulation (Sham) on separate days. MEP amplitude and JMDT were recorded before and at 0, 15, 30, 45, and 60 min after QPS and Sham. Our results showed that M1 excitability and kinesthetic sensitivity increased after QPS, whereas neither changed after Sham. In the five subjects who participated in both experiments, there was a significant moderate correlation between M1 excitability and kinesthetic sensitivity. Thus, the long-lasting change in kinesthetic sensitivity may be due to changes in M1 excitability. In addition, M1 may play a gain adjustment role in the neural pathways of muscle spindle input.
Collapse
Affiliation(s)
- Megumi Okawada
- First Division of Physical Therapy, School of Health Sciences, Sapporo Medical University, S1 W17 Chuo, Sapporo, Hokkaido, Japan; Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shjinjuku-ku, Tokyo, Japan; Department of Rehabilitation, Hokuto Hospital, Hokuto Social Medical Corporation, 7-5 Kisen, Inada-cho, Obihiro-shi, Hokkaido, Japan
| | - Fuminari Kaneko
- First Division of Physical Therapy, School of Health Sciences, Sapporo Medical University, S1 W17 Chuo, Sapporo, Hokkaido, Japan; Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shjinjuku-ku, Tokyo, Japan.
| | - Eriko Shibata
- First Division of Physical Therapy, School of Health Sciences, Sapporo Medical University, S1 W17 Chuo, Sapporo, Hokkaido, Japan; Department of Physical Therapy, Faculty of Human Science, Hokkaido Bunkyo University, 5-196-1, Koganechuo, Eniwa Shi, Hokkaido, Japan
| |
Collapse
|
33
|
Watanabe R, Kim Y, Kikuchi Y. First-person perspective sharpens the understanding of distressful physical feelings associated with physical disability: A functional magnetic resonance study. Biol Psychol 2020; 157:107972. [PMID: 33091449 DOI: 10.1016/j.biopsycho.2020.107972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/22/2020] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Abstract
We investigated whether observation of hand movements of people with hemiplegia by healthy individuals from the first-person perspective (FPP), compared to that from the third-person perspective (TPP), enables better understanding of disability-associated distress. We measured the neural activity of healthy individuals using functional magnetic resonance imaging while they observed hemiplegic movements from the FPP or TPP. Subjective assessment of the movements was determined with questionnaires. Compared to the TPP, the FPP elicited stronger activation in the inferior parietal lobule (IPL), right temporoparietal junction, and anterior cingulate cortex, which are associated with body representation, mentalization, and empathy, respectively. Enhanced IPL activity correlated positively with personal empathic traits. Observing movements of hemiplegic individuals from the FPP provided precise subjective understanding of the physically distressing aspects of their movements. These findings suggest that observing hemiplegic individuals from the FPP effectively improved observers' understanding of disability-associated distress via body representation, mentalization, and empathy systems.
Collapse
Affiliation(s)
- Rui Watanabe
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan; Department of Phycal Therapy, Division of Human Health Science, Graduate School of Tokyo Metropolitan University, 7-2-10 Higashi-ogu, Arakawa-ku, Tokyo, 116-8551, Japan.
| | - Yuri Kim
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Yoshiaki Kikuchi
- Department of Frontier Health Science, Division of Human Health Science, Graduate School of Tokyo Metropolitan University, 7-2-10 Higashi-ogu, Arakawa-ku, Tokyo, 116-8551, Japan
| |
Collapse
|
34
|
Bahmad S, Miller LE, Pham MT, Moreau R, Salemme R, Koun E, Farnè A, Roy AC. Online proprioception feeds plasticity of arm representation following tool-use in healthy aging. Sci Rep 2020; 10:17275. [PMID: 33057121 PMCID: PMC7560613 DOI: 10.1038/s41598-020-74455-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/28/2020] [Indexed: 01/09/2023] Open
Abstract
Following tool-use, the kinematics of free-hand movements are altered. This modified kinematic pattern has been taken as a behavioral hallmark of the modification induced by tool-use on the effector representation. Proprioceptive inputs appear central in updating the estimated effector state. Here we questioned whether online proprioceptive modality that is accessed in real time, or offline, memory-based, proprioception is responsible for this update. Since normal aging affects offline proprioception only, we examined a group of 60 year-old adults for proprioceptive acuity and movement's kinematics when grasping an object before and after tool-use. As a control, participants performed the same movements with a weight-equivalent to the tool-weight-attached to their wrist. Despite hampered offline proprioceptive acuity, 60 year-old participants exhibited the typical kinematic signature of tool incorporation: Namely, the latency of transport components peaks was longer and their amplitude reduced after tool-use. Instead, we observed no kinematic modifications in the control condition. In addition, online proprioception acuity correlated with tool incorporation, as indexed by the amount of kinematics changes observed after tool-use. Altogether, these findings point to the prominent role played by online proprioception in updating the body estimate for the motor control of tools.
Collapse
Affiliation(s)
- Salam Bahmad
- Laboratoire Dynamique du Langage, CNRS UMR 5596, University Lyon 2, Lyon, France. .,Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center CRNL INSERM U1028, CNRS UMR5292, University UCBL Lyon 1, Lyon, France. .,University of Lyon, Lyon, France. .,, 16 Avenue du Doyen Jean Lépine, 69500, Bron, France.
| | - Luke E Miller
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center CRNL INSERM U1028, CNRS UMR5292, University UCBL Lyon 1, Lyon, France.,University of Lyon, Lyon, France
| | - Minh Tu Pham
- Laboratoire Ampère, CNRS UMR5005, INSA Lyon, Univ Lyon, 69621, Villeurbanne, France
| | - Richard Moreau
- Laboratoire Ampère, CNRS UMR5005, INSA Lyon, Univ Lyon, 69621, Villeurbanne, France
| | - Romeo Salemme
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center CRNL INSERM U1028, CNRS UMR5292, University UCBL Lyon 1, Lyon, France.,University of Lyon, Lyon, France.,Hospices Civils de Lyon, Mouvement et Handicap & Neuro-immersion, Lyon, France
| | - Eric Koun
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center CRNL INSERM U1028, CNRS UMR5292, University UCBL Lyon 1, Lyon, France.,University of Lyon, Lyon, France.,Hospices Civils de Lyon, Mouvement et Handicap & Neuro-immersion, Lyon, France
| | - Alessandro Farnè
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center CRNL INSERM U1028, CNRS UMR5292, University UCBL Lyon 1, Lyon, France.,University of Lyon, Lyon, France.,Hospices Civils de Lyon, Mouvement et Handicap & Neuro-immersion, Lyon, France.,Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Alice C Roy
- Laboratoire Dynamique du Langage, CNRS UMR 5596, University Lyon 2, Lyon, France.,Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center CRNL INSERM U1028, CNRS UMR5292, University UCBL Lyon 1, Lyon, France.,Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| |
Collapse
|
35
|
Changes in the Organization of the Secondary Somatosensory Cortex While Processing Lumbar Proprioception and the Relationship With Sensorimotor Control in Low Back Pain. Clin J Pain 2020; 35:394-406. [PMID: 30730445 DOI: 10.1097/ajp.0000000000000692] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Patients with nonspecific low back pain (NSLBP) rely more on the ankle compared with the lower back proprioception while standing, perform sit-to-stand-to-sit (STSTS) movements slower, and exhibit perceptual impairments at the lower back. However, no studies investigated whether these sensorimotor impairments relate to a reorganization of the primary and secondary somatosensory cortices (S1 and S2) and primary motor cortex (M1) during proprioceptive processing. MATERIALS AND METHODS Proprioceptive stimuli were applied at the lower back and ankle muscles during functional magnetic resonance imaging in 15 patients with NSLBP and 13 controls. The location of the activation peaks during the processing of proprioception within S1, S2, and M1 were determined and compared between groups. Proprioceptive use during postural control was evaluated, the duration to perform 5 STSTS movements was recorded, and participants completed the Fremantle Back Awareness Questionnaire (FreBAQ) to assess back-specific body perception. RESULTS The activation peak during the processing of lower back proprioception in the right S2 was shifted laterally in the NSLBP group compared with the healthy group (P=0.007). Moreover, patients with NSLSP performed STSTS movements slower (P=0.018), and reported more perceptual impairments at the lower back (P<0.001). Finally, a significant correlation between a more lateral location of the activation peak during back proprioceptive processing and a more disturbed body perception was found across the total group (ρ=0.42, P=0.025). CONCLUSIONS The results suggest that patients with NSLBP show a reorganization of the higher-order processing of lower back proprioception, which could negatively affect spinal control and body perception.
Collapse
|
36
|
Kanno S, Shinohara M, Kanno K, Gomi Y, Uchiyama M, Nishio Y, Baba T, Hosokai Y, Takeda A, Fukuda H, Mori E, Suzuki K. Neural substrates underlying progressive micrographia in Parkinson's disease. Brain Behav 2020; 10:e01669. [PMID: 32558361 PMCID: PMC7428504 DOI: 10.1002/brb3.1669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/18/2020] [Accepted: 05/04/2020] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION The neural substrates associated with the development of micrographia remain unknown. We aimed to elucidate the neural substrates underlying micrographia in Parkinson's disease (PD) patients. METHODS Forty PD patients and 20 healthy controls underwent handwriting tests that involved free writing and copying. We measured the size of each letter and the resting cerebral glucose metabolic rate of the PD patients and another group of age- and sex-matched 14 healthy controls (HCs), who had not participated in the writing tests, using resting-state 18F-fluorodeoxyglucose positron emission tomography. RESULTS In the PD patients, the prevalence of consistent micrographia (CM) associated with free writing was 2.5% for both tasks. Alternatively, the prevalence of progressive micrographia (PM) was 15% for free writing and 17.5% for copying. In the PD patients, there was no significant difference in the letter sizes between these tasks, whereas the variability of the letter sizes for copying was significantly different from that for free writing. The means and decrements in letter sizes in either task were not significantly correlated with the severity of brady/hypokinesia in the PD patients. For free writing, the PD patients with PM showed glucose hypometabolism in the anterior part of the right middle cingulate cortex, including the rostral cingulate motor area, compared with those without PM. For copying, the PD patients with PM showed glucose hypometabolism in the right superior occipital gyrus, including V3A, compared with those without PM. CONCLUSIONS These findings suggest that PM in free writing in PD patients is caused by the difficulty of monitoring whether the actual handwriting movements are desirable for maintaining letter size during self-paced handwriting. By contrast, PM in copying in PD patients is evoked by a lack of visual information about the personal handwriting and hand motions that are used as cues for maintaining letter sizes.
Collapse
Affiliation(s)
- Shigenori Kanno
- Department of Behavioural Neurology and Cognitive NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
| | - Mayumi Shinohara
- Department of Behavioural Neurology and Cognitive NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
| | - Kasumi Kanno
- Department of Behavioural Neurology and Cognitive NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
| | - Yukihiro Gomi
- Department of Behavioural Neurology and Cognitive NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of Occupational TherapyInternational University of Health and WelfareNaritaJapan
| | - Makoto Uchiyama
- Department of Behavioural Neurology and Cognitive NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of Speech, Language, and Hearing SciencesNiigata University of Health and WelfareNiigataJapan
| | - Yoshiyuki Nishio
- Department of Behavioural Neurology and Cognitive NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of General PsychiatryTokyo Metropolitan Matsuzawa HospitalSetagayaJapan
| | - Toru Baba
- Department of Behavioural Neurology and Cognitive NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of NeurologySendai Nishitaga HospitalSendaiJapan
| | - Yoshiyuki Hosokai
- Department of Behavioural Neurology and Cognitive NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of Radiological ScienceInternational University of Health and WelfareOtawaraJapan
| | - Atsushi Takeda
- Department of NeurologySendai Nishitaga HospitalSendaiJapan
| | - Hiroshi Fukuda
- Department of Nuclear Medicine and RadiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Division of RadiologyTohoku Medical and Pharmaceutical UniversitySendaiJapan
| | - Etsuro Mori
- Department of Behavioural Neurology and Cognitive NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of Behavioural Neurology and Cognitive NeuropsychiatryOsaka University United Graduate School of Child DevelopmentSuitaJapan
| | - Kyoko Suzuki
- Department of Behavioural Neurology and Cognitive NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
37
|
Suárez-Méndez I, Doval S, Walter S, Pasquín N, Bernabé R, Gallo EC, Valdés M, Maestú F, López-Sanz D, Rodríguez-Mañas L. Functional Connectivity Disruption in Frail Older Adults Without Global Cognitive Deficits. Front Med (Lausanne) 2020; 7:322. [PMID: 32733905 PMCID: PMC7360673 DOI: 10.3389/fmed.2020.00322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Frailty is a common representation of cumulative age-related decline that may precede disability in older adults. In our study, we used magnetoencephalography (MEG) to explore the existence of abnormalities in the synchronization patterns of frail individuals without global cognitive impairment. Fifty-four older (≥70 years) and cognitively healthy (Mini-Mental State Examination ≥24) adults, 34 robust (not a single positive Fried criterion) and 20 frail (≥3 positive Fried criteria) underwent a resting-state MEG recording and a T1-weighted magnetic resonance imaging scan. Seed-based functional connectivity (FC) analyses were used to explore group differences in the synchronization of fronto-parietal areas relevant to motor function. Additionally, we performed group comparisons of intra-network FC for key resting-state networks such as the sensorimotor, fronto-parietal, default mode, and attentional (dorsal and ventral) networks. Frail participants exhibited reduced FC between posterior regions of the parietal cortex (bilateral supramarginal gyrus, right superior parietal lobe, and right angular gyrus) and widespread clusters spanning mainly fronto-parietal regions. Frail participants also demonstrated reduced intra-network FC within the fronto-parietal, ventral attentional, and posterior default mode networks. All the FC results concerned the upper beta band, a frequency range classically linked to motor function. Overall, our findings reveal the existence of abnormalities in the synchronization patterns of frail individuals within central structures important for accurate motor control. This study suggests that alterations in brain connectivity might contribute to some motor impairments associated with frailty.
Collapse
Affiliation(s)
- Isabel Suárez-Méndez
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain.,Department of Structure of Matter, Thermal Physics and Electronics, Complutense University of Madrid (UCM), Madrid, Spain.,Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Sandra Doval
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain.,Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Stefan Walter
- Foundation for Biomedical Research, University Hospital of Getafe, Madrid, Spain.,Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,Department of Medicine and Public Health, Rey Juan Carlos University, Madrid, Spain
| | - Natalia Pasquín
- Foundation for Biomedical Research, University Hospital of Getafe, Madrid, Spain
| | - Raquel Bernabé
- Foundation for Biomedical Research, University Hospital of Getafe, Madrid, Spain
| | | | - Myriam Valdés
- Foundation for Biomedical Research, University Hospital of Getafe, Madrid, Spain.,Geriatric Service, University Hospital of Getafe, Madrid, Spain
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain.,Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - David López-Sanz
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain.,Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain.,Department of Psychobiology, Faculty of Psychology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Foundation for Biomedical Research, University Hospital of Getafe, Madrid, Spain.,Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,Geriatric Service, University Hospital of Getafe, Madrid, Spain
| |
Collapse
|
38
|
Beaulieu LD, Schneider C, Massé-Alarie H, Ribot-Ciscar E. A new method to elicit and measure movement illusions in stroke by means of muscle tendon vibration: the Standardized Kinesthetic Illusion Procedure (SKIP). Somatosens Mot Res 2020; 37:28-36. [PMID: 31973656 DOI: 10.1080/08990220.2020.1713739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: Muscle tendon vibration (MTV) strongly activates muscle spindles and can evoke kinaesthetic illusions. Although potentially relevant for sensorimotor rehabilitation in stroke, MTV is scarcely used in clinical practice, likely because of the absence of standardised procedures to elicit and characterise movement illusions. This work developed and validated a Standardised Kinaesthetic Illusion Procedure (SKIP) to favour the use of MTV-induced illusions in clinical settings.Materials and methods: SKIP scores were obtained in 15 individuals with chronic stroke and 18 age- and gender-matched healthy counterparts. A further 13 healthy subjects were tested to provide more data with the general population. MTV was applied over the Achilles tendon and SKIP scoring system characterised the clearness and direction of the illusions of ankle dorsiflexion movements.Results: All healthy and stroke participants perceived movement illusions. SKIP scores on the paretic side were significantly lower compared to the non paretic and healthy. Illusions were less clear and sometimes in unexpected directions with the impaired ankle, but still possible to elicit in the presence of sensorimotor deficits.Conclusions: SKIP represents an ancillary and potentially useful clinical method to elicit and characterise illusions of movements induced by MTV. SKIP could be relevant to further assess the processing of proprioceptive afferents in stroke and their potential impact on motor control and recovery. It may be used to guide therapy and improve sensorimotor recovery. Future work is needed to investigate the metrological properties of our method (reliability, responsiveness, etc.), and also the neurophysiological underpinnings of MTV-induced illusions.
Collapse
Affiliation(s)
- Louis-David Beaulieu
- Biomechanical and Neurophysiological Research Lab in neuro-musculo-skelettal Rehabilitation (BioNR Lab, Université du Québec à Chicoutimi, Chicoutimi, Canada
| | - Cyril Schneider
- Noninvasive Stimulation Laboratory, Research Center - Neuroscience Division and Department Rehabilitation, CHU de Québec-Université Laval, Quebec City, Canada
| | - Hugo Massé-Alarie
- Centre interdisciplinaire de recherche en réadaptation et intégration sociale, Université Laval, Quebec City, Canada
| | - Edith Ribot-Ciscar
- Laboratoire de Neurosciences Sensorielles et Cognitives, Aix Marseille Univ, CNRS, LNSC, Marseille, France
| |
Collapse
|
39
|
Right-hemispheric Dominance in Self-body Recognition is Altered in Left-handed Individuals. Neuroscience 2020; 425:68-89. [DOI: 10.1016/j.neuroscience.2019.10.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 11/23/2022]
|
40
|
Semrau JA, Herter TM, Scott SH, Dukelow SP. Differential loss of position sense and kinesthesia in sub-acute stroke. Cortex 2019; 121:414-426. [DOI: 10.1016/j.cortex.2019.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/29/2019] [Accepted: 09/18/2019] [Indexed: 01/06/2023]
|
41
|
Négyesi J, Galamb K, Szilágyi B, Nagatomi R, Hortobágyi T, Tihanyi J. Age-specific modifications in healthy adults' knee joint position sense. Somatosens Mot Res 2019; 36:262-269. [PMID: 31691599 DOI: 10.1080/08990220.2019.1684888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aim: Right-handed young adults perform target-matching tasks more accurately with the non-dominant (ND) compared to the dominant (D) limb, but it is unclear if age affects this disparity. We determined if age affects target-matching asymmetry in right-side dominant healthy adults. Method: Young (n = 12, age: 23.6 y, 6 females) and older (n = 12; age: 75.1 y, 7 females) adults performed a passive joint position-matching task with the D and ND leg in a randomized order. Result: Age affected absolute, constant, and variable knee JPS errors but, contrary to expectations, it did not affect target-matching asymmetries between the D and ND knees. However, older participants tended to underestimate while young subjects overestimated the target angles. Moreover, older as compared to young subjects performed the target-matching task with higher variability. Conclusion: Altogether, age seems to affect passive knee target-matching behaviour in right-side dominant healthy adults. The present data indicate that healthy aging produces age-specific modifications in passive joint position sense.
Collapse
Affiliation(s)
- János Négyesi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kata Galamb
- Department of Movement, Human and Health Sciences, University of Rome, Rome, Italy
| | - Borbála Szilágyi
- Department of Biomechanics, Kinesiology and Informatics, University of Physical Education, Budapest, Hungary
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Biomedical Engineering for Health & Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Tibor Hortobágyi
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - József Tihanyi
- Department of Biomechanics, Kinesiology and Informatics, University of Physical Education, Budapest, Hungary
| |
Collapse
|
42
|
Marini F, Zenzeri J, Pippo V, Morasso P, Campus C. Neural correlates of proprioceptive upper limb position matching. Hum Brain Mapp 2019; 40:4813-4826. [PMID: 31348604 PMCID: PMC6865654 DOI: 10.1002/hbm.24739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 11/06/2022] Open
Abstract
Proprioceptive information allows humans to perform smooth coordinated movements by constantly updating one's mind with knowledge of the position of one's limbs in space. How this information is combined with other sensory modalities and centrally processed to form conscious perceptions of limb position remains relatively unknown. What has proven even more elusive is pinpointing the contribution of proprioception in cortical activity related to motion. This study addresses these gaps by examining electrocortical dynamics while participants performed an upper limb position matching task in two conditions, namely with proprioceptive feedback or with both visual and proprioceptive feedback. Specifically, we evaluated the reduction of the electroencephalographic power (desynchronization) in the μ frequency band (8-12 Hz), which is known to characterize the neural activation associated with motor control and behavior. We observed a stronger desynchronization in the left motor and somatosensory areas, contralateral to the moving limb while, parietal and occipital regions, identifying association and visual areas, respectively, exhibited a similar activation level in the two hemispheres. Pertaining to the influence of the two experimental conditions it affected only movement's offset, and precisely we found that when matching movements are performed relying only on proprioceptive information, a lower cortical activity is entailed. This effect was strongest in the visual and association areas, while there was a minor effect in the hand motor and somatosensory areas.
Collapse
Affiliation(s)
- Francesca Marini
- Department of Robotics, Brain and Cognitive SciencesIstituto Italiano di TecnologiaGenoaItaly
| | - Jacopo Zenzeri
- Department of Robotics, Brain and Cognitive SciencesIstituto Italiano di TecnologiaGenoaItaly
| | - Valentina Pippo
- Department of Robotics, Brain and Cognitive SciencesIstituto Italiano di TecnologiaGenoaItaly
| | - Pietro Morasso
- Department of Robotics, Brain and Cognitive SciencesIstituto Italiano di TecnologiaGenoaItaly
| | - Claudio Campus
- U‐VIP Unit for Visually Impaired PeopleIstituto Italiano di TecnologiaGenoaItaly
| |
Collapse
|
43
|
Herter TM, Scott SH, Dukelow SP. Vision does not always help stroke survivors compensate for impaired limb position sense. J Neuroeng Rehabil 2019; 16:129. [PMID: 31666135 PMCID: PMC6822422 DOI: 10.1186/s12984-019-0596-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/20/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Position sense is commonly impaired after stroke. Traditional rehabilitation methods instruct patients to visualize their limbs to compensate for impaired position sense. OBJECTIVE Our goal was to evaluate how the use of vision influences impaired position sense. METHODS We examined 177 stroke survivors, an average of 12.7 days (+/- 10 days (SD)) post-stroke, and 133 neurologically-intact controls with a robotic assessment of position sense. The robot positioned one limb (affected) and subjects attempted to mirror-match the position using the opposite limb (unaffected). Subjects completed the test without, then with vision of their limbs. We examined three measures of position sense: variability (Var), contraction/expansion (C/E) and systematic shift (Shift). We classified stroke survivors as having full compensation if they performed the robotic task abnormally without vision but corrected performance within the range of normal with vision. Stroke survivors were deemed to have partial compensation if they performed the task outside the range of normal without and with vision, but improved significantly with vision. Those with absent compensation performed the task abnormally in both conditions and did not improve with vision. RESULTS Many stroke survivors demonstrated impaired position sense with vision occluded [Var: 116 (66%), C/E: 91 (51%), Shift: 52 (29%)]. Of those stroke survivors with impaired position sense, some exhibited full compensation with vision [Var: 23 (20%), C/E: 42 (46%), Shift: 32 (62%)], others showed partial compensation [Var: 37 (32%), C/E: 8 (9%), Shift: 3 (6%)] and many displayed absent compensation (Var: 56 (48%), C/E: 41 (45%), Shift: 17 (33%)]. Stroke survivors with an affected left arm, visuospatial neglect and/or visual field defects were less likely to compensate for impaired position sense using vision. CONCLUSIONS Our results indicate that vision does not help many stroke survivors compensate for impaired position sense, at least within the current paradigm. This contrasts with historical reports that vision helps compensate for proprioceptive loss following neurologic injuries.
Collapse
Affiliation(s)
- Troy M Herter
- Department of Exercise Science, University of South Carolina, Columbia, SC, USA
| | - Stephen H Scott
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada
- School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Sean P Dukelow
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
- Department of Clinical Neurosciences, University of Calgary, 1403 29th St NW, Foothills Medical Centre, South Tower-Room 905, Calgary, AB, T2N2T9, Canada.
| |
Collapse
|
44
|
Event-related desynchronization possibly discriminates the kinesthetic illusion induced by visual stimulation from movement observation. Exp Brain Res 2019; 237:3233-3240. [PMID: 31630226 DOI: 10.1007/s00221-019-05665-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/09/2019] [Indexed: 10/25/2022]
Abstract
Visual stimulation of a repetitive self-movement image can evoke kinesthetic illusion when a virtual body part is set over the actual body part (kinesthetic illusion induced by visual stimulation, KINVIS). KINVIS induces activity in cerebral network, similar to that produced during motor execution, and triggers motor imagery passively. This study sought to identify a biomarker of KINVIS using event-related desynchronization (ERD) to improve the application of KINVIS to brain-machine interface (BMI) therapy of patients with stroke with hemiparesis. We included healthy adults in whom KINVIS could be induced. Scalp electroencephalograms were recorded during the KINVIS condition, where KINVIS was induced using a self-movement image. The findings were compared to signals recorded during an observation (OB) condition where only the self-movement image was viewed. For the signal intensity of the α- and low β-frequency bands, we calculated ERD during a movie period. The ERD of the α-frequency band in P3 and CP3 during KINVIS was significantly higher than that during OB. Furthermore, using the ERD of the α-frequency band recorded from FC3 and CP3, we could discriminate illusory perception with a 70% success rate. In this study, KINVIS could be detected using the ERD of the α-frequency band recorded from the posterior portion of the sensorimotor cortex. Furthermore, adding ERD recorded from FC3 to that recorded from CP3 may enable the objective discrimination of KINVIS from OB. When applying KINVIS in BMI therapy, the combination ERD of FC3 and CP3 will become a parameter for objectively judging the degree of kinesthetic perception achieved.
Collapse
|
45
|
Takeuchi N, Sudo T, Oouchida Y, Mori T, Izumi SI. Synchronous Neural Oscillation Between the Right Inferior Fronto-Parietal Cortices Contributes to Body Awareness. Front Hum Neurosci 2019; 13:330. [PMID: 31616270 PMCID: PMC6769041 DOI: 10.3389/fnhum.2019.00330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/09/2019] [Indexed: 11/23/2022] Open
Abstract
The right inferior fronto-parietal network monitors the current status of the musculoskeletal system and builds-up and updates our postural model. The kinesthetic illusion induced by tendon vibration has been utilized in experiments on the modulation of body awareness. The right inferior fronto-parietal cortices activate during the kinesthetic illusion. We aimed to determine the relationship between the right inferior fronto-parietal cortices and body awareness by applying transcranial alternating current stimulation (tACS) to exogenously modulate oscillatory neural activity in the right fronto-parietal cortices during the kinesthetic illusion. Sixteen young adults participated in this study. We counterbalanced the order in which participants received the three types of tACS (55 Hz enveloped by 6 Hz; synchronous, desynchronous, and sham) across the subjects. The illusory movement perception induced by tendon vibration of the left extensor carpi ulnaris muscle was assessed before and during tACS. Application of synchronous tACS over the right inferior fronto-parietal cortices significantly increased kinesthetic illusion compared with sham tACS. The kinesthetic illusion during desynchronous tACS decreased from baseline. There was no change in vibration sensation during any tACS condition. The modulation of oscillatory brain activity between the right fronto-parietal cortices alters the illusory movement perception without altering actual vibration sensation. tACS over the right inferior fronto-parietal cortices is considered to modulate the neural processing involved in updating the postural model when the stimulated muscle spindle sends kinesthetic signals. This is the first study that reveals that rhythmic communication between the right inferior fronto-parietal cortices has a causal role in body awareness.
Collapse
Affiliation(s)
- Naoyuki Takeuchi
- Department of Physical Therapy, Akita University Graduate School of Health Sciences, Akita, Japan
| | - Tamami Sudo
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Yutaka Oouchida
- Department of Education, Osaka Kyoiku University, Kashiwara, Japan
| | - Takayuki Mori
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
46
|
Trivedi V, Bang JW, Parra C, Colbert MK, O'Connell C, Arshad A, Faiq MA, Conner IP, Redfern MS, Wollstein G, Schuman JS, Cham R, Chan KC. Widespread brain reorganization perturbs visuomotor coordination in early glaucoma. Sci Rep 2019; 9:14168. [PMID: 31578409 PMCID: PMC6775162 DOI: 10.1038/s41598-019-50793-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/19/2019] [Indexed: 11/09/2022] Open
Abstract
Glaucoma is the world's leading cause of irreversible blindness, and falls are a major public health concern in glaucoma patients. Although recent evidence suggests the involvements of the brain toward advanced glaucoma stages, the early brain changes and their clinical and behavioral consequences remain poorly described. This study aims to determine how glaucoma may impair the brain structurally and functionally within and beyond the visual pathway in the early stages, and whether these changes can explain visuomotor impairments in glaucoma. Using multi-parametric magnetic resonance imaging, glaucoma patients presented compromised white matter integrity along the central visual pathway and around the supramarginal gyrus, as well as reduced functional connectivity between the supramarginal gyrus and the visual occipital and superior sensorimotor areas when compared to healthy controls. Furthermore, decreased functional connectivity between the supramarginal gyrus and the visual brain network may negatively impact postural control measured with dynamic posturography in glaucoma patients. Taken together, this study demonstrates that widespread structural and functional brain reorganization is taking place in areas associated with visuomotor coordination in early glaucoma. These results implicate an important central mechanism by which glaucoma patients may be susceptible to visual impairments and increased risk of falls.
Collapse
Affiliation(s)
- Vivek Trivedi
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA
| | - Ji Won Bang
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA
| | - Carlos Parra
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA
| | - Max K Colbert
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA
| | - Caitlin O'Connell
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - Ahmel Arshad
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA
| | - Muneeb A Faiq
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA
| | - Ian P Conner
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark S Redfern
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gadi Wollstein
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA.,Center for Neural Science, Faculty of Arts and Science, New York University, New York, NY, USA
| | - Joel S Schuman
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA.,Neuroscience Institute, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA.,Center for Neural Science, Faculty of Arts and Science, New York University, New York, NY, USA
| | - Rakie Cham
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin C Chan
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA. .,Department of Radiology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA. .,Neuroscience Institute, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA. .,Center for Neural Science, Faculty of Arts and Science, New York University, New York, NY, USA.
| |
Collapse
|
47
|
Marini F, Zenzeri J, Pippo V, Morasso P, Campus C. Movement related activity in the μ band of the human EEG during a robot-based proprioceptive task. IEEE Int Conf Rehabil Robot 2019; 2019:1019-1024. [PMID: 31374763 DOI: 10.1109/icorr.2019.8779552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Innovative research in the fields of prosthetic, neurorehabilitation, motor control and human physiology has been focusing on the study of proprioception, the sense through which we perceive the position and movement of our body, and great achievements have been obtained regarding its assessment and characterization. However, how proprioceptive signals are combined with other sensory modalities and processed by the central nervous system to form a conscious body image, is still unknown. Such a crucial question was addressed in this study, which involved 23 healthy subjects, by combining a robot-based proprioceptive test with a specific analysis of electroencephalographic activity (EEG) in the $\mu$ frequency band (8-12 Hz). We observed important activation in the motor area contralateral to the moving hand, and besides, a substantial bias in brain activation and proprioceptive acuity when visual feedback was provided in addition to the proprioceptive information during movement execution. In details, brain activation and proprioceptive acuity were both higher in case of movements performed with visual feedback. Remarkably, we also found a correlation between the level of activation in the brain motor area contralateral to the moving hand and the value of proprioceptive acuity.
Collapse
|
48
|
Iandolo R, Carè M, Shah VA, Schiavi S, Bommarito G, Boffa G, Giannoni P, Inglese M, Mrotek LA, Scheidt RA, Casadio M. A two alternative forced choice method for assessing vibrotactile discrimination thresholds in the lower limb. Somatosens Mot Res 2019; 36:162-170. [PMID: 31267810 DOI: 10.1080/08990220.2019.1632184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The development of an easy to implement, quantitative measure to examine vibration perception would be useful for future application in clinical settings. Vibration sense in the lower limb of younger and older adults was examined using the method of constant stimuli (MCS) and the two-alternative forced choice paradigm. The focus of this experiment was to determine an appropriate stimulation site on the lower limb (tendon versus bone) to assess vibration threshold and to determine if the left and right legs have varying thresholds. Discrimination thresholds obtained at two stimulation sites in the left and right lower limbs showed differences in vibration threshold across the two ages groups, but not across sides of the body nor between stimulation sites within each limb. Overall, the MCS can be implemented simply, reliably, and with minimal time. It can also easily be implemented with low-cost technology. Therefore, it could be a good candidate method to assess the presence of specific deep sensitivity deficits in clinical practice, particularly in populations likely to show the onset of sensory deficits.
Collapse
Affiliation(s)
- Riccardo Iandolo
- a Robotics, Brain and Cognitive Sciences , Istituto Italiano di Tecnologia , Genova , Italy.,b Department of Informatics, Bioengineering, Robotics and System Engineering , University of Genova , Genova , Italy
| | - Marta Carè
- b Department of Informatics, Bioengineering, Robotics and System Engineering , University of Genova , Genova , Italy
| | - Valay A Shah
- c Department of Biomedical Engineering , Marquette University and Medical College of Wisconsin , Milwaukee , WI , USA
| | - Simona Schiavi
- d Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health , University of Genova , Genova , Italy
| | - Giulia Bommarito
- d Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health , University of Genova , Genova , Italy
| | - Giacomo Boffa
- d Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health , University of Genova , Genova , Italy
| | - Psiche Giannoni
- b Department of Informatics, Bioengineering, Robotics and System Engineering , University of Genova , Genova , Italy
| | - Matilde Inglese
- d Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health , University of Genova , Genova , Italy.,e Ospedale Policlinico San Martino-IRCSS , Genova , Italy
| | - Leigh Ann Mrotek
- c Department of Biomedical Engineering , Marquette University and Medical College of Wisconsin , Milwaukee , WI , USA
| | - Robert A Scheidt
- c Department of Biomedical Engineering , Marquette University and Medical College of Wisconsin , Milwaukee , WI , USA.,f Feinberg School of Medicine , Northwestern University , Chicago , IL , USA.,g Division of Civil, Mechanical and Manufacturing Innovation , National Science Foundation , Alexandria , VA , USA
| | - Maura Casadio
- a Robotics, Brain and Cognitive Sciences , Istituto Italiano di Tecnologia , Genova , Italy.,b Department of Informatics, Bioengineering, Robotics and System Engineering , University of Genova , Genova , Italy
| |
Collapse
|
49
|
Fuchigami T, Morioka S. Differences between the Influence of Observing One's Own Movements and Those of Others in Patients with Stroke. Stroke Res Treat 2019; 2019:3083248. [PMID: 31354933 PMCID: PMC6633964 DOI: 10.1155/2019/3083248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/15/2019] [Accepted: 05/27/2019] [Indexed: 11/17/2022] Open
Abstract
We aimed to investigate differences between the influence of observing one's own actions and those of others in patients with stroke with hemiplegia. Thirty-four patients with stroke who had experienced a right or left hemispheric lesion (RHL: n = 17; LHL: n = 17) participated in this study. Participants viewed video clips (0.5× speed) of their own stepping movements (SO) as well as those of others (OO). After viewing the video clips, participants were asked to evaluate the vividness of the mental image of the observed stepping movement using a five-point scale, in accordance with that utilized in the Kinesthetic and Visual Imagery Questionnaire (KVIQ). We also examined changes in imagery and execution times following action observation. When all patients were considered, there were no significant differences between SO and OO conditions. However, in the RHL subgroup, KVIQ kinesthetic subscore and changes in imagery and execution times were greater in the OO condition than in the SO condition. In the LHL subgroup, changes in imagery times were greater in the SO condition than in the OO condition. These findings indicated that viewing the movements of others led to more vivid imagery and alteration in performance in patients with right-sided stroke, when compared to viewing one's own movements. Therefore, the present study suggests that clinicians should consider the side of the damaged hemisphere when implementing action observation therapy for patients with stroke.
Collapse
Affiliation(s)
- Takeshi Fuchigami
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, Nara 635-0832, Japan
- Department of Rehabilitation, Kishiwada Rehabilitation Hospital, Kishiwada 596-0827, Japan
| | - Shu Morioka
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, Nara 635-0832, Japan
| |
Collapse
|
50
|
Ruotolo F, Ruggiero G, Raemaekers M, Iachini T, van der Ham I, Fracasso A, Postma A. Neural correlates of egocentric and allocentric frames of reference combined with metric and non-metric spatial relations. Neuroscience 2019; 409:235-252. [DOI: 10.1016/j.neuroscience.2019.04.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 03/28/2019] [Accepted: 04/09/2019] [Indexed: 01/08/2023]
|