1
|
Amiranda S, Succoio M, Anzilotti S, Cuomo O, Petrozziello T, Tedeschi V, Finizio A, Mele G, Parkkila S, Annunziato L, De Simone G, Pignataro G, Secondo A, Zambrano N. Pharmacological inhibition of carbonic anhydrases with a positively charged pyridinium sulfonamide phenocopies the neuroprotective effects of Car9 genetic ablation in a murine setting of oxygen/glucose deprivation followed by re-oxygenation and is associated with improved neuronal function in ischemic rats. Heliyon 2025; 11:e42457. [PMID: 40028587 PMCID: PMC11868941 DOI: 10.1016/j.heliyon.2025.e42457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Carbonic anhydrases constitute a family of metalloenzymes vital for maintaining acid-base balance and regulating pH in physio-pathological processes. These findings suggest carbonic anhydrases as potential therapeutic targets for treating pH-associated disorders, including cerebral ischemia, to mitigate hypoxia- and reoxygenation-induced neuronal damage. A focus on carbonic anhydrase IX showed that ischemic stress altered subcellular distributions of this enzyme in rodent neuronal populations. Given the enzyme's canonical membrane localization, we implemented pharmacological inhibition using a membrane-impermeant sulfonamide inhibitor in neuronal models of brain ischemia. The treatments exerted neuroprotective effects on neurons from Car9 knockout mice. Moreover, administration of the sulfonamide inhibitor to rats subjected to transient middle cerebral artery occlusion decreased infarct volumes and improved neurological deficits. Our results support the involvement of carbonic anhydrase IX in postischemic damage and pave the way for possible pharmacological interventions with selective inhibitors in the management of brain ischemia.
Collapse
Affiliation(s)
- Sara Amiranda
- Dipartimento di Medicina molecolare e Biotecnologie mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Napoli, Italy
| | - Mariangela Succoio
- Dipartimento di Medicina molecolare e Biotecnologie mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Napoli, Italy
| | - Serenella Anzilotti
- Department of Human Sciences and Quality of Life Promotion, Università San Raffaele, Rome, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Tiziana Petrozziello
- Division of Pharmacology, Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Arianna Finizio
- Dipartimento di Medicina molecolare e Biotecnologie mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Napoli, Italy
| | - Giorgia Mele
- Dipartimento di Medicina molecolare e Biotecnologie mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Napoli, Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| | | | - Giuseppina De Simone
- Istituto di Biostrutture e Bioimmagini, CNR, Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Agnese Secondo
- Division of Pharmacology, Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Nicola Zambrano
- Dipartimento di Medicina molecolare e Biotecnologie mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Napoli, Italy
| |
Collapse
|
2
|
Lee J, Han SH, Kim JH, Shin HJ, Park JW, Hwang JY. Strategies for the development of in vitro models of spinal cord ischemia-reperfusion injury: Oxygen-glucose deprivation and reoxygenation. J Neurosci Methods 2024; 412:110278. [PMID: 39265819 DOI: 10.1016/j.jneumeth.2024.110278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/22/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND In vitro models tailored for spinal cord ischemia-reperfusion injury are pivotal for investigation of the mechanisms underlying spinal cord injuries. We conducted a two-phased study to identify the optimal conditions for establishing an in vitro model of spinal cord ischemia-reperfusion injury using primary rat spinal motor neurons. NEW METHOD In the first phase, cell cultures were subjected to oxygen deprivation (OD) only, glucose deprivation (GD) only, or simultaneous deprivation of oxygen and glucose [oxygen-glucose deprivation (OGD)] for different durations (1, 2, and 6 h). In the second phase, different durations of re-oxygenation (1, 12, and 24 h) were applied after 1 h of OGD to determine the optimal duration simulating reperfusion injury. RESULTS AND COMPARISON WITH EXISTING METHOD(S) GD for 6 h significantly reduced cell viability (91 % of control, P<0.001) and increase cytotoxicity (111 % of control, P<0.001). OGD for 1 h and 2 h, resulted in a significant decrease in cell viability (80 % of control P<0.001, respectively), and increase in cytotoxicity (130 % of control, P<0.001, respectively). Re-oxygenation for 1, 12, and 24 h worsened ischemic injury following 1 h of OGD (all P<0.05). CONCLUSIONS Our results may provide a valuable guide to devise in vitro models of spinal cord ischemia-reperfusion injury using primary spinal motor neurons.
Collapse
Affiliation(s)
- Jiyoun Lee
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Sung-Hee Han
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; Department of Anesthesiology and Pain Medicine, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Jin-Hee Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; Department of Anesthesiology and Pain Medicine, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Hyun-Jung Shin
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; Department of Anesthesiology and Pain Medicine, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Jin-Woo Park
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; Department of Anesthesiology and Pain Medicine, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Jin-Young Hwang
- Department of Anesthesiology and Pain Medicine, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Department of Anesthesiology and Pain medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Liang W, Zhang M, Gao J, Huang R, Cheng L, Zhang L, Huang Z, Jia Z, Zhang S. Safflower Yellow Injection Alleviates Myocardial Ischemia/Reperfusion Injury by Reducing Oxidative and Endoplasmic Reticulum Stress. Pharmaceuticals (Basel) 2024; 17:1058. [PMID: 39204163 PMCID: PMC11359820 DOI: 10.3390/ph17081058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Safflower yellow is an extract of the famous Chinese medicine Carthamus tinctorious L, and safflower yellow injection (SYI) is widely used clinically to treat angina pectoris. However, there are few studies on the anti-myocardial ischemia/reperfusion (I/R) injury effect of SYI, and its mechanisms are unclear. In the present study, we aimed to investigate the protective effect of SYI on myocardial I/R injury and explore its underlying mechanisms. Male Sprague Dawley rats were randomly divided into a control group, sham group, model group, and SYI group (20 mg/kg, femoral vein injection 1 h before modeling). The left anterior descending coronary artery was ligated to establish a myocardial I/R model. H9c2 cells were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) after incubation with 80 μg/mL SYI for 24 h. In vivo, TsTC, HE, and TUNEL staining were performed to evaluate myocardial injury and apoptosis. A kit was used to detect superoxide dismutase (SOD) and malondialdehyde (MDA) to assess oxidative stress. In vitro, flow cytometry was used to detect the reactive oxygen species (ROS) content and apoptosis rate. Protein levels were determined via Western blotting. Pretreatment with SYI significantly reduced infarct size and pathological damage in rat hearts and suppressed cardiomyocyte apoptosis in vivo and in vitro. In addition, SYI inhibited oxidative stress by increasing SOD activity and decreasing MDA content and ROS production. Myocardial I/R and OGD/R activate endoplasmic reticulum (ER) stress, as evidenced by increased expression of activating transcription factor 6 (ATF6), glucose-regulated protein 78 (GRP78), cysteinyl aspartate-specific proteinase caspase-12, and C/EBP-homologous protein (CHOP), which were all inhibited by SYI. SYI ameliorated myocardial I/R injury by attenuating apoptosis, oxidative damage, and ER stress, which revealed new mechanistic insights into its application.
Collapse
Affiliation(s)
- Wulin Liang
- School of Chinese Materia, Beijing University of Chinese Medicine, Beijing 102488, China (L.Z.)
| | - Mingqian Zhang
- School of Chinese Materia, Beijing University of Chinese Medicine, Beijing 102488, China (L.Z.)
| | - Jiahui Gao
- School of Chinese Materia, Beijing University of Chinese Medicine, Beijing 102488, China (L.Z.)
| | - Rikang Huang
- School of Chinese Materia, Beijing University of Chinese Medicine, Beijing 102488, China (L.Z.)
| | - Lu Cheng
- School of Chinese Materia, Beijing University of Chinese Medicine, Beijing 102488, China (L.Z.)
| | - Liyuan Zhang
- School of Chinese Materia, Beijing University of Chinese Medicine, Beijing 102488, China (L.Z.)
| | - Zhishan Huang
- School of Chinese Materia, Beijing University of Chinese Medicine, Beijing 102488, China (L.Z.)
| | - Zhanhong Jia
- School of Chinese Materia, Beijing University of Chinese Medicine, Beijing 102488, China (L.Z.)
| | - Shuofeng Zhang
- School of Chinese Materia, Beijing University of Chinese Medicine, Beijing 102488, China (L.Z.)
- Department of Tibetan Pharmacy, University of Tibetan Medicine, Lhasa 850030, China
| |
Collapse
|
4
|
Luo L, Wang Y, Tong J, Li L, Zhu Y, Jin M. Xenon postconditioning attenuates neuronal injury after spinal cord ischemia/reperfusion injury by targeting endoplasmic reticulum stress-associated apoptosis. Neurosurg Rev 2023; 46:213. [PMID: 37644159 DOI: 10.1007/s10143-023-02125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
The purpose of the study is to explore the underlying mechanisms of xenon (Xe) which protects against spinal cord ischemia/reperfusion injury (SCIRI). A SCIRI rat model was induced by abdominal artery occlusion for 85 min and reperfusion. Xe postconditioning (50% Xe) was administered 1 h after 1 h of reperfusion. At reperfusion time points (2, 4, 6, and 24 h), rats were treated with spinal cord scans by MRI to assess the time of peak spinal cord injury after SCIRI. Subsequently, endoplasmic reticulum (ER) stress inhibitor sodium 4-phenylbutyrate (4-PBA) was administered by daily intraperitoneal injection (50 mg/kg) for 5 days before SCIRI. At 4 h after reperfusion, motor function, immunofluorescence staining, hematoxylin and eosin (HE) staining, Nissl staining, TUNEL staining, real-time reverse transcription polymerase chain (RT-PCR) reaction, and western blot analyses were performed to investigate the protective effects of Xe against SCIRI. In the rat I/R model, spinal cord edema peaked at reperfusion 4 h. SCIRI activated ER stress, which was located in neurons. Xe postconditioning remarkably alleviated hind limb motor function, reduced neuronal apoptosis rate, increased the number of normal neurons, and inhibited the expression of ER stress-related protein in spinal cord. Furthermore, the administration of the ER stress inhibitor 4-PBA strongly decreased ER stress-induced apoptosis following SCIRI. Xe postconditioning inhibits ER stress activation, which contributes to alleviate SCIRI by suppressing neuronal apoptosis.
Collapse
Affiliation(s)
- Lan Luo
- Department of Anesthesiology, Capital Medical University Affiliated Beijing Friendship Hospital, 95 Yong-an Road, Xicheng District, Beijing, 100050, China
| | - Yuqing Wang
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Jiaqi Tong
- Department of Anesthesiology, Capital Medical University Affiliated Beijing Friendship Hospital, 95 Yong-an Road, Xicheng District, Beijing, 100050, China
| | - Lu Li
- Department of Anesthesiology, Capital Medical University Affiliated Beijing Friendship Hospital, 95 Yong-an Road, Xicheng District, Beijing, 100050, China
| | - Yanbing Zhu
- Beijing Clinical Research Institute, Capital Medical University Affiliated Beijing Friendship Hospital, 95 Yong-an Road, Xicheng District, Beijing, 100050, China.
| | - Mu Jin
- Department of Anesthesiology, Capital Medical University Affiliated Beijing Friendship Hospital, 95 Yong-an Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
5
|
Bernardini F, Nusca A, Coletti F, La Porta Y, Piscione M, Vespasiano F, Mangiacapra F, Ricottini E, Melfi R, Cavallari I, Ussia GP, Grigioni F. Incretins-Based Therapies and Their Cardiovascular Effects: New Game-Changers for the Management of Patients with Diabetes and Cardiovascular Disease. Pharmaceutics 2023; 15:1858. [PMID: 37514043 PMCID: PMC10386670 DOI: 10.3390/pharmaceutics15071858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Atherosclerosis is the leading cause of death worldwide, especially in patients with type 2 diabetes mellitus (T2D). GLP-1 receptor agonists and DPP-4 inhibitors were demonstrated to play a markedly protective role for the cardiovascular system beyond their glycemic control. Several cardiovascular outcome trials (CVOT) reported the association between using these agents and a significant reduction in cardiovascular events in patients with T2D and a high cardiovascular risk profile. Moreover, recent evidence highlights a favorable benefit/risk profile in myocardial infarction and percutaneous coronary revascularization settings. These clinical effects result from their actions on multiple molecular mechanisms involving the immune system, platelets, and endothelial and vascular smooth muscle cells. This comprehensive review specifically concentrates on these cellular and molecular processes mediating the cardiovascular effects of incretins-like molecules, aiming to improve clinicians' knowledge and stimulate a more extensive use of these drugs in clinical practice as helpful cardiovascular preventive strategies.
Collapse
Affiliation(s)
- Federico Bernardini
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Annunziata Nusca
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Federica Coletti
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Ylenia La Porta
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Mariagrazia Piscione
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Francesca Vespasiano
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Fabio Mangiacapra
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Elisabetta Ricottini
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Rosetta Melfi
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Ilaria Cavallari
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Gian Paolo Ussia
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Francesco Grigioni
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| |
Collapse
|
6
|
Martino E, Balestrieri A, Mele L, Sardu C, Marfella R, D’Onofrio N, Campanile G, Balestrieri ML. Milk Exosomal miR-27b Worsen Endoplasmic Reticulum Stress Mediated Colorectal Cancer Cell Death. Nutrients 2022; 14:nu14235081. [PMID: 36501111 PMCID: PMC9737596 DOI: 10.3390/nu14235081] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
The relationship between dietary constituents and the onset and prevention of colorectal cancer (CRC) is constantly growing. Recently, the antineoplastic profiles of milk and whey from Mediterranean buffalo (Bubalus bubalis) have been brought to attention. However, to date, compared to cow milk, the potential health benefits of buffalo milk exosome-miRNA are still little explored. In the present study, we profiled the exosomal miRNA from buffalo milk and investigated the possible anticancer effects in CRC cells, HCT116, and HT-29. Results indicated that buffalo milk exosomes contained higher levels of miR-27b, miR-15b, and miR-148a compared to cow milk. Mimic miR-27b transfection in CRC cells induced higher cytotoxic effects (p < 0.01) compared to miR-15b and miR-148a. Moreover, miR-27b overexpression in HCT116 and HT-29 cells (miR-27b+) induced apoptosis, mitochondrial reactive oxygen species (ROS), and lysosome accumulation. Exposure of miR-27b+ cells to the bioactive 3kDa milk extract aggravated the apoptosis rate (p < 0.01), mitochondrial stress (p < 0.01), and advanced endoplasmic reticulum (ER) stress (p < 0.01), via PERK/IRE1/XBP1 and CHOP protein modulation (p < 0.01). Moreover, GSK2606414, the ER-inhibitor (ER-i), decreased the apoptosis phenomenon and XBP1 and CHOP modulation in miR-27b+ cells treated with milk (p < 0.01 vs. miR-27b++Milk), suggesting the ER stress as a cell-death-aggravating mechanism. These results support the in vitro anticancer activity of 3kDa milk extract and unveil the contribution of miR-27b in the promising beneficial effect of buffalo milk in CRC prevention.
Collapse
Affiliation(s)
- Elisa Martino
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Anna Balestrieri
- Food Safety Department, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Via Luciano Armanni 5, 80138 Naples, Italy
| | - Celestino Sardu
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Miraglia, 80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Miraglia, 80138 Naples, Italy
| | - Nunzia D’Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy
- Correspondence:
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
7
|
Li X, Qin Y, Ye S, Song H, Zhou P, Cai B, Wang Y. Protective effect of Huangpu Tongqiao capsule against Alzheimer's disease through inhibiting the apoptosis pathway mediated by endoplasmic reticulum stress in vitro and in vivo. Saudi Pharm J 2022; 30:1561-1571. [PMID: 36465852 PMCID: PMC9715644 DOI: 10.1016/j.jsps.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/28/2022] [Indexed: 10/14/2022] Open
Abstract
Objectives Huangpu Tongqiao Capsule (HPTQC) is a traditional Chinese medicine (TCM) that has been used to treat Alzheimer's disease (AD). This study was to explore the pharmacological action and molecular mechanism of HPTQC in the treatment of AD. Methods The possible targets of HTPQC were predicted by the molecular docking technique. Intraperitoneal injection of D-galactose and bilateral injection of Aβ25-35 in hippocampus induced AD rat model. Morris water maze was used to observe learning and memory function. The primary hippocampal neurons were induced by Aβ25-35. Moreover, the apoptosis rate of hippocampal nerve cells was detected through AnnexinV/PI double standard staining. The mRNA and protein levels of GRP78, CHOP, Caspase 12, Caspase 9, and Caspase 3 were detected by PCR and western blot. Results The prediction results suggest that HPTQC may act on GRP78. HPTQC significantly improved the learning and memory function, and decreased neuronal apoptosis in vivo and in vitro. In addition, HPTQC could decrease the mRNA and protein expression levels of GRP78, CHOP, Caspase12, Caspase9, and Caspase3, and the effect trend was consistent with the specific inhibitor of GRP78. Conclusions HPTQC has a neuroprotective effect against AD by inhibiting the apoptosis pathway mediated by endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Xinquan Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yunpeng Qin
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shu Ye
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Peng Zhou
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Biao Cai
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
- Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Hefei 230012, China
| | - Yan Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| |
Collapse
|
8
|
Naringenin Alleviates Renal Ischemia Reperfusion Injury by Suppressing ER Stress-Induced Pyroptosis and Apoptosis through Activating Nrf2/HO-1 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5992436. [PMID: 36262286 PMCID: PMC9576412 DOI: 10.1155/2022/5992436] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022]
Abstract
Endoplasmic reticulum (ER) stress, pyroptosis, and apoptosis are critical molecular events in the occurrence and progress of renal ischemia reperfusion (I/R) injury. Naringenin (4′,5,7-trihydroxyflavanone) is one of the most widely consumed flavonoids with powerful antioxidant and anti-inflammatory activities. However, whether naringenin is able to relieve renal I/R injury and corresponding mechanisms have not been fully clarified. This study was aimed at exploring its role and relevant mechanisms in renal I/R injury. The C57Bl/6 mice were randomly assigned to receive administration with naringenin (50 mg/kg/d) or sterile saline (1.0 mL/d) for 3 d by gavage and suffered from renal I/R surgery. One specific ER stress inhibitor, 4-phenylbutyric acid (4-PBA, 100 mg/kg/d), was intraperitoneally administered to validate the regulation of ER stress on pyroptosis and apoptosis. Cultured HK-2 cells went through the process of hypoxia/reoxygenation (H/R) to perform cellular experiments with the incubation of naringenin (200 μM), 4-PBA (5 mM), or brusatol (400 nM). The animal results verified that naringenin obviously relieved renal I/R injury, while it refined renal function and attenuated tissue structural damage. Furthermore, naringenin treatment inhibited I/R-induced ER stress as well as pyroptosis and apoptosis as indicated by decreased levels of specific biomarkers such as GRP78, CHOP, caspase-12, NLRP3, ASC, caspase-11, caspase-4, caspase-1, IL-1β, GSDMD-N, BAX, and cleaved caspase-3 in animals and HK-2 cells. Besides, the upregulated expression of Nrf2 and HO-1 proteins after naringenin treatment suggested that naringenin activated the Nrf2/HO-1 signaling pathway, which was again authenticated by the usage of brusatol (Bru), one unique inhibitor of the Nrf2 pathway. Importantly, the application of 4-PBA showed that renal I/R-generated pyroptosis and apoptosis were able to be regulated by ER stress in vivo and in vitro. In conclusion, naringenin suppressed ER stress by activating Nrf2/HO-1 signaling pathway and further alleviated pyroptosis and apoptosis to protect renal against I/R injury.
Collapse
|