1
|
Song P, Xu H, Ye H, Du X, Zhai Y, Bao X, Mehmood I, Tanigawa H, Niu W, Tu Z, Chen P, Zhang T, Zhao X, Yu X. A new function of offset response in the primate auditory cortex: marker of temporal integration. Commun Biol 2024; 7:1350. [PMID: 39424927 PMCID: PMC11489726 DOI: 10.1038/s42003-024-07058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
Offset responses are traditionally viewed as indicators of sound cessation. Here, we investigate offset responses to auditory click trains, examining how they are modulated by inter-click intervals (ICIs) and train duration. Using extracellular recordings and electrocorticography (ECoG) in non-human primates, alongside electroencephalography (EEG) in humans, we show that offset responses are significantly influenced by both ICI and train length, thereby establishing them as markers of temporal integration. We introduce the concept of the 'Neuronal Integrative Window' (NIW), defined as the temporal span during which neurons integrate stimuli to produce or modulate the temporal integration signal. Our data reveal that on the neuronal level, the auditory cortex (AC) exhibits a more expansive NIW than the medial geniculate body (MGB), integrating stimuli over longer durations and showing a preference for larger ICIs. Furthermore, our results indicate that offset responses could serve as potential biomarkers for neurological and psychiatric conditions, highlighted by their sensitivity to pharmacological modulation with ketamine. This study advances our understanding of auditory temporal processing and proposes a novel approach for assessing and monitoring brain health.
Collapse
Affiliation(s)
- Peirun Song
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haoxuan Xu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hangting Ye
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xinyu Du
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yuying Zhai
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xuehui Bao
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ishrat Mehmood
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hisashi Tanigawa
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Wanqiu Niu
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiyi Tu
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pei Chen
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingting Zhang
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuan Zhao
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Xiongjie Yu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
2
|
Weise A, Grimm S, Maria Rimmele J, Schröger E. Auditory representations for long lasting sounds: Insights from event-related brain potentials and neural oscillations. BRAIN AND LANGUAGE 2023; 237:105221. [PMID: 36623340 DOI: 10.1016/j.bandl.2022.105221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The basic features of short sounds, such as frequency and intensity including their temporal dynamics, are integrated in a unitary representation. Knowledge on how our brain processes long lasting sounds is scarce. We review research utilizing the Mismatch Negativity event-related potential and neural oscillatory activity for studying representations for long lasting simple versus complex sounds such as sinusoidal tones versus speech. There is evidence for a temporal constraint in the formation of auditory representations: Auditory edges like sound onsets within long lasting sounds open a temporal window of about 350 ms in which the sounds' dynamics are integrated into a representation, while information beyond that window contributes less to that representation. This integration window segments the auditory input into short chunks. We argue that the representations established in adjacent integration windows can be concatenated into an auditory representation of a long sound, thus, overcoming the temporal constraint.
Collapse
Affiliation(s)
- Annekathrin Weise
- Department of Psychology, Ludwig-Maximilians-University Munich, Germany; Wilhelm Wundt Institute for Psychology, Leipzig University, Germany.
| | - Sabine Grimm
- Wilhelm Wundt Institute for Psychology, Leipzig University, Germany.
| | - Johanna Maria Rimmele
- Department of Neuroscience, Max-Planck-Institute for Empirical Aesthetics, Germany; Center for Language, Music and Emotion, New York University, Max Planck Institute, Department of Psychology, 6 Washington Place, New York, NY 10003, United States.
| | - Erich Schröger
- Wilhelm Wundt Institute for Psychology, Leipzig University, Germany.
| |
Collapse
|
3
|
Brang D, Plass J, Sherman A, Stacey WC, Wasade VS, Grabowecky M, Ahn E, Towle VL, Tao JX, Wu S, Issa NP, Suzuki S. Visual cortex responds to sound onset and offset during passive listening. J Neurophysiol 2022; 127:1547-1563. [PMID: 35507478 DOI: 10.1152/jn.00164.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sounds enhance our ability to detect, localize, and respond to co-occurring visual targets. Research suggests that sounds improve visual processing by resetting the phase of ongoing oscillations in visual cortex. However, it remains unclear what information is relayed from the auditory system to visual areas and if sounds modulate visual activity even in the absence of visual stimuli (e.g., during passive listening). Using intracranial electroencephalography (iEEG) in humans, we examined the sensitivity of visual cortex to three forms of auditory information during a passive listening task: auditory onset responses, auditory offset responses, and rhythmic entrainment to sounds. Because some auditory neurons respond to both sound onsets and offsets, visual timing and duration processing may benefit from each. Additionally, if auditory entrainment information is relayed to visual cortex, it could support the processing of complex stimulus dynamics that are aligned between auditory and visual stimuli. Results demonstrate that in visual cortex, amplitude-modulated sounds elicited transient onset and offset responses in multiple areas, but no entrainment to sound modulation frequencies. These findings suggest that activity in visual cortex (as measured with iEEG in response to auditory stimuli) may not be affected by temporally fine-grained auditory stimulus dynamics during passive listening (though it remains possible that this signal may be observable with simultaneous auditory-visual stimuli). Moreover, auditory responses were maximal in low-level visual cortex, potentially implicating a direct pathway for rapid interactions between auditory and visual cortices. This mechanism may facilitate perception by time-locking visual computations to environmental events marked by auditory discontinuities.
Collapse
Affiliation(s)
- David Brang
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - John Plass
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Aleksandra Sherman
- Department of Cognitive Science, Occidental College, Los Angeles, CA, United States
| | - William C Stacey
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | | | - Marcia Grabowecky
- Department of Psychology, Northwestern University, Evanston, IL, United States
| | - EunSeon Ahn
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Vernon L Towle
- Department of Neurology, The University of Chicago, Chicago, IL, United States
| | - James X Tao
- Department of Neurology, The University of Chicago, Chicago, IL, United States
| | - Shasha Wu
- Department of Neurology, The University of Chicago, Chicago, IL, United States
| | - Naoum P Issa
- Department of Neurology, The University of Chicago, Chicago, IL, United States
| | - Satoru Suzuki
- Department of Psychology, Northwestern University, Evanston, IL, United States
| |
Collapse
|
4
|
Fuglsang SA, Madsen KH, Puonti O, Hjortkjær J, Siebner HR. Mapping cortico-subcortical sensitivity to 4 Hz amplitude modulation depth in human auditory system with functional MRI. Neuroimage 2021; 246:118745. [PMID: 34808364 DOI: 10.1016/j.neuroimage.2021.118745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 10/19/2022] Open
Abstract
Temporal modulations in the envelope of acoustic waveforms at rates around 4 Hz constitute a strong acoustic cue in speech and other natural sounds. It is often assumed that the ascending auditory pathway is increasingly sensitive to slow amplitude modulation (AM), but sensitivity to AM is typically considered separately for individual stages of the auditory system. Here, we used blood oxygen level dependent (BOLD) fMRI in twenty human subjects (10 male) to measure sensitivity of regional neural activity in the auditory system to 4 Hz temporal modulations. Participants were exposed to AM noise stimuli varying parametrically in modulation depth to characterize modulation-depth effects on BOLD responses. A Bayesian hierarchical modeling approach was used to model potentially nonlinear relations between AM depth and group-level BOLD responses in auditory regions of interest (ROIs). Sound stimulation activated the auditory brainstem and cortex structures in single subjects. BOLD responses to noise exposure in core and belt auditory cortices scaled positively with modulation depth. This finding was corroborated by whole-brain cluster-level inference. Sensitivity to AM depth variations was particularly pronounced in the Heschl's gyrus but also found in higher-order auditory cortical regions. None of the sound-responsive subcortical auditory structures showed a BOLD response profile that reflected the parametric variation in AM depth. The results are compatible with the notion that early auditory cortical regions play a key role in processing low-rate modulation content of sounds in the human auditory system.
Collapse
Affiliation(s)
- Søren A Fuglsang
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre Denmark.
| | - Kristoffer H Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Oula Puonti
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jens Hjortkjær
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Kim SG, Poeppel D, Overath T. Modulation change detection in human auditory cortex: Evidence for asymmetric, non-linear edge detection. Eur J Neurosci 2020; 52:2889-2904. [PMID: 32080939 DOI: 10.1111/ejn.14707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 01/18/2020] [Accepted: 02/10/2020] [Indexed: 11/28/2022]
Abstract
Changes in modulation rate are important cues for parsing acoustic signals, such as speech. We parametrically controlled modulation rate via the correlation coefficient (r) of amplitude spectra across fixed frequency channels between adjacent time frames: broadband modulation spectra are biased toward slow modulate rates with increasing r, and vice versa. By concatenating segments with different r, acoustic changes of various directions (e.g., changes from low to high correlation coefficients, that is, random-to-correlated or vice versa) and sizes (e.g., changes from low to high or from medium to high correlation coefficients) can be obtained. Participants listened to sound blocks and detected changes in correlation while MEG was recorded. Evoked responses to changes in correlation demonstrated (a) an asymmetric representation of change direction: random-to-correlated changes produced a prominent evoked field around 180 ms, while correlated-to-random changes evoked an earlier response with peaks at around 70 and 120 ms, whose topographies resemble those of the canonical P50m and N100m responses, respectively, and (b) a highly non-linear representation of correlation structure, whereby even small changes involving segments with a high correlation coefficient were much more salient than relatively large changes that did not involve segments with high correlation coefficients. Induced responses revealed phase tracking in the delta and theta frequency bands for the high correlation stimuli. The results confirm a high sensitivity for low modulation rates in human auditory cortex, both in terms of their representation and their segregation from other modulation rates.
Collapse
Affiliation(s)
- Seung-Goo Kim
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - David Poeppel
- Department of Psychology, New York University, New York, NY, USA.,Center for Neural Science, New York University, New York, NY, USA.,Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
| | - Tobias Overath
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA.,Duke Institute for Brain Sciences, Duke University, Durham, NC, USA.,Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
| |
Collapse
|
6
|
Yong Z, Tan JH, Hsieh PJ. Microsleep is associated with brain activity patterns unperturbed by auditory inputs. J Neurophysiol 2019; 122:2568-2575. [PMID: 31553690 DOI: 10.1152/jn.00825.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microsleeps are brief episodes of arousal level decrease manifested through behavioral signs. Brain activity during microsleep in the presence of external stimulus remains poorly understood. In this study, we sought to understand neural responses to auditory stimulation during microsleep. We gave participants the simple task of listening to audios of different pitches and amplitude modulation frequencies during early afternoon functional MRI scans. We found the following: 1) microsleep was associated with cortical activations in broad motor and sensory regions and deactivations in thalamus, irrespective of auditory stimulation; 2) high and low pitch audios elicited different activity patterns in the auditory cortex during awake but not microsleep state; and 3) during microsleep, spatial activity patterns in broad brain regions were similar regardless of the presence or types of auditory stimulus (i.e., stimulus invariant). These findings show that the brain is highly active during microsleep but the activity patterns across broad regions are unperturbed by auditory inputs.NEW & NOTEWORTHY During deep drowsy states, auditory inputs could induce activations in the auditory cortex, but the activation patterns lose differentiation to high/low pitch stimuli. Instead of random activations, activity patterns across the brain during microsleep appear to be structured and may reflect underlying neurophysiological processes that remain unclear.
Collapse
Affiliation(s)
- Zixin Yong
- Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Joo Huang Tan
- Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Po-Jang Hsieh
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Lima Cardoso P, Fischmeister FPS, Dymerska B, Geißler A, Wurnig M, Trattnig S, Beisteiner R, Robinson SD. Robust presurgical functional MRI at 7 T using response consistency. Hum Brain Mapp 2017; 38:3163-3174. [PMID: 28321965 PMCID: PMC5434844 DOI: 10.1002/hbm.23582] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 03/07/2017] [Accepted: 03/11/2017] [Indexed: 12/31/2022] Open
Abstract
Functional MRI is valuable in presurgical planning due to its non-invasive nature, repeatability, and broad availability. Using ultra-high field MRI increases the specificity and sensitivity, increasing the localization reliability and reducing scan time. Ideally, fMRI analysis for this application should identify unreliable runs and work even if the patient deviates from the prescribed task timing or if there are changes to the hemodynamic response due to pathology. In this study, a model-free analysis method-UNBIASED-based on the consistency of fMRI responses over runs was applied, to ultra-high field fMRI localizations of the hand area. Ten patients with brain tumors and epilepsy underwent 7 Tesla fMRI with multiple runs of a hand motor task in a block design. FMRI data were analyzed with the proposed approach (UNBIASED) and the conventional General Linear Model (GLM) approach. UNBIASED correctly identified and excluded fMRI runs that contained little or no activation. Generally, less motion artifact contamination was present in UNBIASED than in GLM results. Some cortical regions were identified as activated in UNBIASED but not GLM results. These were confirmed to show reproducible delayed or transient activation, which was time-locked to the task. UNBIASED is a robust approach to generating activation maps without the need for assumptions about response timing or shape. In presurgical planning, UNBIASED can complement model-based methods to aid surgeons in making prudent choices about optimal surgical access and resection margins for each patient, even if the hemodynamic response is modified by pathology. Hum Brain Mapp 38:3163-3174, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pedro Lima Cardoso
- High Field Magnetic Resonance Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaLazarettgasse 14, A‐1090ViennaAustria
| | - Florian Ph. S. Fischmeister
- Study Group Clinical fMRI, Department of NeurologyMedical University of ViennaWähringer Gürtel 18‐20, A‐1090ViennaAustria
| | - Barbara Dymerska
- High Field Magnetic Resonance Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaLazarettgasse 14, A‐1090ViennaAustria
| | - Alexander Geißler
- Study Group Clinical fMRI, Department of NeurologyMedical University of ViennaWähringer Gürtel 18‐20, A‐1090ViennaAustria
| | - Moritz Wurnig
- Study Group Clinical fMRI, Department of NeurologyMedical University of ViennaWähringer Gürtel 18‐20, A‐1090ViennaAustria
| | - Siegfried Trattnig
- High Field Magnetic Resonance Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaLazarettgasse 14, A‐1090ViennaAustria
| | - Roland Beisteiner
- Study Group Clinical fMRI, Department of NeurologyMedical University of ViennaWähringer Gürtel 18‐20, A‐1090ViennaAustria
| | - Simon Daniel Robinson
- High Field Magnetic Resonance Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaLazarettgasse 14, A‐1090ViennaAustria
| |
Collapse
|
8
|
Abstract
UNLABELLED Functional and anatomical studies have clearly demonstrated that auditory cortex is populated by multiple subfields. However, functional characterization of those fields has been largely the domain of animal electrophysiology, limiting the extent to which human and animal research can inform each other. In this study, we used high-resolution functional magnetic resonance imaging to characterize human auditory cortical subfields using a variety of low-level acoustic features in the spectral and temporal domains. Specifically, we show that topographic gradients of frequency preference, or tonotopy, extend along two axes in human auditory cortex, thus reconciling historical accounts of a tonotopic axis oriented medial to lateral along Heschl's gyrus and more recent findings emphasizing tonotopic organization along the anterior-posterior axis. Contradictory findings regarding topographic organization according to temporal modulation rate in acoustic stimuli, or "periodotopy," are also addressed. Although isolated subregions show a preference for high rates of amplitude-modulated white noise (AMWN) in our data, large-scale "periodotopic" organization was not found. Organization by AM rate was correlated with dominant pitch percepts in AMWN in many regions. In short, our data expose early auditory cortex chiefly as a frequency analyzer, and spectral frequency, as imposed by the sensory receptor surface in the cochlea, seems to be the dominant feature governing large-scale topographic organization across human auditory cortex. SIGNIFICANCE STATEMENT In this study, we examine the nature of topographic organization in human auditory cortex with fMRI. Topographic organization by spectral frequency (tonotopy) extended in two directions: medial to lateral, consistent with early neuroimaging studies, and anterior to posterior, consistent with more recent reports. Large-scale organization by rates of temporal modulation (periodotopy) was correlated with confounding spectral content of amplitude-modulated white-noise stimuli. Together, our results suggest that the organization of human auditory cortex is driven primarily by its response to spectral acoustic features, and large-scale periodotopy spanning across multiple regions is not supported. This fundamental information regarding the functional organization of early auditory cortex will inform our growing understanding of speech perception and the processing of other complex sounds.
Collapse
|
9
|
Cardoso PL, Fischmeister FPS, Dymerska B, Geißler A, Wurnig M, Trattnig S, Beisteiner R, Robinson SD. Improving the clinical potential of ultra-high field fMRI using a model-free analysis method based on response consistency. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:435-49. [PMID: 26965512 PMCID: PMC4891377 DOI: 10.1007/s10334-016-0533-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/19/2016] [Accepted: 02/06/2016] [Indexed: 12/16/2022]
Abstract
Objective To develop an analysis method that is sensitive to non-model-conform responses often encountered in ultra-high field presurgical planning fMRI. Using the consistency of time courses over a number of experiment repetitions, it should exclude low quality runs and generate activation maps that reflect the reliability of responses. Materials and methods 7 T fMRI data were acquired from six healthy volunteers: three performing purely motor tasks and three a visuomotor task. These were analysed with the proposed approach (UNBIASED) and the GLM. Results UNBIASED results were generally less affected by false positive results than the GLM. Runs that were identified as being of low quality were confirmed to contain little or no activation. In two cases, regions were identified as activated in UNBIASED but not GLM results. Signal changes in these areas were time-locked to the task, but were delayed or transient. Conclusion UNBIASED is shown to be a reliable means of identifying consistent task-related signal changes regardless of response timing. In presurgical planning, UNBIASED could be used to rapidly generate reliable maps of the consistency with which eloquent brain regions are activated without recourse to task timing and despite modified hemodynamics. Electronic supplementary material The online version of this article (doi:10.1007/s10334-016-0533-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pedro Lima Cardoso
- />Department of Biomedical Imaging and Image-guided Therapy, High Field Magnetic Resonance Centre, Medical University of Vienna, Lazarettgasse 14/BT32, 1090 Vienna, Austria
| | - Florian Ph. S. Fischmeister
- />Study Group Clinical fMRI, Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Barbara Dymerska
- />Department of Biomedical Imaging and Image-guided Therapy, High Field Magnetic Resonance Centre, Medical University of Vienna, Lazarettgasse 14/BT32, 1090 Vienna, Austria
| | - Alexander Geißler
- />Study Group Clinical fMRI, Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Moritz Wurnig
- />Study Group Clinical fMRI, Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Siegfried Trattnig
- />Department of Biomedical Imaging and Image-guided Therapy, High Field Magnetic Resonance Centre, Medical University of Vienna, Lazarettgasse 14/BT32, 1090 Vienna, Austria
| | - Roland Beisteiner
- />Study Group Clinical fMRI, Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Simon Daniel Robinson
- />Department of Biomedical Imaging and Image-guided Therapy, High Field Magnetic Resonance Centre, Medical University of Vienna, Lazarettgasse 14/BT32, 1090 Vienna, Austria
| |
Collapse
|
10
|
Functional magnetic resonance imaging confirms forward suppression for rapidly alternating sounds in human auditory cortex but not in the inferior colliculus. Hear Res 2016; 335:25-32. [PMID: 26899342 DOI: 10.1016/j.heares.2016.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 11/21/2022]
Abstract
Forward suppression at the level of the auditory cortex has been suggested to subserve auditory stream segregation. Recent results in non-streaming stimulation contexts have indicated that forward suppression can also be observed in the inferior colliculus; whether this holds for streaming-related contexts remains unclear. Here, we used cardiac-gated fMRI to examine forward suppression in the inferior colliculus (and the rest of the human auditory pathway) in response to canonical streaming stimuli (rapid tone sequences comprised of either one repetitive tone or two alternating tones). The first stimulus is typically perceived as a single stream, the second as two interleaved streams. In different experiments using either pure tones differing in frequency or bandpass-filtered noise differing in inter-aural time differences, we observed stronger auditory cortex activation in response to alternating vs. repetitive stimulation, consistent with the presence of forward suppression. In contrast, activity in the inferior colliculus and other subcortical nuclei did not significantly differ between alternating and monotonic stimuli. This finding could be explained by active amplification of forward suppression in auditory cortex, by a low rate (or absence) of cells showing forward suppression in inferior colliculus, or both.
Collapse
|
11
|
Overath T, McDermott JH, Zarate JM, Poeppel D. The cortical analysis of speech-specific temporal structure revealed by responses to sound quilts. Nat Neurosci 2015; 18:903-11. [PMID: 25984889 PMCID: PMC4769593 DOI: 10.1038/nn.4021] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 04/20/2015] [Indexed: 11/08/2022]
Abstract
Speech contains temporal structure that the brain must analyze to enable linguistic processing. To investigate the neural basis of this analysis, we used sound quilts, stimuli constructed by shuffling segments of a natural sound, approximately preserving its properties on short timescales while disrupting them on longer scales. We generated quilts from foreign speech to eliminate language cues and manipulated the extent of natural acoustic structure by varying the segment length. Using functional magnetic resonance imaging, we identified bilateral regions of the superior temporal sulcus (STS) whose responses varied with segment length. This effect was absent in primary auditory cortex and did not occur for quilts made from other natural sounds or acoustically matched synthetic sounds, suggesting tuning to speech-specific spectrotemporal structure. When examined parametrically, the STS response increased with segment length up to ∼500 ms. Our results identify a locus of speech analysis in human auditory cortex that is distinct from lexical, semantic or syntactic processes.
Collapse
Affiliation(s)
- Tobias Overath
- 1] Duke Institute for Brain Sciences, Duke University, Durham, North Carolina, USA. [2] Department of Psychology, New York University, New York, New York, USA
| | - Josh H McDermott
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, USA
| | - Jean Mary Zarate
- Department of Psychology, New York University, New York, New York, USA
| | - David Poeppel
- 1] Department of Psychology, New York University, New York, New York, USA. [2] Center for Neural Science, New York University, New York, New York, USA. [3] Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
| |
Collapse
|
12
|
Gutschalk A, Steinmann I. Stimulus dependence of contralateral dominance in human auditory cortex. Hum Brain Mapp 2014; 36:883-96. [PMID: 25346487 DOI: 10.1002/hbm.22673] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 11/11/2022] Open
Abstract
The auditory system is often considered to show little contralateral dominance but physiological reports on the contralateral dominance of activity evoked by monaural sound vary widely. Here, we show that part of this variation is stimulus-dependent: blood oxygen level dependent (BOLD) responses to 32 s of monaurally presented unmodulated noise (UN) showed activation in contralateral auditory cortex (AC) and deactivation in ipsilateral AC compared to nonstimulus baseline. Slow amplitude-modulated (AM) noise evoked strong contralateral activation and minimal ipsilateral activation. The contrast of AM-versus-UN was used to separate fMRI activity related to the slow amplitude modulation per se. This difference activation was bilateral although still stronger in contralateral AC. In magnetoencephalography (MEG), the response was dominated by the steady-state activity phase locked to the amplitude modulation. This MEG activity showed no consistent contralateral dominance across listeners. Subcortical BOLD activation was strongly contralateral subsequent to the superior olivary complex (SOC) and showed no significant difference between modulated and UN. An acallosal participant showed similar fMRI activation as the group, ruling transcallosal transmission an unlikely source of ipsilateral enhancement or ipsilateral deactivation. These results suggest that ascending activity subsequent to the SOC is strongly dominant contralateral to the stimulus ear. In contrast, the part of BOLD and MEG activity related to slow amplitude modulation is more bilateral and only observed in AC. Ipsilateral deactivation can potentially bias measures of contralateral BOLD dominance and should be considered in future studies.
Collapse
|
13
|
Gutschalk A, Dykstra AR. Functional imaging of auditory scene analysis. Hear Res 2013; 307:98-110. [PMID: 23968821 DOI: 10.1016/j.heares.2013.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/26/2013] [Accepted: 08/08/2013] [Indexed: 11/16/2022]
Abstract
Our auditory system is constantly faced with the task of decomposing the complex mixture of sound arriving at the ears into perceptually independent streams constituting accurate representations of individual sound sources. This decomposition, termed auditory scene analysis, is critical for both survival and communication, and is thought to underlie both speech and music perception. The neural underpinnings of auditory scene analysis have been studied utilizing invasive experiments with animal models as well as non-invasive (MEG, EEG, and fMRI) and invasive (intracranial EEG) studies conducted with human listeners. The present article reviews human neurophysiological research investigating the neural basis of auditory scene analysis, with emphasis on two classical paradigms termed streaming and informational masking. Other paradigms - such as the continuity illusion, mistuned harmonics, and multi-speaker environments - are briefly addressed thereafter. We conclude by discussing the emerging evidence for the role of auditory cortex in remapping incoming acoustic signals into a perceptual representation of auditory streams, which are then available for selective attention and further conscious processing. This article is part of a Special Issue entitled Human Auditory Neuroimaging.
Collapse
Affiliation(s)
- Alexander Gutschalk
- Department of Neurology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany.
| | | |
Collapse
|
14
|
Langers DRM, Melcher JR. Hearing without listening: functional connectivity reveals the engagement of multiple nonauditory networks during basic sound processing. Brain Connect 2013; 1:233-44. [PMID: 22433051 DOI: 10.1089/brain.2011.0023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The present functional magnetic resonance imaging (fMRI) study presents data challenging the traditional view that sound is processed almost exclusively in the classical auditory pathway unless imbued with behavioral significance. In a first experiment, subjects were presented with broadband noise in on/off fashion as they performed an unrelated visual task. A conventional analysis assuming predictable sound-evoked responses demonstrated a typical activation pattern that was confined to classical auditory centers. In contrast, spatial independent component analysis (sICA) disclosed multiple networks of acoustically responsive brain centers. One network comprised classical auditory centers, but four others included nominally "nonauditory" areas: cingulo-insular cortex, mediotemporal limbic lobe, basal ganglia, and posterior orbitofrontal cortex, respectively. Functional connectivity analyses confirmed the sICA results by demonstrating coordinated activity between the involved brain structures. In a second experiment, fMRI data obtained from unstimulated (i.e., resting) subjects revealed largely similar networks. Together, these two experiments suggest the existence of a coordinated system of multiple acoustically responsive intrinsic brain networks, comprising classical auditory centers but also other brain areas. Our results suggest that nonauditory centers play a role in sound processing at a very basic level, even when the sound is not intertwined with behaviors requiring the well-known functionality of these regions.
Collapse
Affiliation(s)
- Dave R M Langers
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.
| | | |
Collapse
|
15
|
Overath T, Zhang Y, Sanes DH, Poeppel D. Sensitivity to temporal modulation rate and spectral bandwidth in the human auditory system: fMRI evidence. J Neurophysiol 2012; 107:2042-56. [PMID: 22298830 DOI: 10.1152/jn.00308.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hierarchical models of auditory processing often posit that optimal stimuli, i.e., those eliciting a maximal neural response, will increase in bandwidth and decrease in modulation rate as one ascends the auditory neuraxis. Here, we tested how bandwidth and modulation rate interact at several loci along the human central auditory pathway using functional MRI in a cardiac-gated, sparse acquisition design. Participants listened passively to both narrowband (NB) and broadband (BB) carriers (1/4- or 4-octave pink noise), which were jittered about a mean sinusoidal amplitude modulation rate of 0, 3, 29, or 57 Hz. The jittering was introduced to minimize stimulus-specific adaptation. The results revealed a clear difference between spectral bandwidth and temporal modulation rate: sensitivity to bandwidth (BB > NB) decreased from subcortical structures to nonprimary auditory cortex, whereas sensitivity to slow modulation rates was largest in nonprimary auditory cortex and largely absent in subcortical structures. Furthermore, there was no parametric interaction between bandwidth and modulation rate. These results challenge simple hierarchical models, in that BB stimuli evoked stronger responses in primary auditory cortex (and subcortical structures) rather than nonprimary cortex. Furthermore, the strong preference for slow modulation rates in nonprimary cortex demonstrates the compelling global sensitivity of auditory cortex to modulation rates that are dominant in the principal signals that we process, e.g., speech.
Collapse
Affiliation(s)
- Tobias Overath
- Department of Psychology, New York University, New York, NY, USA.
| | | | | | | |
Collapse
|
16
|
Schwartze M, Tavano A, Schröger E, Kotz SA. Temporal aspects of prediction in audition: cortical and subcortical neural mechanisms. Int J Psychophysiol 2011; 83:200-7. [PMID: 22108539 DOI: 10.1016/j.ijpsycho.2011.11.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 11/06/2011] [Indexed: 10/15/2022]
Abstract
Tracing the temporal structure of acoustic events is crucial in order to efficiently adapt to dynamic changes in the environment. In turn, regularity in temporal structure may facilitate tracing of the acoustic signal and its likely spatial source. However, temporal processing in audition extends beyond a domain-general facilitatory function. Temporal regularity and temporal order of auditory events correspond to contextually extracted, statistically sampled relations among sounds. These relations are the backbone of prediction in audition, determining both when an event is likely to occur (temporal structure) and also what type of event can be expected at a specific point in time (formal structure, e.g. spectral information). Here, we develop a model of temporal processing in audition and speech that involves a division of labor between the cerebellum and the basal ganglia in tracing acoustic events in time. As for the cerebellum and its associated thalamo-cortical connections, we refer to its role in the automatic encoding of event-based temporal structure with high temporal precision, while the basal ganglia-thalamo-cortical system engages in the attention-dependent evaluation of longer-range intervals. Recent electrophysiological and neurofunctional evidence suggests that neocortical processing of spectral structure relies on concurrent extraction of event-based temporal information. We propose that spectrotemporal predictive processes may be facilitated by subcortical coding of relevant changes in sound energy as temporal event markers.
Collapse
Affiliation(s)
- Michael Schwartze
- Max Planck Institute for Human Cognitive and Brain Sciences, Independent Research Group-Neurocognition of Rhythm in Communication, Stephanstrasse 1a, Leipzig, Germany.
| | | | | | | |
Collapse
|
17
|
Milner R, Rusiniak M, Wolak T, Piątkowska-Janko E, Naumczyk P, Bogorodzki P, Senderski A, Ganc M, Skarżyński H. Wykorzystanie jednoczesnych rejestracji słuchowych potencjałów korowych i funkcjonalnego rezonansu magnetycznego do badania procesów ośrodkowej części układu słuchowego – wyniki wstępne. Otolaryngol Pol 2011; 65:171-83. [DOI: 10.1016/s0030-6657(11)70671-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Arnott SR, Bardouille T, Ross B, Alain C. Neural generators underlying concurrent sound segregation. Brain Res 2011; 1387:116-24. [PMID: 21362407 DOI: 10.1016/j.brainres.2011.02.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 02/11/2011] [Accepted: 02/19/2011] [Indexed: 11/25/2022]
Abstract
Although an object-based account of auditory attention has become an increasingly popular model for understanding how temporally overlapping sounds are segregated, relatively little is known about the cortical circuit that supports such ability. In the present study, we applied a beamformer spatial filter to magnetoencephalography (MEG) data recorded during an auditory paradigm that used inharmonicity to promote the formation of multiple auditory objects. Using this unconstrained, data-driven approach, the evoked field component linked with the perception of multiple auditory objects (i.e., the object-related negativity; ORNm), was found to be associated with bilateral auditory cortex sources that were distinct from those coinciding with the P1m, N1m, and P2m responses elicited by sound onset. The right hemispheric ORNm source in particular was consistently positioned anterior to the other sources across two experiments. These findings are consistent with earlier proposals of multiple auditory object detection being associated with generators in the auditory cortex and further suggest that these neural populations are distinct from the long latency evoked responses reflecting the detection of sound onset.
Collapse
Affiliation(s)
- Stephen R Arnott
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada M6A 2E1.
| | | | | | | |
Collapse
|
19
|
Schadwinkel S, Gutschalk A. Transient bold activity locked to perceptual reversals of auditory streaming in human auditory cortex and inferior colliculus. J Neurophysiol 2011; 105:1977-83. [PMID: 21325685 DOI: 10.1152/jn.00461.2010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our auditory system separates and tracks temporally interleaved sound sources by organizing them into distinct auditory streams. This streaming phenomenon is partly determined by physical stimulus properties but additionally depends on the internal state of the listener. As a consequence, streaming perception is often bistable and reversals between one- and two-stream percepts may occur spontaneously or be induced by a change of the stimulus. Here, we used functional MRI to investigate perceptual reversals in streaming based on interaural time differences (ITD) that produce a lateralized stimulus perception. Listeners were continuously presented with two interleaved streams, which slowly moved apart and together again. This paradigm produced longer intervals between reversals than stationary bistable stimuli but preserved temporal independence between perceptual reversals and physical stimulus transitions. Results showed prominent transient activity synchronized with the perceptual reversals in and around the auditory cortex. Sustained activity in the auditory cortex was observed during intervals where the ΔITD could potentially produce streaming, similar to previous studies. A localizer-based analysis additionally revealed transient activity time locked to perceptual reversals in the inferior colliculus. These data suggest that neural activity associated with streaming reversals is not limited to the thalamo-cortical system but involves early binaural processing in the auditory midbrain, already.
Collapse
Affiliation(s)
- Stefan Schadwinkel
- Department of Neurology, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | | |
Collapse
|
20
|
Riecke L, Walter A, Sorger B, Formisano E. Tracking vocal pitch through noise: neural correlates in nonprimary auditory cortex. J Neurosci 2011; 31:1479-88. [PMID: 21273432 PMCID: PMC6623603 DOI: 10.1523/jneurosci.3450-10.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 10/28/2010] [Accepted: 11/10/2010] [Indexed: 11/21/2022] Open
Abstract
In natural environments, a sound can be heard as stable despite the presence of other occasionally louder sounds. For example, when a portion in a voice is replaced by masking noise, the interrupted voice may still appear illusorily continuous. Previous research found that continuity illusions of simple interrupted sounds, such as tones, are accompanied by weaker activity in the primary auditory cortex (PAC) during the interruption than veridical discontinuity percepts of these sounds. Here, we studied whether continuity illusions of more natural and more complex sounds also emerge from this mechanism. We used psychophysics and functional magnetic resonance imaging in humans to measure simultaneously continuity ratings and blood oxygenation level-dependent activity to vowels that were partially replaced by masking noise. Consistent with previous results on tone continuity illusions, we found listeners' reports of more salient vowel continuity illusions associated with weaker activity in auditory cortex (compared with reports of veridical discontinuity percepts of physically identical stimuli). In contrast to the reduced activity to tone continuity illusions in PAC, this reduction was localized in the right anterolateral Heschl's gyrus, a region that corresponds more to the non-PAC. Our findings suggest that the ability to hear differently complex sounds as stable during other louder sounds may be attributable to a common suppressive mechanism that operates at different levels of sound representation in auditory cortex.
Collapse
Affiliation(s)
- Lars Riecke
- Department of Cognitive Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
21
|
Schadwinkel S, Gutschalk A. Functional dissociation of transient and sustained fMRI BOLD components in human auditory cortex revealed with a streaming paradigm based on interaural time differences. Eur J Neurosci 2010; 32:1970-8. [PMID: 21050277 DOI: 10.1111/j.1460-9568.2010.07459.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A number of physiological studies suggest that feature-selective adaptation is relevant to the pre-processing for auditory streaming, the perceptual separation of overlapping sound sources. Most of these studies are focused on spectral differences between streams, which are considered most important for streaming. However, spatial cues also support streaming, alone or in combination with spectral cues, but physiological studies of spatial cues for streaming remain scarce. Here, we investigate whether the tuning of selective adaptation for interaural time differences (ITD) coincides with the range where streaming perception is observed. FMRI activation that has been shown to adapt depending on the repetition rate was studied with a streaming paradigm where two tones were differently lateralized by ITD. Listeners were presented with five different ΔITD conditions (62.5, 125, 187.5, 343.75, or 687.5 μs) out of an active baseline with no ΔITD during fMRI. The results showed reduced adaptation for conditions with ΔITD ≥ 125 μs, reflected by enhanced sustained BOLD activity. The percentage of streaming perception for these stimuli increased from approximately 20% for ΔITD = 62.5 μs to > 60% for ΔITD = 125 μs. No further sustained BOLD enhancement was observed when the ΔITD was increased beyond ΔITD = 125 μs, whereas the streaming probability continued to increase up to 90% for ΔITD = 687.5 μs. Conversely, the transient BOLD response, at the transition from baseline to ΔITD blocks, increased most prominently as ΔITD was increased from 187.5 to 343.75 μs. These results demonstrate a clear dissociation of transient and sustained components of the BOLD activity in auditory cortex.
Collapse
Affiliation(s)
- Stefan Schadwinkel
- Department of Neurology, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
22
|
Werner S, Noppeney U. The Contributions of Transient and Sustained Response Codes to Audiovisual Integration. Cereb Cortex 2010; 21:920-31. [DOI: 10.1093/cercor/bhq161] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Weise A, Grimm S, Müller D, Schröger E. A temporal constraint for automatic deviance detection and object formation: A mismatch negativity study. Brain Res 2010; 1331:88-95. [DOI: 10.1016/j.brainres.2010.03.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 03/10/2010] [Accepted: 03/14/2010] [Indexed: 10/19/2022]
|
24
|
Gutschalk A, Hämäläinen MS, Melcher JR. BOLD responses in human auditory cortex are more closely related to transient MEG responses than to sustained ones. J Neurophysiol 2010; 103:2015-26. [PMID: 20107131 DOI: 10.1152/jn.01005.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Blood oxygen level dependent-functional magnetic resonance imaging (BOLD-fMRI) and magnetoencephalographic (MEG) signals are both coupled to postsynaptic potentials, although their relationship is incompletely understood. Here, the wide range of BOLD-fMRI and MEG responses produced by auditory cortex was exploited to better understand the BOLD-fMRI/MEG relationship. Measurements of BOLD and MEG responses were made in the same subjects using the same stimuli for both modalities. The stimuli, 24-s sequences of click trains, had duty cycles of 2.5, 25, 72, and 100%. For the 2.5% sequence, the BOLD response was elevated throughout the sequence, whereas for 100%, it peaked after sequence onset and offset and showed a diminished elevation in between. On the finer timescale of MEG, responses at 2.5% consisted of a complex of transients, including N(1)m, to each click train of the sequence, whereas for 100% the only transients occurred at sequence onset and offset between which there was a sustained elevation in the MEG signal (a sustained field). A model that separately estimated the contributions of transient and sustained MEG signals to the BOLD response best fit BOLD measurements when the transient contribution was weighted 8- to 10-fold more than the sustained one. The findings suggest that BOLD responses in the auditory cortex are tightly coupled to the neural activity underlying transient, not sustained, MEG signals.
Collapse
Affiliation(s)
- Alexander Gutschalk
- Department of Neurology, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
25
|
Kao MH, Mandal A, Stufken J. Efficient Designs for Event-Related Functional Magnetic Resonance Imaging with Multiple Scanning Sessions. COMMUN STAT-THEOR M 2009. [DOI: 10.1080/03610920902947626] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Horiguchi H, Nakadomari S, Misaki M, Wandell BA. Two temporal channels in human V1 identified using fMRI. Neuroimage 2009; 47:273-80. [PMID: 19361561 PMCID: PMC2743398 DOI: 10.1016/j.neuroimage.2009.03.078] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 03/25/2009] [Accepted: 03/27/2009] [Indexed: 11/26/2022] Open
Abstract
Human visual sensitivity to a fairly broad class of dynamic stimuli can be modeled accurately using two temporal channels. Here, we analyze fMRI measurements of the temporal step response to spatially uniform stimuli to estimate these channels in human primary visual cortex (V1). In agreement with the psychophysical literature, the V1 fMRI temporal responses are modeled accurately as a mixture of two (transient and sustained) channels. We derive estimates of the relative contributions from these two channels at a range of eccentricities. We find that all portions of V1 contain a significant transient response. The central visual field representation includes a significant sustained response, but the amplitude of the sustained channel signal declines with eccentricity. The sustained signals may reflect the emphasis on pattern recognition and color in the central visual field; the dominant transient response in the visual periphery may reflect responses in the human visual attention system.
Collapse
Affiliation(s)
- Hiroshi Horiguchi
- Psychology Department, Stanford University, Stanford, CA 94305-2130, USA.
| | | | | | | |
Collapse
|
27
|
Herdener M, Lehmann C, Esposito F, di Salle F, Federspiel A, Bach DR, Scheffler K, Seifritz E. Brain responses to auditory and visual stimulus offset: shared representations of temporal edges. Hum Brain Mapp 2009; 30:725-33. [PMID: 18266216 DOI: 10.1002/hbm.20539] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Edges are crucial for the formation of coherent objects from sequential sensory inputs within a single modality. Moreover, temporally coincident boundaries of perceptual objects across different sensory modalities facilitate crossmodal integration. Here, we used functional magnetic resonance imaging in order to examine the neural basis of temporal edge detection across modalities. Onsets of sensory inputs are not only related to the detection of an edge but also to the processing of novel sensory inputs. Thus, we used transitions from input to rest (offsets) as convenient stimuli for studying the neural underpinnings of visual and acoustic edge detection per se. We found, besides modality-specific patterns, shared visual and auditory offset-related activity in the superior temporal sulcus and insula of the right hemisphere. Our data suggest that right hemispheric regions known to be involved in multisensory processing are crucial for detection of edges in the temporal domain across both visual and auditory modalities. This operation is likely to facilitate cross-modal object feature binding based on temporal coincidence.
Collapse
|
28
|
Sakai M, Chimoto S, Qin L, Sato Y. Differential representation of spectral and temporal information by primary auditory cortex neurons in awake cats: relevance to auditory scene analysis. Brain Res 2009; 1265:80-92. [PMID: 19368805 DOI: 10.1016/j.brainres.2009.01.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 01/29/2009] [Accepted: 01/29/2009] [Indexed: 10/21/2022]
Abstract
We investigated how the primary auditory cortex (AI) neurons encode the two major requisites for auditory scene analysis, i.e., spectral and temporal information. Single-unit activities in awake cats AI were studied by presenting 0.5-s-long tone bursts and click trains. First of all, the neurons (n=92) were classified into 3 types based on the time-course of excitatory responses to tone bursts: 1) phasic cells (P-cells; 26%), giving only transient responses; 2) tonic cells (T-cells; 34%), giving sustained responses with little or no adaptation; and 3) phasic-tonic cells (PT-cells; 40%), giving sustained responses with some tendency of adaptation. Other tone-response variables differed among cell types. For example, P-cells showed the shortest latency and smallest spiking jitter while T-cells had the sharpest frequency tuning. PT-cells generally fell in the intermediate between the two extremes. Click trains also revealed between-neuron-type differences for the emergent probability of excitatory responses (P-cells>PT-cells>T-cells) and their temporal features. For example, a substantial fraction of P-cells conducted stimulus-locking responses, but none of the T-cells did. f(r)-dependency characteristics of the stimulus locking resembled that reported for "comodulation masking release," a behavioral model of auditory scene analysis. Each type neurons were omnipresent throughout the AI and none of them showed intrinsic oscillation. These findings suggest that: 1) T-cells preferentially encode spectral information with a rate-place code and 2) P-cells preferentially encode acoustic transients with a temporal code whereby rate-place coded information is potentially bound for scene analysis.
Collapse
Affiliation(s)
- Masashi Sakai
- Department of Physiology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan.
| | | | | | | |
Collapse
|
29
|
Heinrich A, Carlyon RP, Davis MH, Johnsrude IS. Illusory vowels resulting from perceptual continuity: a functional magnetic resonance imaging study. J Cogn Neurosci 2008; 20:1737-52. [PMID: 18211243 DOI: 10.1162/jocn.2008.20069] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2025]
Abstract
We used functional magnetic resonance imaging to study the neural processing of vowels whose perception depends on the continuity illusion. Participants heard sequences of two-formant vowels under a number of listening conditions. In the "vowel conditions," both formants were always present simultaneously and the stimuli were perceived as speech-like. Contrasted with a range of nonspeech sounds, these vowels elicited activity in the posterior middle temporal gyrus (MTG) and superior temporal sulcus (STS). When the two formants alternated in time, the "speech-likeness" of the sounds was reduced. It could be partially restored by filling the silent gaps in each formant with bands of noise (the "Illusion" condition) because the noise induced an illusion of continuity in each formant region, causing the two formants to be perceived as simultaneous. However, this manipulation was only effective at low formant-to-noise ratios (FNRs). When the FNR was increased, the illusion broke down (the "illusion-break" condition). Activation in vowel-sensitive regions of the MTG was greater in the illusion than in the illusion-break condition, consistent with the perception of Illusion stimuli as vowels. Activity in Heschl's gyri (HG), the approximate location of the primary auditory cortex, showed the opposite pattern, and may depend instead on the number of perceptual onsets in a sound. Our results demonstrate that speech-sensitive regions of the MTG are sensitive not to the physical characteristics of the stimulus but to the perception of the stimulus as speech, and also provide an anatomically distinct, objective physiological correlate of the continuity illusion in human listeners.
Collapse
|
30
|
Uludağ K. Transient and sustained BOLD responses to sustained visual stimulation. Magn Reson Imaging 2008; 26:863-9. [DOI: 10.1016/j.mri.2008.01.049] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/21/2008] [Accepted: 01/28/2008] [Indexed: 10/22/2022]
|
31
|
Remijn GB, Pérez E, Nakajima Y, Ito H. Frequency modulation facilitates (modal) auditory restoration of a gap. Hear Res 2008; 243:113-20. [PMID: 18620037 DOI: 10.1016/j.heares.2008.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 06/03/2008] [Accepted: 06/20/2008] [Indexed: 11/30/2022]
Abstract
In this study we further investigated processes of auditory restoration (AR) in recently described stimulus types: the so-called gap-transfer stimulus, the shared-gap stimulus and the pseudo-continuous stimulus. The stimuli typically consist of two crossing sounds of unequal duration. In the shared-gap and pseudo-continuous stimuli, the two crossing sounds share a gap (<45 ms) at their crossing point. In the gap-transfer stimulus, only the long sound contains a gap (100 ms), whereas the short sound is physically continuous. Earlier research has shown that in these stimuli the long sound is subject to AR, in spite of the gap it contains, whereas the gap is perceived in the short sound. Experiment 1 of the present study showed that AR of the stimuli's long sound was facilitated when its slope increased from 0 to 1 oct/s. Experiment 2 showed that the effect of slope on AR of the long sound also occurred when the slope relationship between the long and short sound was fixed. Implications for a tentative sound edge-binding explanation of AR as well as alternative explanations for the effect of slope on AR are discussed.
Collapse
Affiliation(s)
- Gerard B Remijn
- Kanazawa University, Faculty of Letters, Department of Psychology, Kakuma-Machi, Kanazawa, Japan.
| | | | | | | |
Collapse
|
32
|
Gourévitch B, Le Bouquin Jeannès R, Faucon G, Liégeois-Chauvel C. Temporal envelope processing in the human auditory cortex: Response and interconnections of auditory cortical areas. Hear Res 2008; 237:1-18. [DOI: 10.1016/j.heares.2007.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 12/07/2007] [Accepted: 12/07/2007] [Indexed: 10/22/2022]
|
33
|
Auditory stimulus repetition effects on cortical hemoglobin oxygenation: a near-infrared spectroscopy investigation. Neuroreport 2008; 19:161-5. [PMID: 18185101 DOI: 10.1097/wnr.0b013e3282f4aa2a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The cortical response to repeated sensory stimuli plateaus (or declines) as repetition frequencies increase beyond 2-8 Hz. This study examined the underlying changes in cortical oxygenated and deoxygenated hemoglobin associated with this phenomenon using near-infrared spectroscopy. The optical signal was measured from 11 healthy volunteers listening to noise-burst trains presented at 2, 10, and 35 Hz. In a bilateral region consistent with the posterior superior temporal gyrus there was an inverse relationship between deoxyhemoglobin concentration change and stimulus frequency: greatest at 2 Hz, intermediate at 10 Hz, and smallest at 35 Hz. These findings provide preliminary support for a relationship between the perceptual characteristics of auditory stimuli and modulation of cortical oxygenation as measured via an emerging neuromonitoring technique.
Collapse
|
34
|
Duff EP, Cunnington R, Egan GF. REX: Response Exploration for Neuroimaging Datasets. Neuroinformatics 2007; 5:223-34. [DOI: 10.1007/s12021-007-9001-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2007] [Indexed: 12/25/2022]
|
35
|
Micheyl C, Carlyon RP, Gutschalk A, Melcher JR, Oxenham AJ, Rauschecker JP, Tian B, Courtenay Wilson E. The role of auditory cortex in the formation of auditory streams. Hear Res 2007; 229:116-31. [PMID: 17307315 PMCID: PMC2040076 DOI: 10.1016/j.heares.2007.01.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 12/04/2006] [Accepted: 01/03/2007] [Indexed: 11/22/2022]
Abstract
Auditory streaming refers to the perceptual parsing of acoustic sequences into "streams", which makes it possible for a listener to follow the sounds from a given source amidst other sounds. Streaming is currently regarded as an important function of the auditory system in both humans and animals, crucial for survival in environments that typically contain multiple sound sources. This article reviews recent findings concerning the possible neural mechanisms behind this perceptual phenomenon at the level of the auditory cortex. The first part is devoted to intra-cortical recordings, which provide insight into the neural "micromechanisms" of auditory streaming in the primary auditory cortex (A1). In the second part, recent results obtained using functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) in humans, which suggest a contribution from cortical areas other than A1, are presented. Overall, the findings concur to demonstrate that many important features of sequential streaming can be explained relatively simply based on neural responses in the auditory cortex.
Collapse
|
36
|
Herdener M, Esposito F, Di Salle F, Lehmann C, Bach DR, Scheffler K, Seifritz E. BOLD correlates of edge detection in human auditory cortex. Neuroimage 2007; 36:194-201. [PMID: 17395491 DOI: 10.1016/j.neuroimage.2007.01.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 01/13/2007] [Accepted: 01/19/2007] [Indexed: 12/18/2022] Open
Abstract
Edges are important cues defining coherent auditory objects. As a model of auditory edges, sound on- and offset are particularly suitable to study their neural underpinnings because they contrast a specific physical input against no physical input. Change from silence to sound, that is onset, has extensively been studied and elicits transient neural responses bilaterally in auditory cortex. However, neural activity associated with sound onset is not only related to edge detection but also to novel afferent inputs. Edges at the change from sound to silence, that is offset, are not confounded by novel physical input and thus allow to examine neural activity associated with sound edges per se. In the first experiment, we used silent acquisition functional magnetic resonance imaging and found that the offset of pulsed sound activates planum temporale, superior temporal sulcus and planum polare of the right hemisphere. In the planum temporale and the superior temporal sulcus, offset response amplitudes were related to the pulse repetition rate of the preceding stimulation. In the second experiment, we found that these offset-responsive regions were also activated by single sound pulses, onset of sound pulse sequences and single sound pulse omissions within sound pulse sequences. However, they were not active during sustained sound presentation. Thus, our data show that circumscribed areas in right temporal cortex are specifically involved in identifying auditory edges. This operation is crucial for translating acoustic signal time series into coherent auditory objects.
Collapse
Affiliation(s)
- Marcus Herdener
- University Hospital of Psychiatry Bern, 3000 Bern, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
37
|
Qin L, Chimoto S, Sakai M, Wang J, Sato Y. Comparison between offset and onset responses of primary auditory cortex ON-OFF neurons in awake cats. J Neurophysiol 2007; 97:3421-31. [PMID: 17360820 DOI: 10.1152/jn.00184.2007] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Primary auditory cortex (A1) neurons are believed not to carry much information about tonal offsets because A1 neurons in barbiturate-anesthetized animals are usually described as having only onset responses. We investigated tonal offset responses in comparison with onset responses in the caudal part of A1 of awake cats. Cells responding to both onsets and offsets were commonly found (59.2% of recorded cells). Offset responses usually co-occurred with phasic onset responses or phasic components of sustained responses. These ON-OFF cells had diverse combinations of offset- and onset-frequency-receptive field (FRF): offset-FRF was similar to onset-FRF, or narrower, wider, lower, or higher than onset-FRF. The distribution of FRF patterns was diffuse with no boundaries between the different FRF-pattern groups. The onset- versus offset-FRF pattern of each cell remained unchanged across multiple stimulus intensities. Mean offset response showed similar peak latency (19.5 vs. 21.5 ms), longer half-decay time (74.5 vs. 48.5 ms), and lower peak amplitude (20.4 vs. 35.9 spikes/s) compared with the mean onset response. Although offset responses were facilitated when preceded by the suppression of spike activity, they were still elicited without preceding spike suppression. It is concluded that neurons showing paired onset and offset responses are predominant in the caudal A1. Their frequency-filtering property is usually not static but dynamic, changing between sound onsets and offsets. Offset responses are similarly precise and salient as onset responses for effectively encoding sound offsets. They may be elicited as active spike responses to sound offset rather than simple rebound facilitation.
Collapse
Affiliation(s)
- Ling Qin
- Department of Physiology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | | | | | | | | |
Collapse
|
38
|
Wilson EC, Melcher JR, Micheyl C, Gutschalk A, Oxenham AJ. Cortical FMRI activation to sequences of tones alternating in frequency: relationship to perceived rate and streaming. J Neurophysiol 2007; 97:2230-8. [PMID: 17202231 PMCID: PMC2042037 DOI: 10.1152/jn.00788.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human listeners were functionally imaged while reporting their perception of sequences of alternating-frequency tone bursts separated by 0, 1/8, 1, or 20 semitones. Our goal was to determine whether functional magnetic resonance imaging (fMRI) activation of auditory cortex changes with frequency separation in a manner predictable from the perceived rate of the stimulus. At the null and small separations, the tones were generally heard as a single stream with a perceived rate equal to the physical tone presentation rate. fMRI activation in auditory cortex was appreciably phasic, showing prominent peaks at the sequence onset and offset. At larger-frequency separations, the higher- and lower-frequency tones perceptually separated into two streams, each with a rate equal to half the overall tone presentation rate. Under those conditions, fMRI activation in auditory cortex was more sustained throughout the sequence duration and was larger in magnitude and extent. Phasic to sustained changes in fMRI activation with changes in frequency separation and perceived rate are comparable to, and consistent with, those produced by changes in the physical rate of a sequence and are far greater than the effects produced by changing other physical stimulus variables, such as sound level or bandwidth. We suggest that the neural activity underlying the changes in fMRI activation with frequency separation contribute to the coding of the co-occurring changes in perceived rate and perceptual organization of the sound sequences into auditory streams.
Collapse
Affiliation(s)
- E Courtenay Wilson
- Speech and Hearing Bioscience and Technology Program, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | |
Collapse
|
39
|
Bartsch AJ, Homola G, Thesen S, Sahmer P, Keim R, Beckmann CF, Biller A, Knaus C, Bendszus M. Scanning for the scanner: FMRI of audition by read-out omissions from echo-planar imaging. Neuroimage 2007; 35:234-43. [PMID: 17188900 DOI: 10.1016/j.neuroimage.2006.11.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 10/21/2006] [Accepted: 11/15/2006] [Indexed: 10/23/2022] Open
|
40
|
Duff E, Xiong J, Wang B, Cunnington R, Fox P, Egan G. Complex spatio-temporal dynamics of fMRI BOLD: A study of motor learning. Neuroimage 2007; 34:156-68. [PMID: 17081770 PMCID: PMC1810348 DOI: 10.1016/j.neuroimage.2006.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 08/17/2006] [Accepted: 09/03/2006] [Indexed: 11/29/2022] Open
Abstract
Many studies have investigated the temporal properties of BOLD signal responses to task performance in regions of interest, often noting significant departures from the conventionally modelled response shape, and significant variation between regions. However, these investigations are rarely extended across the whole brain nor incorporated into the routine analysis of fMRI studies. As a result, little is known about the range of response shapes generated in the brain by common paradigms. The present study finds such temporal dynamics can be complex. We made a detailed investigation of BOLD signal responses across the whole brain during a two minute motor-sequence task, and tracked changes due to learning. The multi-component OSORU (Onset, Sustained, Offset, Ramp, Undershoot) linear model, developed by Harms and Melcher (J.Neurophysiology, 2003), was extended to characterise responses. In many regions, signal transients persisted for over thirty seconds, with large signal spikes at onset often followed by a dip in signal below the final sustained level of activation. Training altered certain features of the response shape, suggesting that different features of the response may reflect different aspects of neuro-vascular dynamics. Unmodelled, this may give rise to inconsistent results across paradigms of varying task durations. Few of the observed effects have been thoroughly addressed in physiological models of the BOLD response. The complex, extended dynamics generated by this simple, often employed task, suggests characterisation and modelling of temporal aspects of BOLD responses needs to be carried out routinely, informing experimental design and analysis, and physiological modelling.
Collapse
Affiliation(s)
- Eugene Duff
- The Howard Florey Institute and the Centre for Neuroscience, The University of Melbourne, VIC 3010, Australia.
| | | | | | | | | | | |
Collapse
|
41
|
Fullerton BC, Pandya DN. Architectonic analysis of the auditory-related areas of the superior temporal region in human brain. J Comp Neurol 2007; 504:470-98. [PMID: 17701981 DOI: 10.1002/cne.21432] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Architecture of auditory areas of the superior temporal region (STR) in the human was analyzed in Nissl-stained material to see whether auditory cortex is organized according to principles that have been described in the rhesus monkey. Based on shared architectonic features, the auditory cortex in human and monkey is organized into three lines: areas in the cortex of the circular sulcus (root), areas on the supratemporal plane (core), and areas on the superior temporal gyrus (belt). The cytoarchitecture of the auditory area changes in a stepwise manner toward the koniocortical area, both from the direction of the temporal polar proisocortex as well as from the caudal temporal cortex. This architectonic dichotomy is consistent with differences in cortical and subcortical connections of STR and may be related to different functions of the rostral and caudal temporal cortices. There are some differences between rhesus monkey and human auditory anatomy. For instance, the koniocortex, root area PaI, and belt area PaA show further differentiation into subareas in the human brain. The relative volume of the core area is larger than that of the belt area in the human, but the reverse is true in the monkey. The functional significance of these differences across species is not known but may relate to speech and language functions.
Collapse
Affiliation(s)
- Barbara C Fullerton
- Eaton-Peabody Laboratory of Auditory Physiology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
42
|
Grimm S, Roeber U, Trujillo-Barreto NJ, Schröger E. Mechanisms for detecting auditory temporal and spectral deviations operate over similar time windows but are divided differently between the two hemispheres. Neuroimage 2006; 32:275-82. [PMID: 16651011 DOI: 10.1016/j.neuroimage.2006.03.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 03/01/2006] [Accepted: 03/10/2006] [Indexed: 11/18/2022] Open
Abstract
In order to keep track of potentially relevant information in the acoustic environment, the human brain processes sounds to a high extent even when they are not attended: it extracts basic features, encodes regularities, and detects deviances. Here, we deliver evidence that the initial 300 ms of a sound contribute more to this preattentive processing than the sound's later parts. We directly compared the influence of the temporal distance relative to sound onset on the processing of the sound's duration and frequency information. The mismatch negativity (MMN), an event-related potential indicator for preattentive feature encoding and deviance detection, was measured for infrequent duration deviants and frequency modulation deviants. The onset of either deviancy was at 100, 200, 300, or 400 ms relative to sound onset. MMN was only elicited for deviations occurring within the first 300 ms after sound onset for both types of deviants. Its neural sources were localized in supra-temporal cortices with source current density analyses (SCD) and variable resolution electromagnetic tomography (VARETA), revealing a right-hemispheric preponderance for frequency modulations but not for duration shortenings. This suggests that preattentive deviance detection is based upon partly diverging functional memory registers for temporal and dynamic spectral information. The influence of temporal distance on MMN in both conditions supports the view that temporal and spectral sound properties are integrated into an auditory object representation prior to preattentive deviance detection. Importantly, the decline of MMN to unattended sounds with larger temporal distance suggests that parts beyond 300 ms are less important for preattentive auditory object representation.
Collapse
Affiliation(s)
- Sabine Grimm
- Kognitive einschl. Biologische Psychologie, Institut für Psychologie I, Universität Leipzig, Seeburgstrasse 14-20, 04103 Leipzig, Germany.
| | | | | | | |
Collapse
|
43
|
Sigalovsky IS, Fischl B, Melcher JR. Mapping an intrinsic MR property of gray matter in auditory cortex of living humans: a possible marker for primary cortex and hemispheric differences. Neuroimage 2006; 32:1524-37. [PMID: 16806989 PMCID: PMC1839042 DOI: 10.1016/j.neuroimage.2006.05.023] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 05/03/2006] [Accepted: 05/08/2006] [Indexed: 10/24/2022] Open
Abstract
Recently, magnetic resonance properties of cerebral gray matter have been spatially mapped--in vivo--over the cortical surface. In one of the first neuroscientific applications of this approach, this study explores what can be learned about auditory cortex in living humans by mapping longitudinal relaxation rate (R1), a property related to myelin content. Gray matter R1 (and thickness) showed repeatable trends, including the following: (1) Regions of high R1 were always found overlapping posteromedial Heschl's gyrus. They also sometimes occurred in planum temporale and never in other parts of the superior temporal lobe. We hypothesize that the high R1 overlapping Heschl's gyrus (which likely indicates dense gray matter myelination) reflects auditory koniocortex (i.e., primary cortex), a heavily myelinated area that shows comparable overlap with the gyrus. High R1 overlapping Heschl's gyrus was identified in every instance suggesting that R1 may ultimately provide a marker for koniocortex in individuals. Such a marker would be significant for auditory neuroimaging, which has no standard means (anatomic or physiologic) for localizing cortical areas in individual subjects. (2) Inter-hemispheric comparisons revealed greater R1 on the left on Heschl's gyrus, planum temporale, superior temporal gyrus and superior temporal sulcus. This asymmetry suggests greater gray matter myelination in left auditory cortex, which may be a substrate for the left hemisphere's specialized processing of speech, language, and rapid acoustic changes. These results indicate that in vivo R1 mapping can provide new insights into the structure of human cortical gray matter and its relation to function.
Collapse
Affiliation(s)
- Irina S Sigalovsky
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, and Harvard-MIT Division of Health Sciences and Technology, Speech and Hearing Bioscience and Technology Program, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
44
|
Sigalovsky IS, Melcher JR. Effects of sound level on fMRI activation in human brainstem, thalamic and cortical centers. Hear Res 2006; 215:67-76. [PMID: 16644153 PMCID: PMC1794213 DOI: 10.1016/j.heares.2006.03.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Revised: 02/27/2006] [Accepted: 03/07/2006] [Indexed: 10/24/2022]
Abstract
The dependence of fMRI activation on sound level was examined throughout the auditory pathway of normal human listeners using continuous broadband noise, a stimulus widely used in neuroscientific investigations of auditory processing, but largely neglected in neuro-imaging. Several specialized techniques were combined here for the first time to enhance detection of brainstem activation, mitigate scanner noise, and recover temporal resolution lost by the mitigation technique. The main finding was increased activation with increasing level in cochlear nucleus, superior olive, inferior colliculus, medial geniculate body and auditory cortical areas. We suggest that these increases reflect monotonically increasing activity in a preponderance of individual auditory neurons responsive to broadband noise. While the time-course of activation changed with level, the change was subtle and only significant in a part of the cortex. To our knowledge, these are the first fMRI data showing the effects of sound level in subcortical centers or for a non-tonal, non-speech stimulus at any stage of the pathway. The present results add to the body of parametric data in normal human listeners and are fundamental to the design of any fMRI experiment employing continuous noise.
Collapse
Affiliation(s)
- Irina S Sigalovsky
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA.
| | | |
Collapse
|
45
|
Lehmann C, Herdener M, Esposito F, Hubl D, di Salle F, Scheffler K, Bach DR, Federspiel A, Kretz R, Dierks T, Seifritz E. Differential patterns of multisensory interactions in core and belt areas of human auditory cortex. Neuroimage 2006; 31:294-300. [PMID: 16473022 DOI: 10.1016/j.neuroimage.2005.12.038] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 11/23/2005] [Accepted: 12/07/2005] [Indexed: 10/25/2022] Open
Abstract
The auditory cortex is anatomically segregated into a central core and a peripheral belt region, which exhibit differences in preference to bandpassed noise and in temporal patterns of response to acoustic stimuli. While it has been shown that visual stimuli can modify response magnitude in auditory cortex, little is known about differential patterns of multisensory interactions in core and belt. Here, we used functional magnetic resonance imaging and examined the influence of a short visual stimulus presented prior to acoustic stimulation on the spatial pattern of blood oxygen level-dependent signal response in auditory cortex. Consistent with crossmodal inhibition, the light produced a suppression of signal response in a cortical region corresponding to the core. In the surrounding areas corresponding to the belt regions, however, we found an inverse modulation with an increasing signal in centrifugal direction. Our data suggest that crossmodal effects are differentially modulated according to the hierarchical core-belt organization of auditory cortex.
Collapse
Affiliation(s)
- Christoph Lehmann
- University Hospital of Clinical Psychiatry, University of Bern, 3000 Bern, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Jamison HL, Watkins KE, Bishop DVM, Matthews PM. Hemispheric Specialization for Processing Auditory Nonspeech Stimuli. Cereb Cortex 2005; 16:1266-75. [PMID: 16280465 DOI: 10.1093/cercor/bhj068] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The left hemisphere specialization for speech perception might arise from asymmetries at more basic levels of auditory processing. In particular, it has been suggested that differences in "temporal" and "spectral" processing exist between the hemispheres. Here we used functional magnetic resonance imaging to test this hypothesis further. Fourteen healthy volunteers listened to sequences of alternating pure tones that varied in the temporal and spectral domains. Increased temporal variation was associated with activation in Heschl's gyrus (HG) bilaterally, whereas increased spectral variation activated the superior temporal gyrus (STG) bilaterally and right posterior superior temporal sulcus (STS). Responses to increased temporal variation were lateralized to the left hemisphere; this left lateralization was greater in posteromedial HG, which is presumed to correspond to the primary auditory cortex. Responses to increased spectral variation were lateralized to the right hemisphere specifically in the anterior STG and posterior STS. These findings are consistent with the notion that the hemispheres are differentially specialized for processing auditory stimuli even in the absence of linguistic information.
Collapse
Affiliation(s)
- Helen L Jamison
- Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, Oxford, UK.
| | | | | | | |
Collapse
|
47
|
Seifritz E, Di Salle F, Esposito F, Herdener M, Neuhoff JG, Scheffler K. Enhancing BOLD response in the auditory system by neurophysiologically tuned fMRI sequence. Neuroimage 2005; 29:1013-22. [PMID: 16253522 DOI: 10.1016/j.neuroimage.2005.08.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 07/22/2005] [Accepted: 08/23/2005] [Indexed: 11/22/2022] Open
Abstract
Auditory neuroscience has not tapped fMRI's full potential because of acoustic scanner noise emitted by the gradient switches of conventional echoplanar fMRI sequences. The scanner noise is pulsed, and auditory cortex is particularly sensitive to pulsed sounds. Current fMRI approaches to avoid stimulus-noise interactions are temporally inefficient. Since the sustained BOLD response to pulsed sounds decreases with repetition rate and becomes minimal with unpulsed sounds, we developed an fMRI sequence emitting continuous rather than pulsed gradient sound by implementing a novel quasi-continuous gradient switch pattern. Compared to conventional fMRI, continuous-sound fMRI reduced auditory cortex BOLD baseline and increased BOLD amplitude with graded sound stimuli, short sound events, and sounds as complex as orchestra music with preserved temporal resolution. Response in subcortical auditory nuclei was enhanced, but not the response to light in visual cortex. Finally, tonotopic mapping using continuous-sound fMRI demonstrates that enhanced functional signal-to-noise in BOLD response translates into improved spatial separability of specific sound representations.
Collapse
Affiliation(s)
- Erich Seifritz
- University Hospital of Clinical Psychiatry, University of Bern, 3000 Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
There have been recent developments in our understanding of the auditory neuroscience of non-human primates that, to a certain extent, can be integrated with findings from human functional neuroimaging studies. This framework can be used to consider the cortical basis of complex sound processing in humans, including implications for speech perception, spatial auditory processing and auditory scene segregation.
Collapse
Affiliation(s)
- Sophie K Scott
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AR, UK.
| |
Collapse
|