1
|
Zill SN, Dallmann CJ, Büschges A, Chaudhry S, Schmitz J. Force dynamics and synergist muscle activation in stick insects: the effects of using joint torques as mechanical stimuli. J Neurophysiol 2018; 120:1807-1823. [PMID: 30020837 DOI: 10.1152/jn.00371.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Many sensory systems are tuned to specific parameters of behaviors and have effects that are task-specific. We have studied how force feedback contributes to activation of synergist muscles in serially homologous legs of stick insects. Forces were applied using conventional half-sine or ramp and hold functions. We also utilized waveforms of joint torques calculated from experiments in freely walking animals. In all legs, forces applied to either the tarsus (foot) or proximal leg segment (trochanter) activated synergist muscles that generate substrate grip and support, but coupling of the depressor muscle to tarsal forces was weak in the front legs. Activation of trochanteral receptors using ramp and hold functions generated positive feedback to the depressor muscle in all legs when animals were induced to seek substrate grip. However, discharges of the synergist flexor muscle showed adaptation at moderate force levels. In contrast, application of forces using torque waveforms, which do not have a static hold phase, produced sustained discharges in muscle synergies with little adaptation. Firing frequencies reflected the magnitude of ground reaction forces, were graded to changes in force amplitude, and could also be modulated by transient force perturbations added to the waveforms. Comparison of synergist activation by torques and ramp and hold functions revealed a strong influence of force dynamics (dF/d t). These studies support the idea that force receptors can act to tune muscle synergies synchronously to the range of force magnitudes and dynamics that occur in each leg according to their specific use in behavior. NEW & NOTEWORTHY The effects of force receptors (campaniform sensilla) on leg muscles and synergies were characterized in stick insects using both ramp and hold functions and waveforms of joint torques calculated by inverse dynamics. Motor responses were sustained and showed reduced adaptation to the more "natural" and nonlinear torque stimuli. Calculation of the first derivative (dF/d t) of the torque waveforms demonstrated that this difference was correlated with the dynamic sensitivities of the system.
Collapse
Affiliation(s)
- Sasha N Zill
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Chris J Dallmann
- Department of Biological Cybernetics, Bielefeld University , Bielefeld , Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, Biocenter, University of Cologne , Cologne , Germany
| | - Sumaiya Chaudhry
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Josef Schmitz
- Department of Biological Cybernetics, Bielefeld University , Bielefeld , Germany
| |
Collapse
|
2
|
Sandhu MS, Baekey DM, Maling NG, Sanchez JC, Reier PJ, Fuller DD. Midcervical neuronal discharge patterns during and following hypoxia. J Neurophysiol 2014; 113:2091-101. [PMID: 25552641 DOI: 10.1152/jn.00834.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/30/2014] [Indexed: 11/22/2022] Open
Abstract
Anatomical evidence indicates that midcervical interneurons can be synaptically coupled with phrenic motoneurons. Accordingly, we hypothesized that interneurons in the C3-C4 spinal cord can display discharge patterns temporally linked with inspiratory phrenic motor output. Anesthetized adult rats were studied before, during, and after a 4-min bout of moderate hypoxia. Neuronal discharge in C3-C4 lamina I-IX was monitored using a multielectrode array while phrenic nerve activity was extracellularly recorded. For the majority of cells, spike-triggered averaging (STA) of ipsilateral inspiratory phrenic nerve activity based on neuronal discharge provided no evidence of discharge synchrony. However, a distinct STA phrenic peak with a 6.83 ± 1.1 ms lag was present for 5% of neurons, a result that indicates a monosynaptic connection with phrenic motoneurons. The majority (93%) of neurons changed discharge rate during hypoxia, and the diverse responses included both increased and decreased firing. Hypoxia did not change the incidence of STA peaks in the phrenic nerve signal. Following hypoxia, 40% of neurons continued to discharge at rates above prehypoxia values (i.e., short-term potentiation, STP), and cells with initially low discharge rates were more likely to show STP (P < 0.001). We conclude that a population of nonphrenic C3-C4 neurons in the rat spinal cord is synaptically coupled to the phrenic motoneuron pool, and these cells can modulate inspiratory phrenic output. In addition, the C3-C4 propriospinal network shows a robust and complex pattern of activation both during and following an acute bout of hypoxia.
Collapse
Affiliation(s)
- M S Sandhu
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - D M Baekey
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; and
| | - N G Maling
- Department of Neuroscience, University of Florida, Gainesville, Florida
| | - J C Sanchez
- Department of Biomedical Engineering, University of Miami, Miami, Florida
| | - P J Reier
- Department of Neuroscience, University of Florida, Gainesville, Florida
| | - D D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, Florida;
| |
Collapse
|
3
|
Geborek P, Bengtsson F, Jörntell H. Properties of bilateral spinocerebellar activation of cerebellar cortical neurons. Front Neural Circuits 2014; 8:128. [PMID: 25386122 PMCID: PMC4209862 DOI: 10.3389/fncir.2014.00128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/05/2014] [Indexed: 11/13/2022] Open
Abstract
We aimed to explore the cerebellar cortical inputs from two spinocerebellar pathways, the spinal border cell-component of the ventral spinocerebellar tract (SBC-VSCT) and the dorsal spinocerebellar tract (DSCT), respectively, in the sublobule C1 of the cerebellar posterior lobe. The two pathways were activated by electrical stimulation of the contralateral lateral funiculus (coLF) and the ipsilateral LF (iLF) at lower thoracic levels. Most granule cells in sublobule C1 did not respond at all but part of the granule cell population displayed high-intensity responses to either coLF or iLF stimulation. As a rule, Golgi cells and Purkinje cell simple spikes responded to input from both LFs, although Golgi cells could be more selective. In addition, a small population of granule cells responded to input from both the coLF and the iLF. However, in these cases, similarities in the temporal topography and magnitude of the responses suggested that the same axons were stimulated from the two LFs, i.e., that the axons of individual spinocerebellar neurons could be present in both funiculi. This was also confirmed for a population of spinal neurons located within known locations of SBC-VSCT neurons and dorsal horn (dh) DSCT neurons. We conclude that bilateral spinocerebellar responses can occur in cerebellar granule cells, but the VSCT and DSCT systems that provide the input can also be organized bilaterally. The implications for the traditional functional separation of VSCT and DSCT systems and the issue whether granule cells primarily integrate functionally similar information or not are discussed.
Collapse
Affiliation(s)
- Pontus Geborek
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University Lund, Sweden
| | - Fredrik Bengtsson
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University Lund, Sweden
| | - Henrik Jörntell
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University Lund, Sweden
| |
Collapse
|
4
|
Fedirchuk B, Stecina K, Kristensen KK, Zhang M, Meehan CF, Bennett DJ, Hultborn H. Rhythmic activity of feline dorsal and ventral spinocerebellar tract neurons during fictive motor actions. J Neurophysiol 2012; 109:375-88. [PMID: 23100134 DOI: 10.1152/jn.00649.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons of the dorsal spinocerebellar tracts (DSCT) have been described to be rhythmically active during walking on a treadmill in decerebrate cats, but this activity ceased following deafferentation of the hindlimb. This observation supported the hypothesis that DSCT neurons primarily relay the activity of hindlimb afferents during locomotion, but lack input from the spinal central pattern generator. The ventral spinocerebellar tract (VSCT) neurons, on the other hand, were found to be active during actual locomotion (on a treadmill) even after deafferentation, as well as during fictive locomotion (without phasic afferent feedback). In this study, we compared the activity of DSCT and VSCT neurons during fictive rhythmic motor behaviors. We used decerebrate cat preparations in which fictive motor tasks can be evoked while the animal is paralyzed and there is no rhythmic sensory input from hindlimb nerves. Spinocerebellar tract cells with cell bodies located in the lumbar segments were identified by electrophysiological techniques and examined by extra- and intracellular microelectrode recordings. During fictive locomotion, 57/81 DSCT and 30/30 VSCT neurons showed phasic, cycle-related activity. During fictive scratch, 19/29 DSCT neurons showed activity related to the scratch cycle. We provide evidence for the first time that locomotor and scratch drive potentials are present not only in VSCT, but also in the majority of DSCT neurons. These results demonstrate that both spinocerebellar tracts receive input from the central pattern generator circuitry, often sufficient to elicit firing in the absence of sensory input.
Collapse
Affiliation(s)
- Brent Fedirchuk
- University of Manitoba, Department of Physiology, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | |
Collapse
|
5
|
Inhibitory inputs to four types of spinocerebellar tract neurons in the cat spinal cord. Neuroscience 2012; 226:253-69. [PMID: 22989920 DOI: 10.1016/j.neuroscience.2012.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/05/2012] [Accepted: 09/06/2012] [Indexed: 11/24/2022]
Abstract
Spinocerebellar tract neurons are inhibited by various sources of input via pathways activated by descending tracts as well as peripheral afferents. Inhibition may be used to modulate transmission of excitatory information forwarded to the cerebellum. However it may also provide information on the degree of inhibition of motoneurons and on the operation of inhibitory premotor neurons. Our aim was to extend previous comparisons of morphological substrates of excitation of spinocerebellar neurons to inhibitory input. Contacts formed by inhibitory axon terminals were characterised as either GABAergic, glycinergic or both GABAergic/glycinergic by using antibodies against vesicular GABA transporter, glutamic acid decarboxylase and gephyrin. Quantitative analysis revealed the presence of much higher proportions of inhibitory contacts when compared with excitatory contacts on spinal border (SB) neurons. However similar proportions of inhibitory and excitatory contacts were associated with ventral spinocerebellar tract (VSCT) and dorsal spinocerebellar tract neurons located in Clarke's column (ccDSCT) and the dorsal horn (dhDSCT). In all of the cells, the majority of inhibitory terminals were glycinergic. The density of contacts was higher on somata and proximal versus distal dendrites of SB and VSCT neurons but more evenly distributed in ccDSCT and dhDSCT neurons. Variations in the density and distribution of inhibitory contacts found in this study may reflect differences in information on inhibitory processes forwarded by subtypes of spinocerebellar tract neurons to the cerebellum.
Collapse
|
6
|
Zill SN, Schmitz J, Chaudhry S, Büschges A. Force encoding in stick insect legs delineates a reference frame for motor control. J Neurophysiol 2012; 108:1453-72. [PMID: 22673329 DOI: 10.1152/jn.00274.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The regulation of forces is integral to motor control. However, it is unclear how information from sense organs that detect forces at individual muscles or joints is incorporated into a frame of reference for motor control. Campaniform sensilla are receptors that monitor forces by cuticular strains. We studied how loads and muscle forces are encoded by trochanteral campaniform sensilla in stick insects. Forces were applied to the middle leg to emulate loading and/or muscle contractions. Selective sensory ablations limited activities recorded in the main leg nerve to specific receptor groups. The trochanteral campaniform sensilla consist of four discrete groups. We found that the dorsal groups (Groups 3 and 4) encoded force increases and decreases in the plane of movement of the coxo-trochanteral joint. Group 3 receptors discharged to increases in dorsal loading and decreases in ventral load. Group 4 showed the reverse directional sensitivities. Vigorous, directional responses also occurred to contractions of the trochanteral depressor muscle and to forces applied at the muscle insertion. All sensory discharges encoded the amplitude and rate of loading or muscle force. Stimulation of the receptors produced reflex effects in the depressor motoneurons that could reverse in sign during active movements. These data, in conjunction with findings of previous studies, support a model in which the trochanteral receptors function as an array that can detect forces in all directions relative to the intrinsic plane of leg movement. The array could provide requisite information about forces and simplify the control and adaptation of posture and walking.
Collapse
Affiliation(s)
- Sasha N Zill
- Dept. of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall Univ., Huntington, WV 25704, USA.
| | | | | | | |
Collapse
|
7
|
Shrestha SS, Bannatyne BA, Jankowska E, Hammar I, Nilsson E, Maxwell DJ. Excitatory inputs to four types of spinocerebellar tract neurons in the cat and the rat thoraco-lumbar spinal cord. J Physiol 2012; 590:1737-55. [PMID: 22371473 PMCID: PMC3413493 DOI: 10.1113/jphysiol.2011.226852] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/21/2012] [Indexed: 11/08/2022] Open
Abstract
The cerebellum receives information from the hindlimbs through several populations of spinocerebellar tract neurons. Although the role of these neurons has been established in electrophysiological experiments, the relative contribution of afferent fibres and central neurons to their excitatory input has only been estimated approximately so far. Taking advantage of differences in the immunohistochemistry of glutamatergic terminals of peripheral afferents and of central neurons (with vesicular glutamate transporters VGLUT1 or VGLUT2, respectively), we compared sources of excitatory input to four populations of spinocerebellar neurons in the thoraco-lumbar spinal cord: dorsal spinocerebellar tract neurons located in Clarke's column (ccDSCT) and in the dorsal horn (dhDSCT) and ventral spinocerebellar tract (VSCT) neurons including spinal border (SB) neurons. This was done on 22 electrophysiologically identified intracellularly labelled neurons in cats and on 80 neurons labelled by retrograde transport of cholera toxin b subunit injected into the cerebellum of rats. In both species distribution of antibodies against VGLUT1 and VGLUT2 on SB neurons (which have dominating inhibitory input from limb muscles), revealed very few VGLUT1 contacts and remarkably high numbers of VGLUT2 contacts. In VSCT neurons with excitatory afferent input, the number of VGLUT1 contacts was relatively high although VGLUT2 contacts likewise dominated, while the proportions of VGLUT1 and VGLUT2 immunoreactive terminals were the reverse on the two populations of DSCT neurons. These findings provide morphological evidence that SB neurons principally receive excitatory inputs from central neurons and provide the cerebellum with information regarding central neuronal activity.
Collapse
Affiliation(s)
- Sony Shakya Shrestha
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | | | |
Collapse
|
8
|
Kahlat K, Djouhri L. Differential input to dorsal horn dorsal spinocerebellar tract neurons in mid- and low-lumbar segments from upper cervical spinal cord in the cat. Neurosci Res 2012; 72:227-35. [DOI: 10.1016/j.neures.2011.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/08/2011] [Accepted: 12/08/2011] [Indexed: 11/28/2022]
|