1
|
Buetler KA, Penalver-Andres J, Özen Ö, Ferriroli L, Müri RM, Cazzoli D, Marchal-Crespo L. "Tricking the Brain" Using Immersive Virtual Reality: Modifying the Self-Perception Over Embodied Avatar Influences Motor Cortical Excitability and Action Initiation. Front Hum Neurosci 2022; 15:787487. [PMID: 35221950 PMCID: PMC8863605 DOI: 10.3389/fnhum.2021.787487] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/13/2021] [Indexed: 02/02/2023] Open
Abstract
To offer engaging neurorehabilitation training to neurologic patients, motor tasks are often visualized in virtual reality (VR). Recently introduced head-mounted displays (HMDs) allow to realistically mimic the body of the user from a first-person perspective (i.e., avatar) in a highly immersive VR environment. In this immersive environment, users may embody avatars with different body characteristics. Importantly, body characteristics impact how people perform actions. Therefore, alternating body perceptions using immersive VR may be a powerful tool to promote motor activity in neurologic patients. However, the ability of the brain to adapt motor commands based on a perceived modified reality has not yet been fully explored. To fill this gap, we "tricked the brain" using immersive VR and investigated if multisensory feedback modulating the physical properties of an embodied avatar influences motor brain networks and control. Ten healthy participants were immersed in a virtual environment using an HMD, where they saw an avatar from first-person perspective. We slowly transformed the surface of the avatar (i.e., the "skin material") from human to stone. We enforced this visual change by repetitively touching the real arm of the participant and the arm of the avatar with a (virtual) hammer, while progressively replacing the sound of the hammer against skin with stone hitting sound via loudspeaker. We applied single-pulse transcranial magnetic simulation (TMS) to evaluate changes in motor cortical excitability associated with the illusion. Further, to investigate if the "stone illusion" affected motor control, participants performed a reaching task with the human and stone avatar. Questionnaires assessed the subjectively reported strength of embodiment and illusion. Our results show that participants experienced the "stone arm illusion." Particularly, they rated their arm as heavier, colder, stiffer, and more insensitive when immersed with the stone than human avatar, without the illusion affecting their experienced feeling of body ownership. Further, the reported illusion strength was associated with enhanced motor cortical excitability and faster movement initiations, indicating that participants may have physically mirrored and compensated for the embodied body characteristics of the stone avatar. Together, immersive VR has the potential to influence motor brain networks by subtly modifying the perception of reality, opening new perspectives for the motor recovery of patients.
Collapse
Affiliation(s)
- Karin A. Buetler
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Joaquin Penalver-Andres
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Psychosomatic Medicine, Department of Neurology, University Hospital of Bern (Inselspital), Bern, Switzerland
| | - Özhan Özen
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Luca Ferriroli
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - René M. Müri
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Neurology, University Neurorehabilitation, University Hospital of Bern (Inselspital), University of Bern, Bern, Switzerland
| | - Dario Cazzoli
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Neurology, University Neurorehabilitation, University Hospital of Bern (Inselspital), University of Bern, Bern, Switzerland
- Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Laura Marchal-Crespo
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Cognitive Robotics, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
2
|
Tisseyre J, Cremoux S, Amarantini D, Tallet J. Increased intensity of unintended mirror muscle contractions after cervical spinal cord injury is associated with changes in interhemispheric and corticomuscular coherences. Behav Brain Res 2022; 417:113563. [PMID: 34499938 DOI: 10.1016/j.bbr.2021.113563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 08/02/2021] [Accepted: 08/25/2021] [Indexed: 11/26/2022]
Abstract
Mirror contractions refer to unintended contractions of the contralateral homologous muscles during voluntary unilateral contractions or movements. Exaggerated mirror contractions have been found in several neurological diseases and indicate dysfunction or lesion of the cortico-spinal pathway. The present study investigates mirror contractions and the associated interhemispheric and corticomuscular interactions in adults with spinal cord injury (SCI) - who present a lesion of the cortico-spinal tract - compared to able-bodied participants (AB). Eight right-handed adults with chronic cervical SCI and ten age-matched right-handed able-bodied volunteers performed sets of right elbow extensions at 20% of maximal voluntary contraction. Electromyographic activity (EMG) of the right and left elbow extensors, interhemispheric coherence over cerebral sensorimotor regions evaluated by electroencephalography (EEG) and corticomuscular coherence between signals over the cerebral sensorimotor regions and each extensor were quantified. Overall, results revealed that participants with SCI exhibited (1) increased EMG activity of both active and unintended active limbs, suggesting more mirror contractions, (2) reduced corticomuscular coherence between signals over the left sensorimotor region and the right active limb and increased corticomuscular coherence between the right sensorimotor region and the left unintended active limb, (3) decreased interhemispheric coherence between signals over the two sensorimotor regions. The increased corticomuscular communication and decreased interhemispheric communication may reflect a reduced inhibition leading to increased communication with the unintended active limb, possibly resulting to exacerbated mirror contractions in SCI. Finally, mirror contractions could represent changes of neural and neuromuscular communication after SCI.
Collapse
Affiliation(s)
- Joseph Tisseyre
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.
| | - Sylvain Cremoux
- CerCo, CNRS, UMR5549, Université de Toulouse, 31052 Toulouse, France
| | - David Amarantini
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Jessica Tallet
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
3
|
Beck MM, Spedden ME, Lundbye-Jensen J. Reorganization of functional and directed corticomuscular connectivity during precision grip from childhood to adulthood. Sci Rep 2021; 11:22870. [PMID: 34819532 PMCID: PMC8613204 DOI: 10.1038/s41598-021-01903-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 11/09/2022] Open
Abstract
How does the neural control of fine movements develop from childhood to adulthood? Here, we investigated developmental differences in functional corticomuscular connectivity using coherence analyses in 111 individuals from four different age groups covering the age range 8-30 y. EEG and EMG were recorded while participants performed a uni-manual force-tracing task requiring fine control of force in a precision grip with both the dominant and non-dominant hand. Using beamforming methods, we located and reconstructed source activity from EEG data displaying peak coherence with the EMG activity of an intrinsic hand muscle during the task. Coherent cortical sources were found anterior and posterior to the central sulcus in the contralateral hemisphere. Undirected and directed corticomuscular coherence was quantified and compared between age groups. Our results revealed that coherence was greater in adults (20-30 yo) than in children (8-10 yo) and that this difference was driven by greater magnitudes of descending (cortex-to-muscle), rather than ascending (muscle-to-cortex), coherence. We speculate that the age-related differences reflect maturation of corticomuscular networks leading to increased functional connectivity with age. We interpret the greater magnitude of descending oscillatory coupling as reflecting a greater degree of feedforward control in adults compared to children. The findings provide a detailed characterization of differences in functional sensorimotor connectivity for individuals at different stages of typical ontogenetic development that may be related to the maturational refinement of dexterous motor control.
Collapse
Affiliation(s)
- Mikkel Malling Beck
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Nørre Alle 51, 2200, Copenhagen N, Denmark.
| | - Meaghan Elizabeth Spedden
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Nørre Alle 51, 2200, Copenhagen N, Denmark
| | - Jesper Lundbye-Jensen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Nørre Alle 51, 2200, Copenhagen N, Denmark
| |
Collapse
|
4
|
Abtahi M, Bahram Borgheai S, Jafari R, Constant N, Diouf R, Shahriari Y, Mankodiya K. Merging fNIRS-EEG Brain Monitoring and Body Motion Capture to Distinguish Parkinsons Disease. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1246-1253. [DOI: 10.1109/tnsre.2020.2987888] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Gamma frequency band shift of contralateral corticomuscular synchronous oscillations with force strength for hand movement tasks. Neuroreport 2020; 31:338-345. [PMID: 32058430 DOI: 10.1097/wnr.0000000000001409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bilateral voluntary contractions involve functional changes in both primary motor cortices. However how the unilateral voluntary contraction of hand muscles influences the contralateral corticomuscular synchronous oscillations mechanisms remains unclear. In the bimanual tasks, nine healthy subjects were instructed to generate force by abducting their left-hand index finger against a force sensor and simultaneously the right-hand precise pinch task with visual feedback. They were divided into four conditions according to the two contraction force levels of the left-hand muscles 5% and 50% maximal isometric voluntary contraction (MVC) and with/without visual feedback for the right hand. Corticomuscular synchronization of the right hand in the beta band was revealed when the subjects performed the bimanual exercise with 5% MVC of left-hand muscles, which is consistent with previous studies. As the contraction strength of the left-hand muscle increased to 50% MVC, the corticomuscular coherence (CMC) frequency of the right hand shifted to gamma band, and the CMC in beta band decreased significantly (P < 0.05) in the electroencephalography→electromyography direction. This phenomenon suggests that the corticomuscular synchronous oscillation will shift from beta band to higher frequencies (principally gamma) as the contraction force of the contralateral hand increases, which may be due to the changes in the subject's attention and more frequent synchronization of neuromuscular motor neurons oscillations. These findings will be helpful to explore the hand motion control and feedback mechanisms, and further provide a basis for the application of neuromuscular coupling in clinical rehabilitation evaluation.Video abstract: http://links.lww.com/WNR/A571.
Collapse
|
6
|
McManus L, Flood MW, Lowery MM. Beta-band motor unit coherence and nonlinear surface EMG features of the first dorsal interosseous muscle vary with force. J Neurophysiol 2019; 122:1147-1162. [PMID: 31365308 DOI: 10.1152/jn.00228.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motor unit firing times are weakly coupled across a range of frequencies during voluntary contractions. Coherent activity within the beta-band (15-35 Hz) has been linked to oscillatory cortical processes, providing evidence of functional connectivity between the motoneuron pool and motor cortex. The aim of this study was to investigate whether beta-band motor unit coherence is altered with increasing abduction force in the first dorsal interosseous muscle. Coherence between motor unit firing times, extracted from decomposed surface electromyography (EMG) signals, was investigated in 17 subjects at 10, 20, 30, and 40% of maximum voluntary contraction. Corresponding changes in nonlinear surface EMG features (specifically sample entropy and determinism, which are sensitive to motor unit synchronization) were also examined. A reduction in beta-band and alpha-band coherence was observed as force increased [F(3, 151) = 32, P < 0.001 and F(3, 151) = 27, P < 0.001, respectively], accompanied by corresponding changes in nonlinear surface EMG features. A significant relationship between the nonlinear features and motor unit coherence was also detected (r = -0.43 ± 0.1 and r = 0.45 ± 0.1 for sample entropy and determinism, respectively; both P < 0.001). The reduction in beta-band coherence suggests a change in the relative contribution of correlated and uncorrelated presynaptic inputs to the motoneuron pool, and/or a decrease in the responsiveness of the motoneuron pool to synchronous inputs at higher forces. The study highlights the importance of considering muscle activation when investigating changes in motor unit coherence or nonlinear EMG features and examines other factors that can influence coherence estimation.NEW & NOTEWORTHY Intramuscular alpha- and beta-band coherence decreased as muscle contraction force increased. Beta-band coherence was higher in groups of high-threshold motor units than in simultaneously active lower threshold units. Alterations in motor unit coherence with increases or decreases in force and with the onset of fatigue were accompanied by corresponding changes in surface electromyography sample entropy and determinism. Mixed-model analysis indicated mean firing rate and number of motor units also influenced the coherence estimate.
Collapse
Affiliation(s)
- Lara McManus
- School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin, Ireland
| | - Matthew W Flood
- School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin, Ireland
| | - Madeleine M Lowery
- School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
7
|
Differential Cortical Control of Chest Wall Muscles During Pressure- and Volume-Related Expiratory Tasks and the Effects of Acute Expiratory Threshold Loading. Motor Control 2019; 23:13-33. [PMID: 29902955 DOI: 10.1123/mc.2016-0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 01/25/2018] [Accepted: 02/23/2018] [Indexed: 11/18/2022]
Abstract
We examined whether or not coherence between chest wall intercostal and oblique muscles changed as a function of lung volume excursion, alveolar pressure, and muscular demand. We also assessed the effects of acute expiratory threshold loading (ETL) on chest wall muscular control. A total of 15 healthy adults (7 males; average age = 28 years) completed maximum performance and ETL tasks. Chest wall surface electromyographic and kinematic recordings were made. Participants also performed a session of acute ETL. We showed that corticomuscular control of the chest wall varied as a function of lung volume excursion and muscular effort. Acute ETL had some effect on respiratory kinematics but not coherence.
Collapse
|
8
|
Watanabe H, Mizuguchi N, Mayfield DL, Yoshitake Y. Corticospinal Excitability During Actual and Imaginary Motor Tasks of Varied Difficulty. Neuroscience 2018; 391:81-90. [DOI: 10.1016/j.neuroscience.2018.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/29/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
|
9
|
Xu R, Wang Y, Wang K, Zhang S, He C, Ming D. Increased Corticomuscular Coherence and Brain Activation Immediately After Short-Term Neuromuscular Electrical Stimulation. Front Neurol 2018; 9:886. [PMID: 30405518 PMCID: PMC6206169 DOI: 10.3389/fneur.2018.00886] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/01/2018] [Indexed: 11/13/2022] Open
Abstract
Neuromuscular Electrical Stimulation (NMES) is commonly used in motor rehabilitation for stroke patients. It has been verified that NMES can improve muscle strength and activate the brain, but the studies on how NMES affects the corticomuscular connection are limited. Some studies found an increased corticomuscular coherence (CMC) after a long-term NMES. However, it is still unknown about CMC during NMES, as relatively pure EMG is very difficult to obtain with the contamination of NMES current pulses. In order to approach the condition during NMES, we designed an experiment with short-term NMES and immediately captured data within 100 s. The repetition of wrist flexion was used to realize static muscle contractions for CMC calculation and dynamic contractions for event-related desynchronization (ERD). The result of 13 healthy participants showed that maximal values (p = 0.0020) and areas (p = 0.0098) of CMC and beta ERD were significantly increased immediately after NMES. It was concluded that a short-term NMES can still reinforce corticomuscular functional connection and brain activation related to motor task. This study verified the immediate strengthen of corticomuscular changes after NMES, which was expected to be the basis of long-term neural plasticity induced by NMES.
Collapse
Affiliation(s)
- Rui Xu
- Lab of Neural Engineering & Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China.,Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yaoyao Wang
- Lab of Neural Engineering & Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China.,Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Kun Wang
- Lab of Neural Engineering & Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China.,Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Shufeng Zhang
- Lab of Neural Engineering & Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China.,Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Chuan He
- Lab of Neural Engineering & Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China.,Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Dong Ming
- Lab of Neural Engineering & Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China.,Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
10
|
Ozdemir RA, Contreras-Vidal JL, Paloski WH. Cortical control of upright stance in elderly. Mech Ageing Dev 2018; 169:19-31. [DOI: 10.1016/j.mad.2017.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/15/2017] [Accepted: 12/21/2017] [Indexed: 10/18/2022]
|
11
|
Effect of training status on beta-range corticomuscular coherence in agonist vs. antagonist muscles during isometric knee contractions. Exp Brain Res 2017; 235:3023-3031. [DOI: 10.1007/s00221-017-5035-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/15/2017] [Indexed: 10/19/2022]
|
12
|
Features of EEG Activity Related to Realization of Cyclic Unimanual and Bimanual Hand Movements in Humans. NEUROPHYSIOLOGY+ 2017. [DOI: 10.1007/s11062-017-9632-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Mildren RL, Peters RM, Hill AJ, Blouin JS, Carpenter MG, Inglis JT. Frequency characteristics of human muscle and cortical responses evoked by noisy Achilles tendon vibration. J Appl Physiol (1985) 2017; 122:1134-1144. [PMID: 28209741 DOI: 10.1152/japplphysiol.00908.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/17/2017] [Accepted: 02/11/2017] [Indexed: 11/22/2022] Open
Abstract
Noisy stimuli, along with linear systems analysis, have proven to be effective for mapping functional neural connections. We explored the use of noisy (10-115 Hz) Achilles tendon vibration to examine somatosensory reflexes in the triceps surae muscles in standing healthy young adults (n = 8). We also examined the association between noisy vibration and electrical activity recorded over the sensorimotor cortex using electroencephalography. We applied 2 min of vibration and recorded ongoing muscle activity of the soleus and gastrocnemii using surface electromyography (EMG). Vibration amplitude was varied to characterize reflex scaling and to examine how different stimulus levels affected postural sway. Muscle activity from the soleus and gastrocnemii was significantly correlated with the tendon vibration across a broad frequency range (~10-80 Hz), with a peak located at ~40 Hz. Vibration-EMG coherence positively scaled with stimulus amplitude in all three muscles, with soleus displaying the strongest coupling and steepest scaling. EMG responses lagged the vibration by ~38 ms, a delay that paralleled observed response latencies to tendon taps. Vibration-evoked cortical oscillations were observed at frequencies ~40-70 Hz (peak ~54 Hz) in most subjects, a finding in line with previous reports of sensory-evoked γ-band oscillations. Further examination of the method revealed 1) accurate reflex estimates could be obtained with <60 s of low-level (root mean square = 10 m/s2) vibration; 2) responses did not habituate over 2 min of exposure; and importantly, 3) noisy vibration had a minimal influence on standing balance. Our findings suggest noisy tendon vibration is an effective novel approach to characterize somatosensory reflexes during standing.NEW & NOTEWORTHY We applied noisy (10-115 Hz) vibration to the Achilles tendon to examine the frequency characteristics of lower limb somatosensory reflexes during standing. Ongoing muscle activity was coherent with the noisy vibration (peak coherence ~40 Hz), and coherence positively scaled with increases in stimulus amplitude. Our findings suggest that noisy tendon vibration, along with linear systems analysis, is an effective novel approach to study somatosensory reflex actions in active muscles.
Collapse
Affiliation(s)
- Robyn L Mildren
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada;
| | - Ryan M Peters
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aimee J Hill
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jean-Sébastien Blouin
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.,Institute for Computing, Information and Cognitive Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark G Carpenter
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada; and
| | - J Timothy Inglis
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada; and
| |
Collapse
|
14
|
The influence of unilateral contraction of hand muscles on the contralateral corticomuscular coherence during bimanual motor tasks. Neuropsychologia 2016; 85:199-207. [PMID: 27018484 DOI: 10.1016/j.neuropsychologia.2016.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/20/2016] [Accepted: 03/23/2016] [Indexed: 11/23/2022]
Abstract
The mechanisms behind how muscle contractions in one hand influence corticomuscular coherence in the opposite hand are still undetermined. Twenty-two subjects were recruited to finish bimanual and unimanual motor tasks. In the unimanual tasks, subjects performed precision grip using their right hand with visual feedback of exerted forces. The bimanual tasks involved simultaneous finger abduction of their left hand with visual feedback and precision grip of their right hand. They were divided into four conditions according to the two contraction levels of the left-hand muscles and whether visual feedback existed for the right hand. Measures of coherence and power spectrum were calculated from EEG and EMG data and statistically analyzed to identify changes in corticomuscular coupling and oscillatory activity. Results showed that compared with the unimanual task, a significant increase in the mean corticomuscular coherence of the right hand was found when left-hand muscles contracted at 5% of the maximal isometric voluntary contraction (MVC). No significant changes were found when the contraction level was 50% of the MVC. Furthermore, both the increase of muscle contraction levels and the elimination of visual feedback for right hand can significantly decrease the corticomuscular coupling in right hand during bimanual tasks. In summary, the involvement of moderate left-hand muscle contractions resulted in an increase tendency of corticomuscular coherence in right hand while strong left-hand muscle contractions eliminated it. We speculated that the perturbation of activities in one corticospinal tract resulted from the movement of the opposite hand can enhance the corticomuscular coupling when attention distraction is limited.
Collapse
|
15
|
Fast Oscillatory Commands from the Motor Cortex Can Be Decoded by the Spinal Cord for Force Control. J Neurosci 2016; 35:13687-97. [PMID: 26446221 DOI: 10.1523/jneurosci.1950-15.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Oscillations in the beta and gamma bands (13-30 Hz; 35-70 Hz) have often been observed in motor cortical outputs that reach the spinal cord, acting on motoneurons and interneurons. However, the frequencies of these oscillations are above the muscle force frequency range. A current view is that the transformation of the motoneuron pool inputs into force is linear. For this reason possible roles for these oscillations are unclear, since if this transformation is linear, the high frequencies in the motoneuron inputs (e.g., 20 Hz from pyramidal tract neurons) would be filtered out by the muscle and have no effect on force control. A biologically inspired mathematical model of the neuromuscular system was used to investigate the impact of high-frequency cortical oscillatory activity on force control. The model simulation results evidenced that a typical motoneuron pool has a nonlinear behavior that enables the decoding of a high-frequency oscillatory input. An input at a single frequency (e.g., beta band) leads to an increase in the steady-state force generated by the muscle. When the input oscillation was amplitude modulated at a given low frequency, the force oscillated at this frequency. In both cases, the mechanism relies on the recruitment and derecruitment of motor units in response to the oscillatory descending drive. Therefore, the results from this study suggest a potential role in force control for cortical oscillations at frequencies at or above the beta band, despite the low-pass behavior of the muscles. SIGNIFICANCE STATEMENT The role of cortical oscillations in motor control has been a long-standing question, one view being that they are an epiphenomenon. Fast oscillations are known to reach the spinal cord, and hence they have been thought to affect muscle behavior. However, experimental limitations have hampered further advances to explain how they could influence muscle force. An approach for such a challenge was adopted in the present research: to study the problem through computer simulations of an advanced biologically compatible mathematical model. Using such a model, we found that the well-known mechanism of recruitment and derecruitment of the spinal cord motoneurons can allow the muscle to respond to cortical oscillations, suggesting that these oscillations are not epiphenomena in motor control.
Collapse
|
16
|
Long J, Tazoe T, Soteropoulos DS, Perez MA. Interhemispheric connectivity during bimanual isometric force generation. J Neurophysiol 2015; 115:1196-207. [PMID: 26538610 PMCID: PMC4808122 DOI: 10.1152/jn.00876.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/31/2015] [Indexed: 11/22/2022] Open
Abstract
Interhemispheric interactions through the corpus callosum play an important role in the control of bimanual forces. However, the extent to which physiological connections between primary motor cortices are modulated during increasing levels of bimanual force generation in intact humans remains poorly understood. Here we studied coherence between electroencephalographic (EEG) signals and the ipsilateral cortical silent period (iSP), two well-known measures of interhemispheric connectivity between motor cortices, during unilateral and bilateral 10%, 40%, and 70% of maximal isometric voluntary contraction (MVC) into index finger abduction. We found that EEG-EEG coherence in the alpha frequency band decreased while the iSP area increased during bilateral compared with unilateral 40% and 70% but not 10% of MVC. Decreases in coherence in the alpha frequency band correlated with increases in the iSP area, and subjects who showed this inverse relation were able to maintain more steady bilateral muscle contractions. To further examine the relationship between the iSP and coherence we electrically stimulated the ulnar nerve at the wrist at the alpha frequency. Electrical stimulation increased coherence in the alpha frequency band and decreased the iSP area during bilateral 70% of MVC. Altogether, our findings demonstrate an inverse relation between alpha oscillations and the iSP during strong levels of bimanual force generation. We suggest that interactions between neural pathways mediating alpha oscillatory activity and transcallosal inhibition between motor cortices might contribute to the steadiness of strong bilateral isometric muscle contractions in intact humans.
Collapse
Affiliation(s)
- Jinyi Long
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, Florida; and
| | - Toshiki Tazoe
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, Florida; and
| | - Demetris S Soteropoulos
- Institute of Neuroscience, Newcastle University Medical School, Newcastle upon Tyne, United Kingdom
| | - Monica A Perez
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, Florida; and
| |
Collapse
|
17
|
Murnaghan CD, Squair JW, Chua R, Inglis JT, Carpenter MG. Cortical contributions to control of posture during unrestricted and restricted stance. J Neurophysiol 2014; 111:1920-6. [DOI: 10.1152/jn.00853.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is very little consensus regarding the mechanisms underlying postural control. Whereas some theories suggest that posture is controlled at lower levels (i.e., brain stem and spinal cord), other theories have proposed that upright stance is controlled using higher centers, including the motor cortex. In the current investigation, we used corticomuscular coherence (CMC) to investigate the relationship between cortical and shank muscle activity during conditions of unrestricted and restricted postural sway. Participants were instructed to stand as still as possible in an apparatus that allowed the center of mass to move freely (“Unlocked”) or to be stabilized (“Locked”) without subject awareness. EEG (Cz) and electromyography (soleus and lateral/medial gastrocnemii) were collected and used to estimate CMC over the Unlocked and Locked periods. Confirming our previous results, increases in center of pressure (COP) displacements were observed in 9 of 12 participants in the Locked compared with Unlocked condition. Across these 9 participants, CMC was low or absent in both the Unlocked and Locked conditions. The results from the current study suggest that this increase is not associated with an increase in the relationship between cortical and shank muscle activities. Rather, it may be that increases in COP displacement with locking are mediated by subcortical structures as a means of increasing sway to provide the central nervous system with a critical level of sensory information.
Collapse
Affiliation(s)
- Chantelle D. Murnaghan
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jordan W. Squair
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Romeo Chua
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - J. Timothy Inglis
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark G. Carpenter
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
18
|
Lim M, Kim JS, Kim M, Chung CK. Ascending beta oscillation from finger muscle to sensorimotor cortex contributes to enhanced steady-state isometric contraction in humans. Clin Neurophysiol 2014; 125:2036-45. [PMID: 24618217 DOI: 10.1016/j.clinph.2014.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 01/20/2014] [Accepted: 02/07/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE β-Band corticomuscular coherence is suggested as an electrophysiological mechanism that contributes to sensorimotor functioning in the maintenance of steady-state contractions. Converging evidence suggests that not only the descending corticospinal pathway but the ascending sensory feedback pathway is involved in the generation of β-band corticomuscular coherence. The present study aimed to investigate which pathway, descending vs. ascending, contributes more to the stability of muscle contraction, especially for human intrinsic hand muscles. METHODS In this study, we assessed directed transfer function (DTF) between magnetoencephalography signals over the sensorimotor cortex (SMC) and rectified electromyographic (EMG) signals recorded during steady-state isometric contraction of the right thumb muscle (flexor pollicis brevis, FPB) or right little finger muscle (flexor digiti minimi brevis, FDMB) in 15 right-handed healthy subjects. RESULTS β-Band DTF was statistically significant in both descending (SMC→EMG) and ascending (EMG→SMC) directions, and mean phase delays for each direction were in agreement with the conduction time for the descending corticospinal and ascending sensory feedback pathways. The strengths of the β-band DTF (EMG→SMC direction) were greater in the FPB muscle than in the FDMB muscle, while the strengths of the β-band DTF (SMC→EMG direction) were not different between the two muscles. Moreover, the β-band DTF (EMG→SMC direction) was greater in the "Stable" period than in the "Less Stable" period within the FDMB muscle. Greater DTF (EMG→SMC direction) was positively associated with the stability of muscle contraction. CONCLUSIONS Our findings suggest that ascending β-band oscillatory activity may promote a steady-state isometric contraction by efficiently transmitting sensory feedback from finger muscles to the sensorimotor cortex. SIGNIFICANCE The results show the differential contribution of the ascending part of the corticomuscular network depending on the functional organization.
Collapse
Affiliation(s)
- Manyoel Lim
- Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences, 151-742 Seoul, South Korea; MEG Center, Department of Neurosurgery, Seoul National University Hospital, 110-744 Seoul, South Korea
| | - June Sic Kim
- MEG Center, Department of Neurosurgery, Seoul National University Hospital, 110-744 Seoul, South Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center, 110-744 Seoul, South Korea
| | - Minaeh Kim
- MEG Center, Department of Neurosurgery, Seoul National University Hospital, 110-744 Seoul, South Korea
| | - Chun Kee Chung
- Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences, 151-742 Seoul, South Korea; MEG Center, Department of Neurosurgery, Seoul National University Hospital, 110-744 Seoul, South Korea; Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, 151-742 Seoul, South Korea.
| |
Collapse
|
19
|
Abstract
Transcallosal inhibitory interactions between primary motor cortices are important to suppress unintended movements in a resting limb during voluntary activation of the contralateral limb. The functional contribution of transcallosal inhibition targeting the voluntary active limb remains unknown. Using transcranial magnetic stimulation, we examined transcallosal inhibition [by measuring interhemispheric inhibition (IHI) and the ipsilateral silent period (iSP)] in the preparatory and execution phases of isotonic slower self-paced and ballistic movements performed by the ipsilateral index finger into abduction and the elbow into flexion in intact humans. We demonstrate decreased IHI in the preparatory phase of self-paced and ballistic index finger and elbow movements compared to rest; the decrease in IHI was larger during ballistic than self-paced movements. In contrast, in the execution phase, IHI and the iSP increased during ballistic compared to self-paced movements. Transcallosal inhibition was negatively correlated with reaction times in the preparatory phase and positively correlated with movement amplitude in the execution phase. Together, our results demonstrate a widespread contribution of transcallosal inhibition to ipsilateral movements of different speeds with a functional role during rapid movements; at faster speeds, decreased transcallosal inhibition in the preparatory phase may contribute to start movements rapidly, while the increase in the execution phase may contribute to stop the movement. We argue that transcallosal pathways enable signaling of the time of discrete behavioral events during ipsilateral movements, which is amplified by the speed of a movement.
Collapse
|
20
|
Tomczak CR, Greidanus KR, Boliek CA. Modulation of chest wall intermuscular coherence: effects of lung volume excursion and transcranial direct current stimulation. J Neurophysiol 2013; 110:680-7. [PMID: 23678011 DOI: 10.1152/jn.00723.2012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chest wall muscle recruitment varies as a function of the breathing task performed. However, the cortical control of the chest wall muscles during different breathing tasks is not known. We studied chest wall intermuscular coherence during various task-related lung volume excursions in 10 healthy adults (34 ± 15 yr; 2 men, 8 women) and determined if transcranial direct current stimulation (tDCS) could modulate chest wall intermuscular coherence during these tasks. Simultaneous assessment of regional intercostal and oblique electromyographic activity was measured while participants performed standardized tidal breathing, speech, maximum phonation, and vital capacity tasks. Lung volume and chest wall kinematics were determined using variable inductance plethysmography. We found that chest wall area of intermuscular coherence was greater during tidal and speech breathing compared with phonation and vital capacity (all P < 0.05) and between tidal breathing compared with speech breathing (P < 0.05). Anodal tDCS increased chest wall area of intermuscular coherence from 0.04 ± 0.09 prestimulation to 0.18 ± 0.19 poststimulation for vital capacity (P < 0.05). Sham tDCS and cathodal tDCS had no effect on coherence during lung volume excursions. Chest wall kinematics were not affected by tDCS. Our findings indicate that lung volume excursions about the midrange of vital capacity elicit a greater area of chest wall intermuscular coherence compared with lung volume excursions spanning the entire range of vital capacity in healthy adults. Our findings also demonstrate that brief tDCS may modulate the cortical control of the chest wall muscles in a stimulation- and lung volume excursion task-dependent manner but does not affect chest wall kinematics in healthy adults.
Collapse
Affiliation(s)
- Corey R Tomczak
- Department of Speech Pathology and Audiology, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|