1
|
De Preter CC, Heinricher MM. The 'in's and out's' of descending pain modulation from the rostral ventromedial medulla. Trends Neurosci 2024; 47:447-460. [PMID: 38749825 PMCID: PMC11168876 DOI: 10.1016/j.tins.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 06/14/2024]
Abstract
The descending-pain modulating circuit controls the experience of pain by modulating transmission of sensory signals through the dorsal horn. This circuit's key output node, the rostral ventromedial medulla (RVM), integrates 'top-down' and 'bottom-up' inputs that regulate functionally defined RVM cell types, 'OFF-cells' and 'ON-cells', which respectively suppress or facilitate pain-related sensory processing. While recent advances have sought molecular definition of RVM cell types, conflicting behavioral findings highlight challenges involved in aligning functional and molecularly defined types. This review summarizes current understanding, derived primarily from rodent studies but with corroborating evidence from human imaging, of the role of RVM populations in pain modulation and persistent pain states and explores recent advances outlining inputs to, and outputs from, RVM pain-modulating neurons.
Collapse
Affiliation(s)
- Caitlynn C De Preter
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mary M Heinricher
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
2
|
Bagley EE, Ingram SL. Endogenous opioid peptides in the descending pain modulatory circuit. Neuropharmacology 2020; 173:108131. [PMID: 32422213 DOI: 10.1016/j.neuropharm.2020.108131] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
The opioid epidemic has led to a serious examination of the use of opioids for the treatment of pain. Opioid drugs are effective due to the expression of opioid receptors throughout the body. These receptors respond to endogenous opioid peptides that are expressed as polypeptide hormones that are processed by proteolytic cleavage. Endogenous opioids are expressed throughout the peripheral and central nervous system and regulate many different neuronal circuits and functions. One of the key functions of endogenous opioid peptides is to modulate our responses to pain. This review will focus on the descending pain modulatory circuit which consists of the ventrolateral periaqueductal gray (PAG) projections to the rostral ventromedial medulla (RVM). RVM projections modulate incoming nociceptive afferents at the level of the spinal cord. Stimulation within either the PAG or RVM results in analgesia and this circuit has been studied in detail in terms of the actions of exogenous opioids, such as morphine and fentanyl. Further emphasis on understanding the complex regulation of endogenous opioids will help to make rational decisions with regard to the use of opioids for pain. We also include a discussion of the actions of endogenous opioids in the amygdala, an upstream brain structure that has reciprocal connections to the PAG that contribute to the brain's response to pain.
Collapse
Affiliation(s)
- Elena E Bagley
- Discipline of Pharmacology and Charles Perkins Centre, University of Sydney, NSW, 2006, Australia
| | - Susan L Ingram
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
3
|
Heinricher MM. Pain Modulation and the Transition from Acute to Chronic Pain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 904:105-15. [PMID: 26900066 DOI: 10.1007/978-94-017-7537-3_8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There is now increasing evidence that pathological pain states are at least in part driven by changes in the brain itself. Descending modulatory pathways are known to mediate top-down regulation of nociceptive processing, transmitting cortical and limbic influences to the dorsal horn. However, these modulatory pathways are also intimately intertwined with ascending transmission pathways through positive and negative feedback loops. Models of persistent pain that fail to include descending modulatory pathways are thus incomplete. Although teasing out individual links in a recurrent network is never straightforward, it is imperative that understanding of pain modulation be fully integrated into how we think about pain.
Collapse
Affiliation(s)
- Mary M Heinricher
- Dept. Neurological Surgery, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
4
|
Iceman KE, Corcoran AE, Taylor BE, Harris MB. CO2-inhibited neurons in the medullary raphé are GABAergic. Respir Physiol Neurobiol 2014; 203:28-34. [PMID: 25087734 DOI: 10.1016/j.resp.2014.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/24/2014] [Accepted: 07/24/2014] [Indexed: 11/28/2022]
Abstract
Previous studies have reported subsets of medullary raphé neurons that are either stimulated or inhibited by CO2/pH in vitro, in situ, and in vivo. We tested the hypothesis that medullary raphé CO2-inhibited neurons are GABAergic. Extracellular recordings in unanesthetized juvenile in situ rat preparations showed reversible hypercapnia-induced suppression of 19% (63/323) of medullary raphé neurons, and this suppression persisted after antagonism of NMDA, AMPA/kainate, and GABAA receptors. We stained a subset of CO2-inhibited cells and found that most (11/12) had glutamic acid decarboxylase 67 immunoreactivity (GAD67-ir). These data indicate that the majority of acidosis-inhibited medullary raphé neurons are GABAergic, and that their chemosensitivity is independent of major fast synaptic inputs. Thus, CO2-sensitive GABAergic neurons may play a role in central CO2/pH chemoreception.
Collapse
Affiliation(s)
- Kimberly E Iceman
- Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Andrea E Corcoran
- Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Barbara E Taylor
- Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Michael B Harris
- Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.
| |
Collapse
|
5
|
Iceman KE, Harris MB. A group of non-serotonergic cells is CO2-stimulated in the medullary raphé. Neuroscience 2013; 259:203-13. [PMID: 24333211 DOI: 10.1016/j.neuroscience.2013.11.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/13/2013] [Accepted: 11/30/2013] [Indexed: 01/22/2023]
Abstract
Serotonin/substance P synthesizing cells in the raphé nuclei of the brain are candidates for designation as central chemoreceptors that are stimulated by CO2/pH. We have previously demonstrated that these neurons are CO2-stimulated in situ. Evidence also suggests that CO2-inhibited raphé neurons recorded in vitro and in situ synthesize GABA. Unknown is whether there are other types of chemosensitive cells in the raphé. Here, we showed that a previously unrecognized pool of raphé neurons also exhibit chemosensitivity, and that they are not serotonergic. We used extracellular recording of individual raphé neurons in the unanesthetized juvenile rat in situ perfused decerebrate brainstem preparation to assess chemosensitivity of raphé neurons. Subsequent juxtacellular labeling of individually recorded cells, and immunohistochemistry for the serotonin synthesizing enzyme tryptophan hydroxylase and for neurokinin-1 receptor (NK1R; the receptor for substance P) indicated a group of CO2-stimulated cells that are not serotonergic, but express NK1R and are closely apposed to surrounding serotonergic cells. CO2-stimulated 5-HT and non-5-HT cells constitute distinct groups that have different firing characteristics and hypercapnic sensitivities. Non-5-HT cells fire faster and are more robustly stimulated by CO2 than are 5-HT cells. Thus, we have characterized a previously unrecognized type of CO2-stimulated medullary raphé neuron that is not serotonergic, but may receive input from neighboring serotonin/substance P synthesizing chemosensitive neurons. The potential network properties of the three types of chemosensitive raphé neurons (the present non-5-HT cells, serotonergic cells, and CO2-inhibited cells) remain to be elucidated.
Collapse
Affiliation(s)
- K E Iceman
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775, USA; Department of Biology and Wildlife, University of Alaska, Fairbanks, AK 99775, USA.
| | - M B Harris
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775, USA; Department of Biology and Wildlife, University of Alaska, Fairbanks, AK 99775, USA
| |
Collapse
|
6
|
Abstract
In anesthetized rats, opioid analgesia is accompanied by a specific pattern of tonic activity in two neuronal populations within the medullary raphe magnus (RM): opioids silence pain-facilitatory ON cells and produce sustained discharge in pain-inhibitory OFF cells. These tonic activity patterns, hypothesized to generate a tonic analgesic state, have not been observed in recordings made without anesthesia. Therefore, we recorded ON and OFF cell activity before and after an analgesic dose of morphine in unanesthetized mice. The tonic activity of ON and OFF cells was unchanged by morphine. Rather, morphine suppressed the phasic ON cell excitation and OFF cell inhibition evoked by noxious stimulation. Before morphine, the magnitude of the noxious stimulus-evoked burst in ON cells correlated with motor withdrawal magnitude, suggesting that ON cells facilitate nocifensive motor reactions. Contrary to model prediction, OFF cell activity was greater before stimulus trials that evoked withdrawals than those without withdrawals. Since withdrawals only occurred when OFF cell activity was suppressed, a decrease in OFF cell activity appears to serve as a pro-nociceptive signal that synchronizes and therefore strengthens the ensuing motor reaction. We further propose that morphine acts in RM to suppress ON and OFF cell phasic responses and thereby disable RM's pro-nociceptive output. Thus, RM cells produce antinociception by failing to exert the pro-nociceptive effects normally engaged by noxious stimulation. These findings revise the conventional understanding of supraspinal opioid analgesia and demonstrate that RM produces on demand rather than state modulation, allowing RM cells to serve other functions during pain-free periods.
Collapse
|
7
|
Phillips RS, Cleary DR, Nalwalk JW, Arttamangkul S, Hough LB, Heinricher MM. Pain-facilitating medullary neurons contribute to opioid-induced respiratory depression. J Neurophysiol 2012; 108:2393-404. [PMID: 22956800 DOI: 10.1152/jn.00563.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Respiratory depression is a therapy-limiting side effect of opioid analgesics, yet our understanding of the brain circuits mediating this potentially lethal outcome remains incomplete. Here we studied the contribution of the rostral ventromedial medulla (RVM), a region long implicated in pain modulation and homeostatic regulation, to opioid-induced respiratory depression. Microinjection of the μ-opioid agonist DAMGO in the RVM of lightly anesthetized rats produced both analgesia and respiratory depression, showing that neurons in this region can modulate breathing. Blocking opioid action in the RVM by microinjecting the opioid antagonist naltrexone reversed the analgesic and respiratory effects of systemically administered morphine, showing that this region plays a role in both the analgesic and respiratory-depressant properties of systemically administered morphine. The distribution of neurons directly inhibited by RVM opioid microinjection was determined with a fluorescent opioid peptide, dermorphin-Alexa 594, and found to be concentrated in and around the RVM. The non-opioid analgesic improgan, like DAMGO, produced antinociception but, unlike DAMGO, stimulated breathing when microinjected into the RVM. Concurrent recording of RVM neurons during improgan microinjection showed that this agent activated RVM ON-cells, OFF-cells, and NEUTRAL-cells. Since opioids are known to activate OFF-cells but suppress ON-cell firing, the differential respiratory response to these two analgesic drugs is best explained by their opposing effects on the activity of RVM ON-cells. These findings show that pain relief can be separated pharmacologically from respiratory depression and identify RVM OFF-cells as important central targets for continued development of potent analgesics with fewer side effects.
Collapse
Affiliation(s)
- Ryan S Phillips
- Department of Neurological Surgery, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
8
|
Medullary circuits for nociceptive modulation. Curr Opin Neurobiol 2012; 22:640-5. [PMID: 22483535 DOI: 10.1016/j.conb.2012.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/12/2012] [Accepted: 03/14/2012] [Indexed: 11/21/2022]
Abstract
Neurons in the medullary raphe are critical to opioid analgesia through descending projections to the dorsal horn. Work in anesthetized rats led to the postulate that nociceptive suppression results from tonic activation of nociceptive-inhibiting neurons and tonic inhibition of nociceptive-facilitating neurons. However, morphine does not cause tonic changes in raphe neuronal firing in unanesthetized rodents. Recent work suggests that a drop in activity of nociceptive-inhibiting neurons synchronizes nociceptive circuits and a burst of activity in nociceptive-facilitating neurons facilitates withdrawal magnitude. After morphine, the phasic responses of raphe cells are suppressed along with nociceptive withdrawals. The results suggest a new model of brainstem modulation of nociception in which the medullary raphe facilitates nociceptive reactions when noxious input occurs and may modulate other functions between injurious events.
Collapse
|
9
|
Hellman KM, Mendelson SJ, Mendez-Duarte MA, Russell JL, Mason P. Opioid microinjection into raphe magnus modulates cardiorespiratory function in mice and rats. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1400-8. [PMID: 19710394 DOI: 10.1152/ajpregu.00140.2009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The raphe magnus (RM) participates in opioid analgesia and contains pain-modulatory neurons with respiration-related discharge. Here, we asked whether RM contributes to respiratory depression, the most prevalent lethal effect of opioids. To investigate whether opioidergic transmission in RM produces respiratory depression, we microinjected a mu-opioid receptor agonist, DAMGO, or morphine into the RM of awake rodents. In mice, opioid microinjection produced sustained decreases in respiratory rate (170 to 120 breaths/min), as well as heart rate (520 to 400 beats/min). Respiratory sinus arrhythmia, indicative of enhanced parasympathetic activity, was prevalent in mice receiving DAMGO microinjection. We performed similar experiments in rats but observed no changes in breathing rate or heart rate. Both rats and mice experienced significantly more episodes of bradypnea, indicative of impaired respiratory drive, after opioid microinjection. During spontaneous arousals, rats showed less tachycardia after opioid microinjection than before microinjection, suggestive of an attenuated sympathetic tone. Thus, activation of opioidergic signaling within RM produces effects beyond analgesia, including the unwanted destabilization of cardiorespiratory function. These adverse effects on homeostasis consequent to opioid microinjection imply a role for RM in regulating the balance of sympathetic and parasympathetic tone.
Collapse
Affiliation(s)
- Kevin M Hellman
- Department of Neurobiology and 2Committee on Neurobiology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
This paper is the thirtieth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2007 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd.,Flushing, NY 11367, United States.
| |
Collapse
|
11
|
Nociceptive behavior in animal models for peripheral neuropathy: spinal and supraspinal mechanisms. Prog Neurobiol 2008; 86:22-47. [PMID: 18602968 DOI: 10.1016/j.pneurobio.2008.06.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 04/08/2008] [Accepted: 06/11/2008] [Indexed: 02/01/2023]
Abstract
Since the initial description by Wall [Wall, P.D., 1967. The laminar organization of dorsal horn and effects of descending impulses. J. Neurophysiol. 188, 403-423] of tonic descending inhibitory control of dorsal horn neurons, several studies have aimed to characterize the role of various brain centers in the control of nociceptive input to the spinal cord. The role of brainstem centers in pain inhibition has been well documented over the past four decades. Lesion to peripheral nerves results in hypersensitivity to mild tactile or cold stimuli (allodynia) and exaggerated response to nociceptive stimuli (hyperalgesia), both considered as cardinal signs of neuropathic pain. The increased interest in animal models for peripheral neuropathy has raised several questions concerning the rostral conduction of the neuropathic manifestations and the role of supraspinal centers, especially brainstem, in the inhibitory control or in the abnormal contribution to the maintenance and facilitation of neuropathic-like behavior. This review aims to summarize the data on the ascending and descending modulation of neuropathic manifestations and discusses the recent experimental data on the role of supraspinal centers in the control of neuropathic pain. In particular, the review emphasizes the importance of the reciprocal interconnections between the analgesic areas of the brainstem and the pain-related areas of the forebrain. The latter includes the cerebral limbic areas, the prefrontal cortex, the intralaminar thalamus and the hypothalamus and play a critical role in the control of pain considered as part of an integrated behavior related to emotions and various homeostatic regulations. We finally speculate that neuropathic pain, like extrapyramidal motor syndromes, reflects a disorder in the processing of somatosensory information.
Collapse
|