1
|
Kitamura T, Masugi Y, Yamamoto SI, Ogata T, Kawashima N, Nakazawa K. Modulation of corticospinal excitability related to the forearm muscle during robot-assisted stepping in humans. Exp Brain Res 2023; 241:1089-1100. [PMID: 36928923 PMCID: PMC10082104 DOI: 10.1007/s00221-023-06565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/28/2023] [Indexed: 03/18/2023]
Abstract
In recent years, the neural control mechanisms of the arms and legs during human bipedal walking have been clarified. Rhythmic leg stepping leads to suppression of monosynaptic reflex excitability in forearm muscles. However, it is unknown whether and how corticospinal excitability of the forearm muscle is modulated during leg stepping. The purpose of the present study was to investigate the excitability of the corticospinal tract in the forearm muscle during passive and voluntary stepping. To compare the neural effects on corticospinal excitability to those on monosynaptic reflex excitability, the present study also assessed the excitability of the H-reflex in the forearm muscle during both types of stepping. A robotic gait orthosis was used to produce leg stepping movements similar to those of normal walking. Motor evoked potentials (MEPs) and H-reflexes were evoked in the flexor carpi radialis (FCR) muscle during passive and voluntary stepping. The results showed that FCR MEP amplitudes were significantly enhanced during the mid-stance and terminal-swing phases of voluntary stepping, while there was no significant difference between the phases during passive stepping. Conversely, the FCR H-reflex was suppressed during both voluntary and passive stepping, compared to the standing condition. The present results demonstrated that voluntary commands to leg muscles, combined with somatosensory inputs, may facilitate corticospinal excitability in the forearm muscle, and that somatosensory inputs during walking play a major role in monosynaptic reflex suppression in forearm muscle.
Collapse
Affiliation(s)
- Taku Kitamura
- Department of Bio-Science and Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama-shi, Saitama, Japan.,Motor Control Section, Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa-shi, Saitama, Japan.,Robotics Program, Tokyo Metropolitan College of Industrial Technology, Arakawa-ku, Tokyo, Japan
| | - Yohei Masugi
- Motor Control Section, Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa-shi, Saitama, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan.,Department of Physical Therapy, School of Health Sciences, Tokyo International University, Kawagoe-shi, Saitama, Japan
| | - Shin-Ichiroh Yamamoto
- Department of Bio-Science and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama-shi, Saitama, Japan
| | - Toru Ogata
- Motor Control Section, Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa-shi, Saitama, Japan.,Department of Rehabilitation Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Noritaka Kawashima
- Motor Control Section, Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa-shi, Saitama, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
2
|
Exploiting cervicolumbar connections enhances short-term spinal cord plasticity induced by rhythmic movement. Exp Brain Res 2019; 237:2319-2329. [PMID: 31286172 DOI: 10.1007/s00221-019-05598-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/04/2019] [Indexed: 01/08/2023]
Abstract
Arm cycling causes suppression of soleus (SOL) Hoffmann (H-) reflex that outlasts the activity period. Arm cycling presumably activates propriospinal networks that modulate Ia presynaptic inhibition. Interlimb pathways are thought to relate to the control of quadrupedal locomotion, allowing for smooth, coordinated movement of the arms and legs. We examined whether the number of active limb pairs affects the amount and duration of activity-dependent plasticity of the SOL H-reflex. On separate days, 14 participants completed 4 randomly ordered 30 min experimental sessions: (1) quiet sitting (CTRL); (2) arm cycling (ARM); (3) leg cycling (LEG); and (4) arm and leg cycling (A&L) on an ergometer. SOL H-reflex and M-wave were evoked via electrical stimulation of the tibial nerve. M-wave and H-reflex recruitment curves were recorded, while the participants sat quietly prior to, 10 and 20 min into, immediately after, and at 2.5, 5, 7.5, 10, 15, 20, 25, and 30 min after each experimental session. Normalized maximal H-reflexes were unchanged in CTRL, but were suppressed by > 30% during the ARM, LEG, and A&L. H-reflex suppression outlasted activity duration for ARM (≤ 2.5 mins), LEG (≤ 5 mins), and A&L (≤ 30 mins). The duration of reflex suppression after A&L was greater than the algebraic summation of ARM and LEG. This non-linear summation suggests that using the arms and legs simultaneously-as in typical locomotor synergies-amplifies networks responsible for the short-term plasticity of lumbar spinal cord excitability. Enhanced activity of spinal networks may have important implications for the implementation of locomotor training for targeted rehabilitation.
Collapse
|
3
|
Klarner T, Zehr EP. Sherlock Holmes and the curious case of the human locomotor central pattern generator. J Neurophysiol 2018. [PMID: 29537920 DOI: 10.1152/jn.00554.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Evidence first described in reduced animal models over 100 years ago led to deductions about the control of locomotion through spinal locomotor central pattern-generating (CPG) networks. These discoveries in nature were contemporaneous with another form of deductive reasoning found in popular culture, that of Arthur Conan Doyle's detective, Sherlock Holmes. Because the invasive methods used in reduced nonhuman animal preparations are not amenable to study in humans, we are left instead with deducing from other measures and observations. Using the deductive reasoning approach of Sherlock Holmes as a metaphor for framing research into human CPGs, we speculate and weigh the evidence that should be observable in humans based on knowledge from other species. This review summarizes indirect inference to assess "observable evidence" of pattern-generating activity that leads to the logical deduction of CPG contributions to arm and leg activity during locomotion in humans. The question of where a CPG may be housed in the human nervous system remains incompletely resolved at this time. Ongoing understanding, elaboration, and application of functioning locomotor CPGs in humans is important for gait rehabilitation strategies in those with neurological injuries.
Collapse
Affiliation(s)
- Taryn Klarner
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada.,Division of Medical Sciences, University of Victoria, British Columbia, Canada
| |
Collapse
|
4
|
Zehr EP, Barss TS, Dragert K, Frigon A, Vasudevan EV, Haridas C, Hundza S, Kaupp C, Klarner T, Klimstra M, Komiyama T, Loadman PM, Mezzarane RA, Nakajima T, Pearcey GEP, Sun Y. Neuromechanical interactions between the limbs during human locomotion: an evolutionary perspective with translation to rehabilitation. Exp Brain Res 2016; 234:3059-3081. [PMID: 27421291 PMCID: PMC5071371 DOI: 10.1007/s00221-016-4715-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 06/27/2016] [Indexed: 11/10/2022]
Abstract
During bipedal locomotor activities, humans use elements of quadrupedal neuronal limb control. Evolutionary constraints can help inform the historical ancestry for preservation of these core control elements support transfer of the huge body of quadrupedal non-human animal literature to human rehabilitation. In particular, this has translational applications for neurological rehabilitation after neurotrauma where interlimb coordination is lost or compromised. The present state of the field supports including arm activity in addition to leg activity as a component of gait retraining after neurotrauma.
Collapse
Affiliation(s)
- E P Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| | - Trevor S Barss
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Katie Dragert
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
| | - Alain Frigon
- Department of Pharmacology-physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Erin V Vasudevan
- Department of Physical Therapy, SUNY Stony Brook University, Stony Brook, NY, USA
| | - Carlos Haridas
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
| | - Sandra Hundza
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
- Motion and Mobility Rehabilitation Laboratory, University of Victoria, Victoria, BC, Canada
| | - Chelsea Kaupp
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Taryn Klarner
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Marc Klimstra
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
- Motion and Mobility Rehabilitation Laboratory, University of Victoria, Victoria, BC, Canada
| | - Tomoyoshi Komiyama
- Division of Sports and Health Science, Chiba University, Chiba, Japan
- The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan
| | - Pamela M Loadman
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Rinaldo A Mezzarane
- Laboratory of Signal Processing and Motor Control, College of Physical Education, Universidade de Brasília-UnB, Brasília, Brazil
| | - Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Gregory E P Pearcey
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Yao Sun
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
5
|
Nakajima T, Kamibayashi K, Kitamura T, Komiyama T, Zehr EP, Nakazawa K. Short-Term Plasticity in a Monosynaptic Reflex Pathway to Forearm Muscles after Continuous Robot-Assisted Passive Stepping. Front Hum Neurosci 2016; 10:368. [PMID: 27499737 PMCID: PMC4956673 DOI: 10.3389/fnhum.2016.00368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/11/2016] [Indexed: 01/15/2023] Open
Abstract
Both active and passive rhythmic limb movements reduce the amplitude of spinal cord Hoffmann (H-) reflexes in muscles of moving and distant limbs. This could have clinical utility in remote modulation of the pathologically hyperactive reflexes found in spasticity after stroke or spinal cord injury. However, such clinical translation is currently hampered by a lack of critical information regarding the minimum or effective duration of passive movement needed for modulating spinal cord excitability. We therefore investigated the H-reflex modulation in the flexor carpi radialis (FCR) muscle during and after various durations (5, 10, 15, and 30 min) of passive stepping in 11 neurologically normal subjects. Passive stepping was performed by a robotic gait trainer system (Lokomat®) while a single pulse of electrical stimulation to the median nerve elicited H-reflexes in the FCR. The amplitude of the FCR H-reflex was significantly suppressed during passive stepping. Although 30 min of passive stepping was sufficient to elicit a persistent H-reflex suppression that lasted up to 15 min, 5 min of passive stepping was not. The duration of H-reflex suppression correlated with that of the stepping. These findings suggest that the accumulation of stepping-related afferent feedback from the leg plays a role in generating short-term interlimb plasticity in the circuitry of the FCR H-reflex.
Collapse
Affiliation(s)
- Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine Mitaka, Japan
| | | | - Taku Kitamura
- Motor Control Section, Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with DisabilitiesTokorozawa, Japan; Graduate School of Engineering, Shibaura Institute of TechnologyTokyo, Japan
| | - Tomoyoshi Komiyama
- Division of Health and Sports Sciences, Faculty of Education, Chiba University Chiba, Japan
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria Victoria, BC, Canada
| | - Kimitaka Nakazawa
- Graduate school of Arts and Sciences, University of Tokyo Tokyo, Japan
| |
Collapse
|
6
|
Masugi Y, Kawashima N, Inoue D, Nakazawa K. Effects of movement-related afferent inputs on spinal reflexes evoked by transcutaneous spinal cord stimulation during robot-assisted passive stepping. Neurosci Lett 2016; 627:100-6. [PMID: 27235576 DOI: 10.1016/j.neulet.2016.05.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/12/2016] [Accepted: 05/24/2016] [Indexed: 11/18/2022]
Abstract
Studies of robot-assisted passive stepping paradigms have reported that movement-related afferent inputs strongly inhibit the excitability of the Hoffmann (H) reflex in the soleus (Sol) during walking. However, it is unknown if movement-related afferent inputs have the same effect on the excitability of spinal reflexes in the other lower-limb muscles that are involved in normal walking in healthy subjects. The aim of this study was to examine the effects of movement-related afferent inputs on the spinal reflexes in lower-limb muscles during walking. Spinal reflexes that were elicited by transcutaneous spinal cord stimulation (tSCS) were recorded during passive air standing and air stepping at three stepping velocities (stride frequencies: 14, 25, and 36 strides/min). The amplitude of the spinal reflexes was reduced in most of the recorded muscles during passive air stepping compared with air standing. Furthermore, in the Sol and lateral gastrocnemius, the amplitude of the reflexes during air stepping significantly decreased as stride frequency increased. These results demonstrate that movement-related afferent inputs inhibit spinal reflexes in the Sol and other lower-limb muscles during walking.
Collapse
Affiliation(s)
- Yohei Masugi
- Department of Rehabilitation for Movement Functions, Research Institute of the National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama 359-8555, Japan.
| | - Noritaka Kawashima
- Department of Rehabilitation for Movement Functions, Research Institute of the National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama 359-8555, Japan
| | - Daisuke Inoue
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
7
|
Sasada S, Tazoe T, Nakajima T, Futatsubashi G, Ohtsuka H, Suzuki S, Zehr EP, Komiyama T. A common neural element receiving rhythmic arm and leg activity as assessed by reflex modulation in arm muscles. J Neurophysiol 2016; 115:2065-75. [PMID: 26961103 DOI: 10.1152/jn.00638.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 02/02/2016] [Indexed: 01/15/2023] Open
Abstract
Neural interactions between regulatory systems for rhythmic arm and leg movements are an intriguing issue in locomotor neuroscience. Amplitudes of early latency cutaneous reflexes (ELCRs) in stationary arm muscles are modulated during rhythmic leg or arm cycling but not during limb positioning or voluntary contraction. This suggests that interneurons mediating ELCRs to arm muscles integrate outputs from neural systems controlling rhythmic limb movements. Alternatively, outputs could be integrated at the motoneuron and/or supraspinal levels. We examined whether a separate effect on the ELCR pathways and cortico-motoneuronal excitability during arm and leg cycling is integrated by neural elements common to the lumbo-sacral and cervical spinal cord. The subjects performed bilateral leg cycling (LEG), contralateral arm cycling (ARM), and simultaneous contralateral arm and bilateral leg cycling (A&L), while ELCRs in the wrist flexor and shoulder flexor muscles were evoked by superficial radial (SR) nerve stimulation. ELCR amplitudes were facilitated by cycling tasks and were larger during A&L than during ARM and LEG. A low stimulus intensity during ARM or LEG generated a larger ELCR during A&L than the sum of ELCRs during ARM and LEG. We confirmed this nonlinear increase in single motor unit firing probability following SR nerve stimulation during A&L. Furthermore, motor-evoked potentials following transcranial magnetic and electrical stimulation did not show nonlinear potentiation during A&L. These findings suggest the existence of a common neural element of the ELCR reflex pathway that is active only during rhythmic arm and leg movement and receives convergent input from contralateral arms and legs.
Collapse
Affiliation(s)
- Syusaku Sasada
- Division of Health and Sport Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan; Department of Food and Nutrition Science, Sagami Women's University, Kanagawa, Japan;
| | - Toshiki Tazoe
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida
| | - Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Genki Futatsubashi
- Division of Health and Sport Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan; Department of Management and Information Sciences, Jobu University, Gunma, Japan
| | - Hiroyuki Ohtsuka
- School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Shinya Suzuki
- Division of Health and Sport Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan; Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, British Columbia, Canada; and
| | - Tomoyoshi Komiyama
- Division of Health and Sport Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan; Department of Health and Sports Sciences, Faculty of Education, Chiba University, Chiba, Japan
| |
Collapse
|
8
|
Ogawa T, Sato T, Ogata T, Yamamoto SI, Nakazawa K, Kawashima N. Rhythmic arm swing enhances patterned locomotor-like muscle activity in passively moved lower extremities. Physiol Rep 2015; 3:3/3/e12317. [PMID: 25742956 PMCID: PMC4393153 DOI: 10.14814/phy2.12317] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The use of driven gait orthosis (DGO) has drawn attention in gait rehabilitation for patients after central nervous system (CNS) lesions. By imposing a passive locomotor-like kinematic pattern, the neural mechanisms responsible for locomotion can be activated as in a normal gait. To further enhance this activity, discussions on possible intervention are necessary. Given the possible functional linkages between the upper and lower limbs, we investigated in healthy subjects the degree of modification in the lower limb muscles during DGO-induced passive gait by the addition of swing movement in the upper extremity. The results clearly showed that muscle activity in the ankle dorsiflexor TA muscle was significantly enhanced when the passive locomotor-like movement was accompanied by arm swing movement. The modifications in the TA activity were not a general increase through the stride cycles, but were observed under particular phases as in normal gaits. Voluntary effort to swing the arms may have certain effects on the modification of the muscle activity. The results provide clinical implications regarding the usefulness of voluntary arm swing movement as a possible intervention in passive gait training using DGO, since ordinary gait training using DGO does not induce spontaneous arm swing movement despite its known influence on the lower limb movement.
Collapse
Affiliation(s)
- Tetsuya Ogawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan Japan Society for the Promotion of Science, Chiyoda Tokyo, Japan Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Takahiko Sato
- College of Systems Engineering and Science, Shibaura Institute of Technology, Minuma Saitama, Japan
| | - Toru Ogata
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Shin-Ichiro Yamamoto
- College of Systems Engineering and Science, Shibaura Institute of Technology, Minuma Saitama, Japan
| | - Kimitaka Nakazawa
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro Tokyo, Japan
| | - Noritaka Kawashima
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| |
Collapse
|
9
|
Nakajima T, Mezzarane RA, Komiyama T, Paul Zehr E. Reflex control of human locomotion: Existence, features and functions of common interneuronal system induced by multiple sensory inputs in humans. ACTA ACUST UNITED AC 2015. [DOI: 10.7600/jpfsm.4.197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine
| | - Rinaldo A. Mezzarane
- Laboratory of Signal Processing and Motor Control, College of Physical Education, University of Brasília
| | | | - E. Paul Zehr
- Division of Medical Sciences, University of Victoria
- Centre for Biomedical Research, University of Victoria
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD)
- Rehabilitation Neuroscience Laboratory, University of Victoria
| |
Collapse
|
10
|
Velocity-dependent suppression of the soleus H-reflex during robot-assisted passive stepping. Neurosci Lett 2015; 584:337-41. [PMID: 25449873 DOI: 10.1016/j.neulet.2014.10.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 09/17/2014] [Accepted: 10/26/2014] [Indexed: 11/22/2022]
Abstract
The amplitude of the Hoffmann (H)-reflex in the soleus (Sol) muscle is known to be suppressed during passive stepping compared with during passive standing. The reduction of the H-reflex is not due to load-related afferent inputs, but rather to movement-related afferent inputs from the lower limbs. To elucidate the underlying neural mechanisms of this inhibition, we investigated the effects of the stepping velocity on the Sol H-reflex during robot-assisted passive stepping in 11 healthy subjects. The Sol H-reflexes were recorded during passive standing and stepping at five stepping velocities (stride frequencies: 14, 21, 28, 35, and 42 min(-1)) in the air. The Sol H-reflexes were significantly inhibited during passive stepping as compared with during passive standing, and reduced in size as the stepping velocity increased. These results indicate that the extent of H-reflex suppression increases with increasing movement-related afferent inputs from the lower limbs during passive stepping. The velocity dependence suggests that the Ia afferent inputs from lower-limb muscles around the hip and knee joints are most probably related to this inhibition.
Collapse
|
11
|
Differential regulation of crossed cutaneous effects on the soleus H-reflex during standing and walking in humans. Exp Brain Res 2014; 232:3069-78. [PMID: 24888533 DOI: 10.1007/s00221-014-3953-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
Although sensory inputs from the contralateral limb strongly modify the amplitude of the Hoffmann (H-) reflex in a static posture, it remains unknown how these inputs affect the excitability of the monosynaptic H-reflex during walking. Here, we investigated the effect of the electrical stimulation of a cutaneous (CUT) nerve innervating the skin on the dorsum of the contralateral foot on the excitability of the soleus H-reflex during standing and walking. The soleus H-reflex was conditioned by non-noxious electrical stimulation of the superficial peroneal nerve in the contralateral foot. Significant crossed facilitation of the soleus H-reflex was observed at conditioning-to-test intervals in a range of 100-130 ms while standing, without any change in the background soleus electromyographic (EMG) activity. In contrast, the amplitude of the soleus H-reflex was significantly suppressed by the contralateral CUT stimulation in the early-stance phase of walking. The background EMG activity of the soleus muscle was equivalent between standing and walking tasks and was unaffected by CUT stimulation alone. These findings suggest that the crossed CUT volleys can affect the presynaptic inhibition of the soleus Ia afferents and differentially modulate the excitability of the soleus H-reflex in a task-dependent manner during standing and walking.
Collapse
|
12
|
Domingo A, Klimstra M, Nakajima T, Lam T, Hundza SR. Walking phase modulates H-reflex amplitude in flexor carpi radialis. J Mot Behav 2013; 46:49-57. [PMID: 24313749 DOI: 10.1080/00222895.2013.854731] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
It is well established that remote whole-limb rhythmic movement (e.g., cycling or stepping) induces suppression of the Hoffman (H-) reflex evoked in stationary limbs. However, the dependence of reflex amplitude on the phase of the movement cycle (i.e., phase-dependence) has not been consistent across this previous research. The authors investigated the phase-dependence of flexor carpi radialis (FCR) H-reflex amplitudes during active walking and in kinematically matched static postures across the gait cycle. FCR H-reflexes were elicited in the stationary forearm with electrical stimulation to the median nerve. Significant phase-dependent modulation occurred during walking when the gait cycle was examined with adequate phase resolution. The suppression was greatest during midstance and midswing, suggesting increased ascending communication during these phases. There was no phase-dependent modulation in static standing postures and no correlation between lower limb background electromyography levels and H-reflex amplitude during active walking. This evidence, along with previous research demonstrating no phase modulation during passive walking, suggests that afferent feedback associated with joint position and leg muscle activation levels are not the sole source of the phase modulation seen during active walking. Possible sources of phase modulation include combinations of afferent feedback related to active movement or central motor commands or both.
Collapse
Affiliation(s)
- Antoinette Domingo
- a School of Kinesiology, University of British Columbia , Vancouver , Canada
| | | | | | | | | |
Collapse
|
13
|
Nakajima T, Mezzarane RA, Klarner T, Barss TS, Hundza SR, Komiyama T, Zehr EP. Neural mechanisms influencing interlimb coordination during locomotion in humans: presynaptic modulation of forearm H-reflexes during leg cycling. PLoS One 2013; 8:e76313. [PMID: 24204611 PMCID: PMC3799938 DOI: 10.1371/journal.pone.0076313] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/23/2013] [Indexed: 11/19/2022] Open
Abstract
Presynaptic inhibition of transmission between Ia afferent terminals and alpha motoneurons (Ia PSI) is a major control mechanism associated with soleus H-reflex modulation during human locomotion. Rhythmic arm cycling suppresses soleus H-reflex amplitude by increasing segmental Ia PSI. There is a reciprocal organization in the human nervous system such that arm cycling modulates H-reflexes in leg muscles and leg cycling modulates H-reflexes in forearm muscles. However, comparatively little is known about mechanisms subserving the effects from leg to arm. Using a conditioning-test (C-T) stimulation paradigm, the purpose of this study was to test the hypothesis that changes in Ia PSI underlie the modulation of H-reflexes in forearm flexor muscles during leg cycling. Subjects performed leg cycling and static activation while H-reflexes were evoked in forearm flexor muscles. H-reflexes were conditioned with either electrical stimuli to the radial nerve (to increase Ia PSI; C-T interval = 20 ms) or to the superficial radial (SR) nerve (to reduce Ia PSI; C-T interval = 37-47 ms). While stationary, H-reflex amplitudes were significantly suppressed by radial nerve conditioning and facilitated by SR nerve conditioning. Leg cycling suppressed H-reflex amplitudes and the amount of this suppression was increased with radial nerve conditioning. SR conditioning stimulation removed the suppression of H-reflex amplitude resulting from leg cycling. Interestingly, these effects and interactions on H-reflex amplitudes were observed with subthreshold conditioning stimulus intensities (radial n., ∼0.6×MT; SR n., ∼ perceptual threshold) that did not have clear post synaptic effects. That is, did not evoke reflexes in the surface EMG of forearm flexor muscles. We conclude that the interaction between leg cycling and somatosensory conditioning of forearm H-reflex amplitudes is mediated by modulation of Ia PSI pathways. Overall our results support a conservation of neural control mechanisms between the arms and legs during locomotor behaviors in humans.
Collapse
Affiliation(s)
- Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, Canada
| | - Rinaldo A. Mezzarane
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, Canada
- Laboratory of Signal Processing and Motor Control, College of Physical Education, University of Brasília, Brasília, Brazil
| | - Taryn Klarner
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, Canada
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, Canada
| | - Trevor S. Barss
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, Canada
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, Canada
| | - Sandra R. Hundza
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, Canada
- Motion and Mobility Laboratory, University of Victoria, Victoria, Canada
| | | | - E. Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, Canada
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, Canada
- Division of Medical Sciences, University of Victoria, Victoria, Canada
| |
Collapse
|
14
|
Nakajima T, Barss T, Klarner T, Komiyama T, Zehr EP. Amplification of interlimb reflexes evoked by stimulating the hand simultaneously with conditioning from the foot during locomotion. BMC Neurosci 2013; 14:28. [PMID: 23497331 PMCID: PMC3605396 DOI: 10.1186/1471-2202-14-28] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/07/2013] [Indexed: 11/17/2022] Open
Abstract
Background Widespread interlimb reflexes evoked in leg muscles by cutaneous stimulation of the hand are phase-modulated and behaviorally relevant to produce functional changes in ankle trajectory during walking. These reflexes are complementary to the segmental responses evoked by stimulation at the ankle. Despite differences in the expression of reflex amplitude based upon site of nerve stimulation, there are some common features as well, suggesting the possibility of shared interneuronal pathways. Currently little is known about integration or shared reflex systems from interlimb cutaneous networks during human locomotion. Here we investigated convergent reflex effects following cutaneous stimulation of the hand and foot during arm and leg cycling (AL) by using spatial facilitation. Participants performed AL cycling and static activation of the target muscle knee extensor vastus lateralis (VL) in 3 different randomly ordered nerve stimulation conditions: 1) superficial radial nerve (SR; input from hand); 2) superficial peroneal nerve (SP; input from foot); and, 3) combined stimulation (SR + SP). Stimuli were applied around the onset of rhythmic EMG bursts in VL corresponding to the onset of the power or leg extension phase. Results During AL cycling, small inhibitory (~80 ms) and large facilitatory reflexes (~100 ~ 150 ms) were seen in VL. The amplitudes of the facilitatory responses with SR + SP stimulation were significantly larger than those for SP or SR stimulation alone. The facilitation was also significantly larger than the simple mathematical summation of amplitudes from SP and SR trials. This indicates extra facilitation beyond what would be accounted for by serial neuronal processing and was not observed during static activation. Conclusions We conclude that AL cycling activates shared interneurons in convergent reflex pathways from cutaneous inputs innervating the hand and leg. This enhanced activity has functional implications for corrective responses during locomotion and for translation to rehabilitation after neurotrauma.
Collapse
Affiliation(s)
- Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Japan
| | | | | | | | | |
Collapse
|
15
|
Kitamura T, Nakajima T, Yamamoto SI, Nakazawa K. Effect of sensory inputs on the motor evoked potentials in the wrist flexor muscle during the robotic passive stepping in humans. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2012:3862-3865. [PMID: 23366771 DOI: 10.1109/embc.2012.6346810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The purpose of this study was to reveal whether the stepping-related afferent feedback modulates the motor evoked potentials (MEPs) in the wrist flexor muscle in humans. MEPs generated in flexor carpi radialis muscle (FCR) by transcranial magnetic stimulation (TMS) were recorded during robotic-assisted passive stepping and standing conditions. TMS were applied at fifteen scalp sites (3 × 5 cm grid in anterior-posterior direction and medial-lateral direction, respectively) centered on the "hot spot" which was defined as an optimal site for eliciting the MEP in FCR during passive standing task, The MEP amplitudes were measured for each stimulus sites, and then compared between different conditions. During passive stepping, the MEP amplitudes in FCR muscle were significantly increased in six adjacent stimulus sites of the hot spot, This result suggests that stepping-related afferent feedback induces expansion of excitatory area in motor cortex for FCR muscle.
Collapse
Affiliation(s)
- Taku Kitamura
- Department of Bioscience and Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan.
| | | | | | | |
Collapse
|