1
|
Dhingra RR, Furuya WI, Yoong YK, Dutschmann M. The pre-Bötzinger complex is necessary for the expression of inspiratory and post-inspiratory motor discharge of the vagus. Respir Physiol Neurobiol 2024; 320:104202. [PMID: 38049044 DOI: 10.1016/j.resp.2023.104202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
The mammalian three-phase respiratory motor pattern of inspiration, post-inspiration and expiration is expressed in spinal and cranial motor nerve discharge and is generated by a distributed ponto-medullary respiratory pattern generating network. Respiratory motor pattern generation depends on a rhythmogenic kernel located within the pre-Bötzinger complex (pre-BötC). In the present study, we tested the effect of unilateral and bilateral inactivation of the pre-BötC after local microinjection of the GABAA receptor agonist isoguvacine (10 mM, 50 nl) on phrenic (PNA), hypoglossal (HNA) and vagal nerve (VNA) respiratory motor activities in an in situ perfused brainstem preparation of rats. Bilateral inactivation of the pre-BötC triggered cessation of phrenic (PNA), hypoglossal (HNA) and vagal (VNA) nerve activities for 15-20 min. Ipsilateral isoguvacine injections into the pre-BötC triggered transient (6-8 min) cessation of inspiratory and post-inspiratory VNA (p < 0.001) and suppressed inspiratory HNA by - 70 ± 15% (p < 0.01), while inspiratory PNA burst frequency increased by 46 ± 30% (p < 0.01). Taken together, these observations confirm the role of the pre-BötC as the rhythmogenic kernel of the mammalian respiratory network in situ and highlight a significant role for the pre-BötC in the transmission of vagal inspiratory and post-inspiratory pre-motor drive to the nucleus ambiguus.
Collapse
Affiliation(s)
- Rishi R Dhingra
- The Florey Department of Neuroscience & Mental Health, University of Melbourne, Parkville, Australia; Division of Pulmonary, Critical Care & Sleep, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Werner I Furuya
- The Florey Department of Neuroscience & Mental Health, University of Melbourne, Parkville, Australia
| | - Yi Kee Yoong
- The Florey Department of Neuroscience & Mental Health, University of Melbourne, Parkville, Australia
| | - Mathias Dutschmann
- The Florey Department of Neuroscience & Mental Health, University of Melbourne, Parkville, Australia; Division of Pulmonary, Critical Care & Sleep, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
2
|
Phillips RS, Rubin JE. Putting the theory into 'burstlet theory' with a biophysical model of burstlets and bursts in the respiratory preBötzinger complex. eLife 2022; 11:e75713. [PMID: 35380537 PMCID: PMC9023056 DOI: 10.7554/elife.75713] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
Inspiratory breathing rhythms arise from synchronized neuronal activity in a bilaterally distributed brainstem structure known as the preBötzinger complex (preBötC). In in vitro slice preparations containing the preBötC, extracellular potassium must be elevated above physiological levels (to 7-9 mM) to observe regular rhythmic respiratory motor output in the hypoglossal nerve to which the preBötC projects. Reexamination of how extracellular K+ affects preBötC neuronal activity has revealed that low-amplitude oscillations persist at physiological levels. These oscillatory events are subthreshold from the standpoint of transmission to motor output and are dubbed burstlets. Burstlets arise from synchronized neural activity in a rhythmogenic neuronal subpopulation within the preBötC that in some instances may fail to recruit the larger network events, or bursts, required to generate motor output. The fraction of subthreshold preBötC oscillatory events (burstlet fraction) decreases sigmoidally with increasing extracellular potassium. These observations underlie the burstlet theory of respiratory rhythm generation. Experimental and computational studies have suggested that recruitment of the non-rhythmogenic component of the preBötC population requires intracellular Ca2+ dynamics and activation of a calcium-activated nonselective cationic current. In this computational study, we show how intracellular calcium dynamics driven by synaptically triggered Ca2+ influx as well as Ca2+ release/uptake by the endoplasmic reticulum in conjunction with a calcium-activated nonselective cationic current can reproduce and offer an explanation for many of the key properties associated with the burstlet theory of respiratory rhythm generation. Altogether, our modeling work provides a mechanistic basis that can unify a wide range of experimental findings on rhythm generation and motor output recruitment in the preBötC.
Collapse
Affiliation(s)
- Ryan S Phillips
- Department of Mathematics and Center for the Neural Basis of Cognition, University of PittsburghPittsburghUnited States
| | - Jonathan E Rubin
- Department of Mathematics and Center for the Neural Basis of Cognition, University of PittsburghPittsburghUnited States
| |
Collapse
|
3
|
Smith JC. Respiratory rhythm and pattern generation: Brainstem cellular and circuit mechanisms. HANDBOOK OF CLINICAL NEUROLOGY 2022; 188:1-35. [PMID: 35965022 DOI: 10.1016/b978-0-323-91534-2.00004-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Breathing movements in mammals are driven by rhythmic neural activity automatically generated within spatially and functionally organized brainstem neural circuits comprising the respiratory central pattern generator (CPG). This chapter reviews up-to-date experimental information and theoretical studies of the cellular and circuit mechanisms of respiratory rhythm and pattern generation operating within critical components of this CPG in the lower brainstem. Over the past several decades, there have been substantial advances in delineating the spatial architecture of essential medullary regions and their regional cellular and circuit properties required to understand rhythm and pattern generation mechanisms. A fundamental concept is that the circuits in these regions have rhythm-generating capabilities at multiple cellular and circuit organization levels. The regional cellular properties, circuit organization, and control mechanisms allow flexible expression of neural activity patterns for a repertoire of respiratory behaviors under various physiologic conditions that are dictated by requirements for homeostatic regulation and behavioral integration. Many mechanistic insights have been provided by computational modeling studies driven by experimental results and have advanced understanding in the field. These conceptual and theoretical developments are discussed.
Collapse
Affiliation(s)
- Jeffrey C Smith
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
4
|
The lamprey respiratory network: Some evolutionary aspects. Respir Physiol Neurobiol 2021; 294:103766. [PMID: 34329767 DOI: 10.1016/j.resp.2021.103766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/19/2021] [Accepted: 07/25/2021] [Indexed: 01/25/2023]
Abstract
Breathing is a complex behaviour that involves rhythm generating networks. In this review, we examine the main characteristics of respiratory rhythm generation in vertebrates and, in particular, we describe the main results of our studies on the role of neural mechanisms involved in the neuromodulation of the lamprey respiration. The lamprey respiratory rhythm generator is located in the paratrigeminal respiratory group (pTRG) and shows similarities with the mammalian preBötzinger complex. In fact, within the pTRG a major role is played by glutamate, but also GABA and glycine display important contributions. In addition, neuromodulatory influences are exerted by opioids, substance P, acetylcholine and serotonin. Both structures respond to exogenous ATP with a biphasic response and astrocytes there located strongly contribute to the modulation of the respiratory pattern. The results emphasize that some important characteristics of the respiratory rhythm generating network are, to a great extent, maintained throughout evolution.
Collapse
|
5
|
Cinelli E, Mutolo D, Pantaleo T, Bongianni F. Neural mechanisms underlying respiratory regulation within the preBötzinger complex of the rabbit. Respir Physiol Neurobiol 2021; 293:103736. [PMID: 34224867 DOI: 10.1016/j.resp.2021.103736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/29/2022]
Abstract
The preBötzinger complex (preBötC) is a medullary area essential for normal breathing and widely recognized as necessary and sufficient to generate the inspiratory phase of respiration. It has been studied mainly in rodents. Here we report the main results of our studies revealing the characteristics of the rabbit preBötC identified by means of neuronal recordings, D,L-homocysteic acid microinjections and histological controls. A crucial role in the respiratory rhythmogenesis within this neural substrate is played by excitatory amino acids, but also GABA and glycine display important contributions. Increases in respiratory frequency are induced by microinjections of neurokinins, somatostatin as well by serotonin (5-HT) through an action on 5-HT1A and 5-HT3 receptors or the disinhibition of a GABAergic circuit. Respiratory depression is observed in response to microinjections of the μ-opioid receptor agonist DAMGO. Our results show similarities and differences with the rodent preBötC and emphasize the importance of comparative studies on the mechanisms underlying respiratory rhythmogenesis in different animal species.
Collapse
Affiliation(s)
- Elenia Cinelli
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università Degli Studi di Firenze, Viale G.B. Morgagni 63, Firenze, 50134, Italy
| | - Donatella Mutolo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università Degli Studi di Firenze, Viale G.B. Morgagni 63, Firenze, 50134, Italy
| | - Tito Pantaleo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università Degli Studi di Firenze, Viale G.B. Morgagni 63, Firenze, 50134, Italy
| | - Fulvia Bongianni
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università Degli Studi di Firenze, Viale G.B. Morgagni 63, Firenze, 50134, Italy.
| |
Collapse
|
6
|
Trevizan-Baú P, Furuya WI, Mazzone SB, Stanić D, Dhingra RR, Dutschmann M. Reciprocal connectivity of the periaqueductal gray with the ponto-medullary respiratory network in rat. Brain Res 2021; 1757:147255. [PMID: 33515533 DOI: 10.1016/j.brainres.2020.147255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 01/08/2023]
Abstract
Synaptic activities of the periaqueductal gray (PAG) can modulate or appropriate the respiratory motor activities in the context of behavior and emotion via descending projections to nucleus retroambiguus. However, alternative anatomical pathways for the mediation of PAG-evoked respiratory modulation via core nuclei of the brainstem respiratory network remains only partially described. We injected the retrograde tracer Cholera toxin subunit B (CT-B) in the pontine Kölliker-Fuse nucleus (KFn, n = 5), medullary Bötzinger (BötC, n = 3) and pre-Bötzinger complexes (pre-BötC; n = 3), and the caudal raphé nuclei (n = 3), and quantified the descending connectivity of the PAG targeting these brainstem respiratory regions. CT-B injections in the KFn, pre-BötC, and caudal raphé, but not in the BötC, resulted in CT-B-labeled neurons that were predominantly located in the lateral and ventrolateral PAG columns. In turn, CT-B injections in the lateral and ventrolateral PAG columns (n = 4) produced the highest numbers of CT-B-labeled neurons in the KFn and far fewer numbers of labeled neurons in the pre-BötC, BötC, and caudal raphé. Analysis of the relative projection strength revealed that the KFn shares the densest reciprocal connectivity with the PAG (ventrolateral and lateral columns, in particular). Overall, our data imply that the PAG may engage a distributed respiratory rhythm and pattern generating network beyond the nucleus retroambiguus to mediate downstream modulation of breathing. However, the reciprocal connectivity of the KFn and PAG suggests specific roles for synaptic interaction between these two nuclei that are most likely related to the regulation of upper airway patency during vocalization or other volitional orofacial behaviors.
Collapse
Affiliation(s)
- Pedro Trevizan-Baú
- The Florey Institute of Neuroscience and Mental Health, Discovery Neuroscience Theme, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Werner I Furuya
- The Florey Institute of Neuroscience and Mental Health, Discovery Neuroscience Theme, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stuart B Mazzone
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Davor Stanić
- The Florey Institute of Neuroscience and Mental Health, Discovery Neuroscience Theme, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Rishi R Dhingra
- The Florey Institute of Neuroscience and Mental Health, Discovery Neuroscience Theme, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mathias Dutschmann
- The Florey Institute of Neuroscience and Mental Health, Discovery Neuroscience Theme, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
7
|
Furuya WI, Dhingra RR, Trevizan-Baú P, McAllen RM, Dutschmann M. The role of glycinergic inhibition in respiratory pattern formation and cardio-respiratory coupling in rats. Curr Res Physiol 2021; 4:80-93. [PMID: 34746829 PMCID: PMC8562146 DOI: 10.1016/j.crphys.2021.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/11/2021] [Accepted: 03/12/2021] [Indexed: 01/08/2023] Open
Abstract
Cardio-respiratory coupling is reflected as respiratory sinus arrhythmia (RSA) and inspiratory-related bursting of sympathetic nerve activity. Inspiratory-related inhibitory and/or postinspiratory-related excitatory drive of cardiac vagal motoneurons (CVMs) can generate RSA. Since respiratory oscillations may depend on synaptic inhibition, we investigated the effects of blocking glycinergic neurotransmission (systemic and local application of the glycine receptor (GlyR) antagonist, strychnine) on the expression of the respiratory motor pattern, RSA and sympatho-respiratory coupling. We recorded heart-rate, phrenic, recurrent laryngeal and thoracic sympathetic nerve activities (PNA, RLNA, t-SNA) in a working-heart-brainstem preparation of rats, and show that systemic strychnine (50–200 nM) abolished RSA and triggered a shift of postinspiratory RLNA into inspiration, while t-SNA remained unchanged. Bilateral strychnine microinjection into the ventrolateral medullary area containing CVMs and laryngeal motoneurons (LMNs) of the nucleus ambiguus (NA/CVLM), the nucleus tractus solitarii, pre-Bötzinger Complex, Bötzinger Complex or Kölliker-Fuse nuclei revealed that only NA/CVLM strychnine microinjections mimicked the effects of systemic application. In all other target nuclei, except the Bötzinger Complex, GlyR-blockade attenuated the inspiratory-tachycardia of the RSA to a similar degree while evoking only a modest change in respiratory motor patterning, without changing the timing of postinspiratory-RLNA, or t-SNA. Thus, glycinergic inhibition at the motoneuronal level is involved in the generation of RSA and the separation of inspiratory and postinspiratory bursting of LMNs. Within the distributed ponto-medullary respiratory pre-motor network, local glycinergic inhibition contribute to the modulation of RSA tachycardia, respiratory frequency and phase duration but, surprisingly it had no major role in the mediation of respiratory-sympathetic coupling. Glycinergic inhibition controls inspiratory tachycardia via inhibition of cardiac vagal motoneurons. Glycinergic inhibition controls the discharge pattern of expiratory laryngeal motoneurons. Glycinergic neurotransmission has no major role in pattern formation at the pre-motor level. Glycinergic inhibition has no role in sympatho-respiratory coupling.
Collapse
|
8
|
Dhingra RR, Furuya WI, Dick TE, Dutschmann M. Response to: The post-inspiratory complex (PiCo), what is the evidence? J Physiol 2020; 599:361-362. [PMID: 33197048 DOI: 10.1113/jp280958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Rishi R Dhingra
- The Florey Institute of Neuroscience & Mental Health, University of Melbourne, 30 Royal Parade, Parkville, Victoria, Australia
| | - Werner I Furuya
- The Florey Institute of Neuroscience & Mental Health, University of Melbourne, 30 Royal Parade, Parkville, Victoria, Australia
| | - Thomas E Dick
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, USA
| | - Mathias Dutschmann
- The Florey Institute of Neuroscience & Mental Health, University of Melbourne, 30 Royal Parade, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Dutschmann M, Bautista TG, Trevizan-Baú P, Dhingra RR, Furuya WI. The pontine Kölliker-Fuse nucleus gates facial, hypoglossal, and vagal upper airway related motor activity. Respir Physiol Neurobiol 2020; 284:103563. [PMID: 33053424 DOI: 10.1016/j.resp.2020.103563] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 01/31/2023]
Abstract
The pontine Kölliker-Fuse nucleus (KFn) is a core nucleus of respiratory network that mediates the inspiratory-expiratory phase transition and gates eupneic motor discharges in the vagal and hypoglossal nerves. In the present study, we investigated whether the same KFn circuit may also gate motor activities that control the resistance of the nasal airway, which is of particular importance in rodents. To do so, we simultaneously recorded phrenic, facial, vagal and hypoglossal cranial nerve activity in an in situ perfused brainstem preparation before and after bilateral injection of the GABA-receptor agonist isoguvacine (50-70 nl, 10 mM) into the KFn (n = 11). Our results show that bilateral inhibition of the KFn triggers apneusis (prolonged inspiration) and abolished pre-inspiratory discharge of facial, vagal and hypoglossal nerves as well as post-inspiratory discharge in the vagus. We conclude that the KFn plays a critical role for the eupneic regulation of naso-pharyngeal airway patency and the potential functions of the KFn in regulating airway patency and orofacial behavior is discussed.
Collapse
Affiliation(s)
- M Dutschmann
- Florey Department of Neuroscience and Mental Health, Melbourne University, Gate 11 Royal Parade, University of Melbourne, VIC 3010, Australia.
| | - T G Bautista
- Florey Department of Neuroscience and Mental Health, Melbourne University, Gate 11 Royal Parade, University of Melbourne, VIC 3010, Australia
| | - P Trevizan-Baú
- Florey Department of Neuroscience and Mental Health, Melbourne University, Gate 11 Royal Parade, University of Melbourne, VIC 3010, Australia
| | - R R Dhingra
- Florey Department of Neuroscience and Mental Health, Melbourne University, Gate 11 Royal Parade, University of Melbourne, VIC 3010, Australia
| | - W I Furuya
- Florey Department of Neuroscience and Mental Health, Melbourne University, Gate 11 Royal Parade, University of Melbourne, VIC 3010, Australia
| |
Collapse
|
10
|
Dhingra RR, Dick TE, Furuya WI, Galán RF, Dutschmann M. Volumetric mapping of the functional neuroanatomy of the respiratory network in the perfused brainstem preparation of rats. J Physiol 2020; 598:2061-2079. [PMID: 32100293 DOI: 10.1113/jp279605] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The functional neuroanatomy of the mammalian respiratory network is far from being understood since experimental tools that measure neural activity across this brainstem-wide circuit are lacking. Here, we use silicon multi-electrode arrays to record respiratory local field potentials (rLFPs) from 196-364 electrode sites within 8-10 mm3 of brainstem tissue in single arterially perfused brainstem preparations with respect to the ongoing respiratory motor pattern of inspiration (I), post-inspiration (PI) and late-expiration (E2). rLFPs peaked specifically at the three respiratory phase transitions, E2-I, I-PI and PI-E2. We show, for the first time, that only the I-PI transition engages a brainstem-wide network, and that rLFPs during the PI-E2 transition identify a hitherto unknown role for the dorsal respiratory group. Volumetric mapping of pontomedullary rLFPs in single preparations could become a reliable tool for assessing the functional neuroanatomy of the respiratory network in health and disease. ABSTRACT While it is widely accepted that inspiratory rhythm generation depends on the pre-Bötzinger complex, the functional neuroanatomy of the neural circuits that generate expiration is debated. We hypothesized that the compartmental organization of the brainstem respiratory network is sufficient to generate macroscopic local field potentials (LFPs), and if so, respiratory (r) LFPs could be used to map the functional neuroanatomy of the respiratory network. We developed an approach using silicon multi-electrode arrays to record spontaneous LFPs from hundreds of electrode sites in a volume of brainstem tissue while monitoring the respiratory motor pattern on phrenic and vagal nerves in the perfused brainstem preparation. Our results revealed the expression of rLFPs across the pontomedullary brainstem. rLFPs occurred specifically at the three transitions between respiratory phases: (1) from late expiration (E2) to inspiration (I), (2) from I to post-inspiration (PI), and (3) from PI to E2. Thus, respiratory network activity was maximal at respiratory phase transitions. Spatially, the E2-I, and PI-E2 transitions were anatomically localized to the ventral and dorsal respiratory groups, respectively. In contrast, our data show, for the first time, that the generation of controlled expiration during the post-inspiratory phase engages a distributed neuronal population within ventral, dorsal and pontine network compartments. A group-wise independent component analysis demonstrated that all preparations exhibited rLFPs with a similar temporal structure and thus share a similar functional neuroanatomy. Thus, volumetric mapping of rLFPs could allow for the physiological assessment of global respiratory network organization in health and disease.
Collapse
Affiliation(s)
- Rishi R Dhingra
- The Florey Institute of Neuroscience & Mental Health, University of Melbourne, Melbourne, Australia
| | - Thomas E Dick
- Division of Pulmonary, Critical Care & Sleep, Department of Medicine, Case Western Reserve University, Cleveland, USA
| | - Werner I Furuya
- The Florey Institute of Neuroscience & Mental Health, University of Melbourne, Melbourne, Australia
| | - Roberto F Galán
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
| | - Mathias Dutschmann
- The Florey Institute of Neuroscience & Mental Health, University of Melbourne, Melbourne, Australia
| |
Collapse
|
11
|
Kölliker-Fuse/Parabrachial complex mu opioid receptors contribute to fentanyl-induced apnea and respiratory rate depression. Respir Physiol Neurobiol 2020; 275:103388. [PMID: 31953234 DOI: 10.1016/j.resp.2020.103388] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/05/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Overdoses caused by the opioid agonist fentanyl have increased exponentially in recent years. Identifying mechanisms to counter progression to fatal respiratory apnea during opioid overdose is desirable, but difficult to study in vivo. The pontine Kölliker-Fuse/Parabrachial complex (KF/PB) provides respiratory drive and contains opioid-sensitive neurons. The contribution of the KF/PB complex to fentanyl-induced apnea was investigated using the in situ arterially perfused preparation of rat. Systemic application of fentanyl resulted in concentration-dependent respiratory disturbances. At low concentrations, respiratory rate slowed and subsequently transitioned to an apneustic-like, 2-phase pattern. Higher concentrations caused prolonged apnea, interrupted by occasional apneustic-like bursts. Application of CTAP, a selective mu opioid receptor antagonist, directly into the KF/PB complex reversed and prevented fentanyl-induced apnea by increasing the frequency of apneustic-like bursting. These results demonstrate that countering opioid effects in the KF/PB complex is sufficient to restore phasic respiratory output at a rate similar to pre-fentanyl conditions, which could be beneficial in opioid overdose.
Collapse
|
12
|
Dhingra RR, Furuya WI, Bautista TG, Dick TE, Galán RF, Dutschmann M. Increasing Local Excitability of Brainstem Respiratory Nuclei Reveals a Distributed Network Underlying Respiratory Motor Pattern Formation. Front Physiol 2019; 10:887. [PMID: 31396094 PMCID: PMC6664290 DOI: 10.3389/fphys.2019.00887] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/26/2019] [Indexed: 11/18/2022] Open
Abstract
The core circuit of the respiratory central pattern generator (rCPG) is located in the ventrolateral medulla, especially in the pre-Bötzinger complex (pre-BötC) and the neighboring Bötzinger complex (BötC). To test the hypothesis that this core circuit is embedded within an anatomically distributed pattern-generating network, we investigated whether local disinhibition of the nucleus tractus solitarius (NTS), the Kölliker-Fuse nuclei (KFn), or the midbrain periaqueductal gray area (PAG) can similarly affect the respiratory pattern compared to disinhibition of the pre-BötC/BötC core. In arterially-perfused brainstem preparations of rats, we recorded the three-phase respiratory pattern (inspiration, post-inspiration and late-expiration) from phrenic and vagal nerves before and after bilateral microinjections of the GABA(A)R antagonist bicuculline (50 nl, 10 mM). Local disinhibition of either NTS, pre-BötC/BötC, or KFn, but not PAG, triggered qualitatively similar disruptions of the respiratory pattern resulting in a highly significant increase in the variability of the respiratory cycle length, including inspiratory and expiratory phase durations. To quantitatively analyze these motor pattern perturbations, we measured the strength of phase synchronization between phrenic and vagal motor outputs. This analysis showed that local disinhibition of all brainstem target nuclei, but not the midbrain PAG, significantly decreased the strength of phase synchronization. The convergent perturbations of the respiratory pattern suggest that the rCPG expands rostrally and dorsally from the designated core but does not include higher mid-brain structures. Our data also suggest that excitation-inhibition balance of respiratory network synaptic interactions critically determines the network dynamics that underlie vital respiratory rhythm and pattern formation.
Collapse
Affiliation(s)
- Rishi R Dhingra
- Division of Systems Neurophysiology, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Werner I Furuya
- Division of Systems Neurophysiology, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Tara G Bautista
- Division of Systems Neurophysiology, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Thomas E Dick
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Roberto F Galán
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH, United States
| | - Mathias Dutschmann
- Division of Systems Neurophysiology, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
13
|
An arterially perfused brainstem preparation of guinea pig to study central mechanisms of airway defense. J Neurosci Methods 2019; 317:49-60. [DOI: 10.1016/j.jneumeth.2019.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 11/18/2022]
|
14
|
Phasic inhibition as a mechanism for generation of rapid respiratory rhythms. Proc Natl Acad Sci U S A 2017; 114:12815-12820. [PMID: 29133427 DOI: 10.1073/pnas.1711536114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Central neural networks operate continuously throughout life to control respiration, yet mechanisms regulating ventilatory frequency are poorly understood. Inspiration is generated by the pre-Bötzinger complex of the ventrolateral medulla, where it is thought that excitation increases inspiratory frequency and inhibition causes apnea. To test this model, we used an in vitro optogenetic approach to stimulate select populations of hindbrain neurons and characterize how they modulate frequency. Unexpectedly, we found that inhibition was required for increases in frequency caused by stimulation of Phox2b-lineage, putative CO2-chemosensitive neurons. As a mechanistic explanation for inhibition-dependent increases in frequency, we found that phasic stimulation of inhibitory neurons can increase inspiratory frequency via postinhibitory rebound. We present evidence that Phox2b-mediated increases in frequency are caused by rebound excitation following an inhibitory synaptic volley relayed by expiration. Thus, although it is widely thought that inhibition between inspiration and expiration simply prevents activity in the antagonistic phase, we instead propose a model whereby inhibitory coupling via postinhibitory rebound excitation actually generates fast modes of inspiration.
Collapse
|
15
|
Jenkin SEM, Milsom WK, Zoccal DB. The Kölliker-Fuse nucleus acts as a timekeeper for late-expiratory abdominal activity. Neuroscience 2017; 348:63-72. [PMID: 28188852 PMCID: PMC5759332 DOI: 10.1016/j.neuroscience.2017.01.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/27/2017] [Accepted: 01/31/2017] [Indexed: 10/20/2022]
Abstract
While the transition from the inspiratory to the post-inspiratory (post-I) phase is dependent on the pons, little attention has been paid to understanding the role of the pontine respiratory nuclei, specifically the Kölliker-Fuse nucleus (KF), in transitioning from post-I to the late expiratory (late-E) activity seen with elevated respiratory drive. To elucidate this, we used the in situ working heart-brainstem preparation of juvenile male Holtzman rats and recorded from the vagus (cVN), phrenic (PN) and abdominal nerves (AbN) during baseline conditions and during chemoreflex activation [with potassium cyanide (KCN; n=13) or hypercapnia (8% CO2; n=10)] to recruit active expiration. Chemoreflex activation with KCN increased PN frequency and cVN post-I and AbN activities. The inhibition of KF with isoguvacine microinjections (10mM) attenuated the typical increase in PN frequency and cVN post-I activity, and amplified the AbN response. During hypercapnia, AbN late-E activity emerged in association with a significant reduction in expiratory time. KF inhibition during hypercapnia significantly decreased PN frequency and reduced the duration and amplitude of post-I cVN activity, while the onset of the AbN late-E bursts occurred significantly earlier. Our data reveal a negative relationship between KF-induced post-I and AbN late-E activities, suggesting that the KF coordinates the transition between post-I to late-E activity during conditions of elevated respiratory drive.
Collapse
Affiliation(s)
- Sarah E M Jenkin
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| | - William K Milsom
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Daniel B Zoccal
- School of Dentistry of Araraquara, São Paulo State University, Araraquara, Brazil
| |
Collapse
|
16
|
Zuperku EJ, Stucke AG, Hopp FA, Stuth EAE. Characteristics of breathing rate control mediated by a subregion within the pontine parabrachial complex. J Neurophysiol 2016; 117:1030-1042. [PMID: 27974449 DOI: 10.1152/jn.00591.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/12/2016] [Indexed: 11/22/2022] Open
Abstract
The role of the dorsolateral pons in the control of expiratory duration (Te) and breathing frequency is incompletely understood. A subregion of the pontine parabrachial-Kölliker-Fuse (PB-KF) complex of dogs was identified via microinjections, in which localized pharmacologically induced increases in neuronal activity produced increases in breathing rate while decreases in neuronal activity produced decreases in breathing rate. This subregion is also very sensitive to local and systemic opioids. The purpose of this study was to precisely characterize the relationship between the PB-KF subregion pattern of altered neuronal activity and the control of respiratory phase timing as well as the time course of the phrenic nerve activity/neurogram (PNG). Pulse train electrical stimulation patterns synchronized with the onset of the expiratory (E) and/or phrenic inspiratory (I) phase were delivered via a small concentric bipolar electrode while the PNG was recorded in decerebrate, vagotomized dogs. Step frequency patterns during the E phase produced a marked frequency-dependent decrease in Te, while similar step inputs during the I phase increased inspiratory duration (Ti) by 14 ± 3%. Delayed pulse trains were capable of pacing the breathing rate by terminating the E phase and also of triggering a consistent stereotypical inspiratory PNG pattern, even when evoked during apnea. This property suggests that the I-phase pattern generator functions in a monostable circuit mode with a stable E phase and a transient I phase. Thus the I-pattern generator must contain neurons with nonlinear pacemaker-like properties, which allow the network to rapidly obtain a full on-state followed by relatively slow inactivation. The activated network can be further modulated and supplies excitatory drive to the neurons involved with pattern generation.NEW & NOTEWORTHY A circumscribed subregion of the pontine medial parabrachial nucleus plays a key role in the control of breathing frequency primarily via changes in expiratory duration. Excitation of this subregion triggers the onset of the inspiratory phase, resulting in a stereotypical ramplike phrenic activity pattern independent of time within the expiratory phase. The ability to pace the I-burst rate suggests that the in vivo I-pattern generating network must contain functioning pacemaker neurons.
Collapse
Affiliation(s)
- Edward J Zuperku
- Clement J. Zablocki Department of Veterans Affairs Medical Center, Milwaukee, Wisconsin; .,Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Astrid G Stucke
- Clement J. Zablocki Department of Veterans Affairs Medical Center, Milwaukee, Wisconsin.,Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and.,Pediatric Anesthesia, Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | - Francis A Hopp
- Clement J. Zablocki Department of Veterans Affairs Medical Center, Milwaukee, Wisconsin
| | - Eckehard A E Stuth
- Clement J. Zablocki Department of Veterans Affairs Medical Center, Milwaukee, Wisconsin.,Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and.,Pediatric Anesthesia, Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
17
|
Cropper EC, Dacks AM, Weiss KR. Consequences of degeneracy in network function. Curr Opin Neurobiol 2016; 41:62-67. [PMID: 27589602 DOI: 10.1016/j.conb.2016.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 06/23/2016] [Accepted: 07/20/2016] [Indexed: 01/21/2023]
Abstract
Often distinct elements serve similar functions within a network. However, it is unclear whether this network degeneracy is beneficial, or merely a reflection of tighter regulation of overall network performance relative to individual neuronal properties. We review circumstances where data strongly suggest that degeneracy is beneficial in that it makes network function more robust. Importantly, network degeneracy is likely to have functional consequences that are not widely appreciated. This is likely to be true when network activity is configured by modulators with persistent actions, and the history of network activity potentially impacts subsequent functioning. Data suggest that degeneracy in this context may be important for the creation of latent memories, and for state-dependent task switching.
Collapse
Affiliation(s)
- Elizabeth C Cropper
- Department of Neuroscience, Mount Sinai School of Medicine, 1 Gustave Levy Place, New York, NY 10029, United States.
| | - Andrew M Dacks
- Department of Biology, West Virginia University, PO Box 6057, Morgantown, WV 26506, United States
| | - Klaudiusz R Weiss
- Department of Neuroscience, Mount Sinai School of Medicine, 1 Gustave Levy Place, New York, NY 10029, United States
| |
Collapse
|
18
|
Perturbations of Respiratory Rhythm and Pattern by Disrupting Synaptic Inhibition within Pre-Bötzinger and Bötzinger Complexes. eNeuro 2016; 3:eN-NWR-0011-16. [PMID: 27200412 PMCID: PMC4867025 DOI: 10.1523/eneuro.0011-16.2016] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 11/21/2022] Open
Abstract
The pre-Bötzinger (pre-BötC) and Bötzinger (BötC) complexes are the brainstem compartments containing interneurons considered to be critically involved in generating respiratory rhythm and motor pattern in mammals. The pre-Bötzinger (pre-BötC) and Bötzinger (BötC) complexes are the brainstem compartments containing interneurons considered to be critically involved in generating respiratory rhythm and motor pattern in mammals. Current models postulate that both generation of the rhythm and coordination of the inspiratory-expiratory pattern involve inhibitory synaptic interactions within and between these regions. Both regions contain glycinergic and GABAergic neurons, and rhythmically active neurons in these regions receive appropriately coordinated phasic inhibition necessary for generation of the normal three-phase respiratory pattern. However, recent experiments attempting to disrupt glycinergic and GABAergic postsynaptic inhibition in the pre-BötC and BötC in adult rats in vivo have questioned the critical role of synaptic inhibition in these regions, as well as the importance of the BötC, which contradicts previous physiological and pharmacological studies. To further evaluate the roles of synaptic inhibition and the BötC, we bilaterally microinjected the GABAA receptor antagonist gabazine and glycinergic receptor antagonist strychnine into the pre-BötC or BötC in anesthetized adult rats in vivo and in perfused in situ brainstem–spinal cord preparations from juvenile rats. Muscimol was microinjected to suppress neuronal activity in the pre-BötC or BötC. In both preparations, disrupting inhibition within pre-BötC or BötC caused major site-specific perturbations of the rhythm and disrupted the three-phase motor pattern, in some experiments terminating rhythmic motor output. Suppressing BötC activity also potently disturbed the rhythm and motor pattern. We conclude that inhibitory circuit interactions within and between the pre-BötC and BötC critically regulate rhythmogenesis and are required for normal respiratory motor pattern generation.
Collapse
|