1
|
Pitts T, Iceman KE. Deglutition and the Regulation of the Swallow Motor Pattern. Physiology (Bethesda) 2023; 38:0. [PMID: 35998250 PMCID: PMC9707372 DOI: 10.1152/physiol.00005.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022] Open
Abstract
Despite centuries of investigation, questions and controversies remain regarding the fundamental genesis and motor pattern of swallow. Two significant topics include inspiratory muscle activity during swallow (Schluckatmung, i.e., "swallow-breath") and anatomical boundaries of the swallow pattern generator. We discuss the long history of reports regarding the presence or absence of Schluckatmung and the possible advantages of and neural basis for such activity, leading to current theories and novel experimental directions.
Collapse
Affiliation(s)
- Teresa Pitts
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky
| | - Kimberly E Iceman
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky
| |
Collapse
|
2
|
Wollman LB, Flanigan EG, Fregosi RF. Chronic, episodic nicotine exposure alters GABAergic synaptic transmission to hypoglossal motor neurons and genioglossus muscle function at a critical developmental age. J Neurophysiol 2022; 128:1483-1500. [PMID: 36350047 PMCID: PMC9722256 DOI: 10.1152/jn.00397.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Regulation of GABAergic signaling through nicotinic acetylcholine receptor (nAChR) activation is critical for neuronal development. Here, we test the hypothesis that chronic episodic developmental nicotine exposure (eDNE) disrupts GABAergic signaling, leading to dysfunction of hypoglossal motor neurons (XIIMNs), which innervate the tongue muscles. We studied control and eDNE pups at two developmentally vulnerable age ranges: postnatal days (P)1-5 and P10-12. The amplitude and frequency of spontaneous and miniature inhibitory postsynaptic currents (sIPSCs, mIPSCs) at baseline were not altered by eDNE at either age. In contrast, eDNE increased GABAAR-α1 receptor expression on XIIMNs and, in the older group, the postsynaptic response to muscimol (GABAA receptor agonist). Activation of nAChRs with exogenous nicotine increased the frequency of GABAergic sIPSCs in control and eDNE neurons at P1-5. By P10-12, acute nicotine increased sIPSC frequency in eDNE but not control neurons. In vivo experiments showed that the breathing-related activation of tongue muscles, which are innervated by XIIMNs, is reduced at P10-12. This effect was partially mitigated by subcutaneous muscimol, but only in the eDNE pups. Taken together, these data indicate that eDNE alters GABAergic transmission to XIIMNs at a critical developmental age, and this is expressed as reduced breathing-related drive to XIIMNs in vivo.NEW & NOTEWORTHY Here, we provide a thorough assessment of the effects of nicotine exposure on GABAergic synaptic transmission, from the cellular to the systems level. This work makes significant advances in our understanding of the impact of nicotine exposure during development on GABAergic neurotransmission within the respiratory network and the potential role this plays in the excitatory/inhibitory imbalance that is thought to be an important mechanism underlying neonatal breathing disorders, including sudden infant death syndrome.
Collapse
Affiliation(s)
- Lila Buls Wollman
- Department of Physiology, The University of Arizona, Tucson, Arizona
| | | | - Ralph F Fregosi
- Department of Physiology, The University of Arizona, Tucson, Arizona
- Department of Neuroscience, The University of Arizona, Tucson, Arizona
| |
Collapse
|
3
|
Buls Wollman L, Fregosi RF. Chronic, Episodic Nicotine Alters Hypoglossal Motor Neuron Function at a Critical Developmental Time Point in Neonatal Rats. eNeuro 2021; 8:ENEURO.0203-21.2021. [PMID: 34193508 PMCID: PMC8366915 DOI: 10.1523/eneuro.0203-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
Developmental nicotine exposure (DNE), alters brainstem neurons that control breathing, including hypoglossal motor neurons (XIIMNs), which innervate the tongue. Here, we tested the hypothesis that chronic, episodic DNE (eDNE), which mimics nicotine replacement therapies such as e-cigarettes or nicotine gum, alters the function of nicotinic acetylcholine receptors (nAChRs), XIIMN intrinsic properties, and tongue muscle function in vivo similar to what we have observed with a chronic, sustained exposure model. We delivered nicotine to pregnant Sprague Dawley rats through drinking water and studied pups of either sex in two age groups: postnatal day (P)1-P5 and P10-P12, which encompasses a critical period in brain development. At P1-P5, eDNE was associated with delayed recovery of nAChRs from desensitization; however, there were no changes in the magnitude of desensitization, XIIMN intrinsic properties, or tongue muscle function in vivo. By P10-P12, eDNE XIIMNs had lower peak firing frequencies in response to depolarizing current injection, larger delayed rectifier potassium currents, and continued to exhibit delayed nAChR recovery. Moreover, this age group exhibited a blunted and delayed tongue muscle response to nasal occlusion in vivo, indicating that changes to XIIMN intrinsic properties is an important mechanism behind this effect, as it is not produced by altered nAChR function alone. Together, these results show that eDNE alters XIIMNs and tongue muscle function during a critical period in brain development and that the specific effects of chronic nicotine exposure may be pattern dependent.
Collapse
Affiliation(s)
- Lila Buls Wollman
- Department of Physiology, The University of Arizona, Tucson, AZ 85724
| | - Ralph F Fregosi
- Department of Physiology, The University of Arizona, Tucson, AZ 85724
- Department of Neuroscience, The University of Arizona, Tucson, AZ 85724
| |
Collapse
|
4
|
Ramirez JM, Burgraff NJ, Wei AD, Baertsch NA, Varga AG, Baghdoyan HA, Lydic R, Morris KF, Bolser DC, Levitt ES. Neuronal mechanisms underlying opioid-induced respiratory depression: our current understanding. J Neurophysiol 2021; 125:1899-1919. [PMID: 33826874 DOI: 10.1152/jn.00017.2021] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Opioid-induced respiratory depression (OIRD) represents the primary cause of death associated with therapeutic and recreational opioid use. Within the United States, the rate of death from opioid abuse since the early 1990s has grown disproportionally, prompting the classification as a nationwide "epidemic." Since this time, we have begun to unravel many fundamental cellular and systems-level mechanisms associated with opioid-related death. However, factors such as individual vulnerability, neuromodulatory compensation, and redundancy of opioid effects across central and peripheral nervous systems have created a barrier to a concise, integrative view of OIRD. Within this review, we bring together multiple perspectives in the field of OIRD to create an overarching viewpoint of what we know, and where we view this essential topic of research going forward into the future.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Department of Neurological Surgery, University of Washington, Seattle, Washington.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Nicholas J Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Aguan D Wei
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Adrienn G Varga
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida.,Center for Respiratory Research and Rehabilitation, Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Helen A Baghdoyan
- Department of Psychology, University of Tennessee, Knoxville, Tennessee.,Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Ralph Lydic
- Department of Psychology, University of Tennessee, Knoxville, Tennessee.,Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Donald C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Erica S Levitt
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida.,Center for Respiratory Research and Rehabilitation, Department of Physical Therapy, University of Florida, Gainesville, Florida
| |
Collapse
|
5
|
Breathing retraining in sleep apnoea: a review of approaches and potential mechanisms. Sleep Breath 2020; 24:1315-1325. [PMID: 31940122 DOI: 10.1007/s11325-020-02013-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/26/2019] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
Abstract
PURPOSE Anatomically based treatments for obstructive sleep apnoea (OSA) may not completely resolve OSA. This has led to interest in exploring ways of addressing physiological risk factors. This review examines the literature for research reporting on the effects of various types of breathing training and breathing activities on sleep apnoea. It also reviews and discusses proposed therapeutic mechanisms. METHODS A search of electronic databases was performed using the search terms related to various breathing therapies or to activities requiring high levels of breath control such as singing and the playing of musical instruments and sleep apnoea. RESULTS A total of 14 suitable studies were reviewed. A diverse variety of breathing retraining approaches are reported to improve sleep apnoea, e.g., Buteyko method, inspiratory resistance training, and diaphragmatic breathing. There is also a reduced incidence of sleep apnoea with intensive and regular participation in activities that require high levels of breath control, e.g., singing and playing wind instruments. Improvements in sleep-disordered breathing are thought to be related to improvements in (1) muscle tone of the upper airway; (2) respiratory muscle strength; (3) neuroplasticity of breathing control; (4) oxygen levels; (5) hyperventilation/dysfunctional breathing; and (6) autonomic nervous system, metabolic, and inflammatory status. CONCLUSION Breathing retraining and regular practice of breath control activities such as singing and playing wind instruments are potentially helpful for sleep apnoea, particularly for individuals with minimal anatomical deficit and daytime breathing dysfunction. Research is needed to elucidate mechanisms, to inform patient selection, and to refine clinical protocols.
Collapse
|
6
|
Developmental Nicotine Exposure Alters Synaptic Input to Hypoglossal Motoneurons and Is Associated with Altered Function of Upper Airway Muscles. eNeuro 2019; 6:ENEURO.0299-19.2019. [PMID: 31712219 PMCID: PMC6860987 DOI: 10.1523/eneuro.0299-19.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/03/2019] [Accepted: 10/13/2019] [Indexed: 11/21/2022] Open
Abstract
Nicotine exposure during the fetal and neonatal periods [developmental nicotine exposure (DNE)] is associated with ineffective upper airway protective reflexes in infants. This could be explained by desensitized chemoreceptors and/or mechanoreceptors, diminished neuromuscular transmission or altered synaptic transmission among central neurons, as each of these systems depend in part on cholinergic signaling through nicotinic AChRs (nAChRs). Here, we showed that DNE blunts the response of the genioglossus (GG) muscle to nasal airway occlusion in lightly anesthetized rat pups. The GG muscle helps keep the upper airway open and is innervated by hypoglossal motoneurons (XIIMNs). Experiments using the phrenic nerve-diaphragm preparation showed that DNE does not alter transmission across the neuromuscular junction. Accordingly, we used whole cell recordings from XIIMNs in brainstem slices to examine the influence of DNE on glutamatergic synaptic transmission under baseline conditions and in response to an acute nicotine challenge. DNE did not alter excitatory transmission under baseline conditions. Analysis of cumulative probability distributions revealed that acute nicotine challenge of P1–P2 preparations resulted in an increase in the frequency of nicotine-induced glutamatergic inputs to XIIMNs in both control and DNE. By contrast, P3–P5 DNE pups showed a decrease, rather than an increase in frequency. We suggest that this, together with previous studies showing that DNE is associated with a compensatory increase in inhibitory synaptic input to XIIMNs, leads to an excitatory-inhibitory imbalance. This imbalance may contribute to the blunting of airway protective reflexes observed in nicotine exposed animals and human infants.
Collapse
|
7
|
Pilarski JQ, Leiter JC, Fregosi RF. Muscles of Breathing: Development, Function, and Patterns of Activation. Compr Physiol 2019; 9:1025-1080. [PMID: 31187893 DOI: 10.1002/cphy.c180008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review is a comprehensive description of all muscles that assist lung inflation or deflation in any way. The developmental origin, anatomical orientation, mechanical action, innervation, and pattern of activation are described for each respiratory muscle fulfilling this broad definition. In addition, the circumstances in which each muscle is called upon to assist ventilation are discussed. The number of "respiratory" muscles is large, and the coordination of respiratory muscles with "nonrespiratory" muscles and in nonrespiratory activities is complex-commensurate with the diversity of activities that humans pursue, including sleep (8.27). The capacity for speech and adoption of the bipedal posture in human evolution has resulted in patterns of respiratory muscle activation that differ significantly from most other animals. A disproportionate number of respiratory muscles affect the nose, mouth, pharynx, and larynx, reflecting the vital importance of coordinated muscle activity to control upper airway patency during both wakefulness and sleep. The upright posture has freed the hands from locomotor functions, but the evolutionary history and ontogeny of forelimb muscles pervades the patterns of activation and the forces generated by these muscles during breathing. The distinction between respiratory and nonrespiratory muscles is artificial, as many "nonrespiratory" muscles can augment breathing under conditions of high ventilator demand. Understanding the ontogeny, innervation, activation patterns, and functions of respiratory muscles is clinically useful, particularly in sleep medicine. Detailed explorations of how the nervous system controls the multiple muscles required for successful completion of respiratory behaviors will continue to be a fruitful area of investigation. © 2019 American Physiological Society. Compr Physiol 9:1025-1080, 2019.
Collapse
Affiliation(s)
- Jason Q Pilarski
- Department of Biological and Dental Sciences, Idaho State University Pocatello, Idaho, USA
| | - James C Leiter
- Department of Molecular and Systems Biology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Ralph F Fregosi
- Departments of Physiology and Neuroscience, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
8
|
Ghezzi F, Monni L, Nistri A. Functional up-regulation of the M-current by retigabine contrasts hyperexcitability and excitotoxicity on rat hypoglossal motoneurons. J Physiol 2018; 596:2611-2629. [PMID: 29736957 DOI: 10.1113/jp275906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/23/2018] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Excessive neuronal excitability characterizes several neuropathological conditions, including neurodegenerative diseases such as amyotrophic lateral sclerosis. Hypoglossal motoneurons (HMs), which control tongue muscles, are extremely vulnerable to this disease and undergo damage and death when exposed to an excessive glutamate extracellular concentration that causes excitotoxicity. Our laboratory devised an in vitro model of excitotoxicity obtained by pharmacological blockade of glutamate transporters. In this paradigm, HMs display hyperexcitability, collective bursting and eventually cell death. The results of the present study show that pharmacological up-regulation of a K+ current (M-current), via application of the anti-convulsant retigabine, prevented all hallmarks of HM excitotoxicity, comprising bursting, generation of reactive oxygen species, expression of toxic markers and cell death. ○Our data may have translational value to develop new treatments against neurological diseases by using positive pharmacological modulators of the M-current. ABSTRACT Neuronal hyperexcitability is a symptom characterizing several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). In the ALS bulbar form, hypoglossal motoneurons (HMs) are an early target for neurodegeneration because of their high vulnerability to metabolic insults. In recent years, our laboratory has developed an in vitro model of a brainstem slice comprising the hypoglossal nucleus in which HM neurodegeneration is achieved by blocking glutamate clearance with dl-threo-β-benzyloxyaspartate (TBOA), thus leading to delayed excitotoxicity. During this process, HMs display a set of hallmarks such as hyperexcitability (and network bursting), reactive oxygen species (ROS) generation and, finally, cell death. The present study aimed to investigate whether blocking early hyperexcitability and bursting with the anti-convulsant drug retigabine was sufficient to achieve neuroprotection against excitotoxicity. Retigabine is a selective positive allosteric modulator of the M-current (IM ), an endogenous mechanism that neurons (comprising HMs) express to dampen excitability. Retigabine (10 μm; co-applied with TBOA) contrasted ROS generation, release of endogenous toxic factors into the HM cytoplasm and excitotoxicity-induced HM death. Electrophysiological experiments showed that retigabine readily contrasted and arrested bursting evoked by TBOA administration. Because neuronal IM subunits (Kv7.2, Kv7.3 and Kv7.5) were expressed in the hypoglossal nucleus and in functionally connected medullary nuclei, we suggest that they were responsible for the strong reduction in network excitability, a potent phenomenon for achieving neuroprotection against TBOA-induced excitotoxicity. The results of the present study may have translational value for testing novel positive pharmacological modulators of the IM under pathological conditions (including neurodegenerative disorders) characterized by excessive neuronal excitability.
Collapse
Affiliation(s)
- Filippo Ghezzi
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Laura Monni
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Andrea Nistri
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
9
|
Li WY, Gakwaya S, Saey D, Sériès F. Assessment of tongue mechanical properties using different contraction tasks. J Appl Physiol (1985) 2017; 123:116-125. [PMID: 28408696 DOI: 10.1152/japplphysiol.00934.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 11/22/2022] Open
Abstract
Inadequate upper airway (UA) dilator muscle function may play an important role in the pathophysiology of obstructive sleep apnea (OSA). To date, tongue mechanical properties have been assessed mainly using protrusion protocol with conflicting results. Performance during elevation tasks among patients with OSA remains unknown. This study aimed at assessing tongue muscle strength, strength stability, endurance time, fatigue indices, and total muscle work, using elevation and protrusion tasks with repetitive isometric fatiguing contractions in 12 normal plus mild, 17 moderate, and 11 severe patients with OSA, and to assess the influence of body mass index (BMI) and age. Endurance time was longer in protrusion than elevation task (P = 0.01). In both tasks, endurance time was negatively correlated with baseline value of strength coefficient of variation (P < 0.01). Compared with other groups, patients with moderate OSA had the lowest total muscle work for protrusion (P = 0.01) and shortest endurance time (P = 0.04), regardless of the type of task. Additionally, in patients with moderate-severe OSA, the total muscle work for both tasks was lower in nonobese compared with obese (P < 0.05). Total muscle work for protrusion was positively correlated with apnea hypopnea index (AHI) in obese subjects (P < 0.01). Endurance time was shorter (P < 0.01) and recovery time longer (P = 0.02) in the old compared with young subjects. In conclusion, the tongue is more prone to fatigue during the elevation task and in patients with moderate OSA. Obesity appeared to prevent alteration of tongue mechanical properties in patients with OSA. Baseline strength stability and endurance were related, illustrating the role of central neuromuscular output in tongue resistance to fatigue.NEW & NOTEWORTHY To our knowledge, this is the first study to assess and compare tongue function using both elevation and protrusion tasks with repetitive isometric fatiguing contractions in subjects with different OSA status. Tongue mechanical performance seemed to differ between protrusion and elevation tasks and depend on the severity of OSA.
Collapse
Affiliation(s)
- Wen-Yang Li
- Unité de Recherche en Pneumologie, Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada; and.,The 1st Affiliated Hospital of China Medical University, Shen Yang City, Liao Ning Province, China
| | - Simon Gakwaya
- Unité de Recherche en Pneumologie, Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada; and
| | - Didier Saey
- Unité de Recherche en Pneumologie, Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada; and
| | - Frédéric Sériès
- Unité de Recherche en Pneumologie, Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada; and
| |
Collapse
|
10
|
Kubin L, Jordan AS, Nicholas CL, Cori JM, Semmler JG, Trinder J. Crossed motor innervation of the base of human tongue. J Neurophysiol 2015; 113:3499-510. [PMID: 25855691 DOI: 10.1152/jn.00051.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/06/2015] [Indexed: 12/15/2022] Open
Abstract
Muscle fibers of the genioglossus (GG) form the bulk of the muscle mass at the base of the tongue. The motor control of the tongue is critical for vocalization, feeding, and breathing. Our goal was to assess the patterns of motor innervation of GG single motor units (SMUs) in humans. Simultaneous monopolar recordings were obtained from four sites in the base of the tongue bilaterally at two antero-posterior levels from 16 resting, awake, healthy adult males, who wore a face mask with airway pressure and airflow sensors. We analyzed 69 data segments in which at least one lead contained large action potentials generated by an SMU. Such potentials served as triggers for spike-triggered averaging (STA) of signals recorded from the other three sites. Spontaneous activity of the SMUs was classified as inspiratory modulated, expiratory modulated, or tonic. Consistent with the antero-posterior orientation of GG fibers, 44 STAs (77%) recorded ipsilateral to the trigger yielded sharp action potentials with a median amplitude of 52 μV [interquartile range (IQR): 25-190] that were time shifted relative to the trigger by about 1 ms. Notably, 48% of recordings on the side opposite to the trigger also yielded sharp action potentials. Of those, 17 (29%) had a median amplitude of 63 μV (IQR: 39-96), and most were generated by tonic SMUs. Thus a considerable proportion of GG muscle fibers receive a crossed motor innervation. Crossed innervation may help ensure symmetry and stability of tongue position and movements under normal conditions and following injury or degenerative changes affecting the tongue.
Collapse
Affiliation(s)
- Leszek Kubin
- School of Psychological Sciences, University of Melbourne, Melbourne, Australia;
| | - Amy S Jordan
- School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | | | - Jennifer M Cori
- School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - John G Semmler
- School of Medical Sciences, University of Adelaide, Adelaide, Australia
| | - John Trinder
- School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
11
|
Bordoni B, Zanier E. The continuity of the body: hypothesis of treatment of the five diaphragms. J Altern Complement Med 2015; 21:237-42. [PMID: 25775273 DOI: 10.1089/acm.2013.0211] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The diaphragm muscle should not be seen as a segment but as part of a body system. This muscle is an important crossroads of information for the entire body, from the trigeminal system to the pelvic floor, passing from thoracic diaphragm to the floor of the mouth: the network of breath. Viola Frymann first spoke of the treatment of three diaphragms, and more recently four diaphragms have been discussed. Current scientific knowledge has led to discussion of the manual treatment of five diaphragms. This article highlights the anatomic connections and fascial and neurologic aspects of the diaphragm muscle, with four other structures considered as diaphragms: that is, the five diaphragms. The logic of the manual treatment proposed here is based on a concept and diagnostic work that should be the basis for any area of the body: The patient never just has a localized symptom but rather a system that adapts to a question.
Collapse
Affiliation(s)
- Bruno Bordoni
- 1 Don Carlo Gnocchi IRCCS , Department of Cardiology, IRCCS S. Maria Nascente, Don Carlo Gnocchi Foundation, Milano, Italy
| | | |
Collapse
|
12
|
Johnson RA, Mitchell GS. Common mechanisms of compensatory respiratory plasticity in spinal neurological disorders. Respir Physiol Neurobiol 2013; 189:419-28. [PMID: 23727226 PMCID: PMC3812344 DOI: 10.1016/j.resp.2013.05.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/18/2013] [Accepted: 05/21/2013] [Indexed: 12/11/2022]
Abstract
In many neurological disorders that disrupt spinal function and compromise breathing (e.g. ALS, cervical spinal injury, MS), patients often maintain ventilatory capacity well after the onset of severe CNS pathology. In progressive neurodegenerative diseases, patients ultimately reach a point where compensation is no longer possible, leading to catastrophic ventilatory failure. In this brief review, we consider evidence that common mechanisms of compensatory respiratory plasticity preserve breathing capacity in diverse clinical disorders, despite the onset of severe pathology (e.g. respiratory motor neuron denervation and/or death). We propose that a suite of mechanisms, operating at distinct sites in the respiratory control system, underlies compensatory respiratory plasticity, including: (1) increased (descending) central respiratory drive, (2) motor neuron plasticity, (3) plasticity at the neuromuscular junction or spared respiratory motor neurons, and (4) shifts in the balance from more to less severely compromised respiratory muscles. To establish this framework, we contrast three rodent models of neural dysfunction, each posing unique problems for the generation of adequate inspiratory motor output: (1) respiratory motor neuron death, (2) de- or dysmyelination of cervical spinal pathways, and (3) cervical spinal cord injury, a neuropathology with components of demyelination and motor neuron death. Through this contrast, we hope to understand the multilayered strategies used to "fight" for adequate breathing in the face of mounting pathology.
Collapse
Affiliation(s)
- Rebecca A Johnson
- Department of Surgical Sciences, University of Wisconsin, 2015 Linden Drive, Madison, WI 53706, United States.
| | | |
Collapse
|
13
|
Powell GL, Rice A, Bennett-Cross SJ, Fregosi RF. Respiration-related discharge of hyoglossus muscle motor units in the rat. J Neurophysiol 2013; 111:361-8. [PMID: 24133219 DOI: 10.1152/jn.00670.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although respiratory muscle motor units have been studied during natural breathing, simultaneous measures of muscle force have never been obtained. Tongue retractor muscles, such as the hyoglossus (HG), play an important role in swallowing, licking, chewing, breathing, and, in humans, speech. The HG is phasically recruited during the inspiratory phase of the respiratory cycle. Moreover, in urethane anesthetized rats the drive to the HG waxes and wanes spontaneously, providing a unique opportunity to study motor unit firing patterns as the muscle is driven naturally by the central pattern generator for breathing. We recorded tongue retraction force, the whole HG muscle EMG and the activity of 38 HG motor units in spontaneously breathing anesthetized rats under low-force and high-force conditions. Activity in all cases was confined to the inspiratory phase of the respiratory cycle. Changes in the EMG were correlated significantly with corresponding changes in force, with the change in EMG able to predict 53-68% of the force variation. Mean and peak motor unit firing rates were greater under high-force conditions, although the magnitude of discharge rate modulation varied widely across the population. Changes in mean and peak firing rates were significantly correlated with the corresponding changes in force, but the correlations were weak (r(2) = 0.27 and 0.25, respectively). These data indicate that, during spontaneous breathing, recruitment of HG motor units plays a critical role in the control of muscle force, with firing rate modulation playing an important but lesser role.
Collapse
Affiliation(s)
- Gregory L Powell
- Department of Physiology, The University of Arizona, Tucson, Arizona; and
| | | | | | | |
Collapse
|
14
|
Bordoni B, Zanier E. Anatomic connections of the diaphragm: influence of respiration on the body system. J Multidiscip Healthc 2013; 6:281-91. [PMID: 23940419 PMCID: PMC3731110 DOI: 10.2147/jmdh.s45443] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The article explains the scientific reasons for the diaphragm muscle being an important crossroads for information involving the entire body. The diaphragm muscle extends from the trigeminal system to the pelvic floor, passing from the thoracic diaphragm to the floor of the mouth. Like many structures in the human body, the diaphragm muscle has more than one function, and has links throughout the body, and provides the network necessary for breathing. To assess and treat this muscle effectively, it is necessary to be aware of its anatomic, fascial, and neurologic complexity in the control of breathing. The patient is never a symptom localized, but a system that adapts to a corporeal dysfunction.
Collapse
Affiliation(s)
- Bruno Bordoni
- Rehabilitation Cardiology Institute of Hospitalization and Care with Scientific Address, S Maria Nascente Don Carlo Gnocchi Foundation
| | | |
Collapse
|
15
|
Fuchs A, Kutterer S, Mühling T, Duda J, Schütz B, Liss B, Keller BU, Roeper J. Selective mitochondrial Ca2+ uptake deficit in disease endstage vulnerable motoneurons of the SOD1G93A mouse model of amyotrophic lateral sclerosis. J Physiol 2013; 591:2723-45. [PMID: 23401612 PMCID: PMC3678052 DOI: 10.1113/jphysiol.2012.247981] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/04/2013] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis is a progressive neurodegenerative disease that targets some somatic motoneuron populations, while others, e.g. those of the oculomotor system, are spared. The pathophysiological basis of this pattern of differential vulnerability, which is preserved in a transgenic mouse model of amyotrophic lateral sclerosis (SOD1(G93A)), and the mechanism of neurodegeneration in general are unknown. Hyperexcitability and calcium dysregulation have been proposed by others on the basis of data from juvenile mice that are, however, asymptomatic. No studies have been done with symptomatic mice following disease progression to the disease endstage. Here, we developed a new brainstem slice preparation for whole-cell patch-clamp recordings and single cell fura-2 calcium imaging to study motoneurons in adult wild-type and SOD1(G93A) mice up to disease endstage. We analysed disease-stage-dependent electrophysiological properties and intracellular Ca(2+) handling of vulnerable hypoglossal motoneurons in comparison to resistant oculomotor neurons. Thereby, we identified a transient hyperexcitability in presymptomatic but not in endstage vulnerable motoneurons. Additionally, we revealed a remodelling of intracellular Ca(2+) clearance within vulnerable but not resistant motoneurons at disease endstage characterised by a reduction of uniporter-dependent mitochondrial Ca(2+) uptake and enhanced Ca(2+) extrusion across the plasma membrane. Our study challenged the notion that hyperexcitability is a direct cause of neurodegeneration in SOD1(G93A) mice, but molecularly identified a Ca(2+) clearance deficit in motoneurons and an adaptive Ca(2+) handling strategy that might be targeted by future therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Fuchs
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Retzius Väg 8, 17177 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Factors influencing the estimates of correlation between motor unit activities in humans. PLoS One 2012; 7:e44894. [PMID: 23049762 PMCID: PMC3458041 DOI: 10.1371/journal.pone.0044894] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 08/15/2012] [Indexed: 11/19/2022] Open
Abstract
Background Alpha motoneurons receive common synaptic inputs from spinal and supraspinal pathways. As a result, a certain degree of correlation can be observed between motoneuron spike trains during voluntary contractions. This has been studied by using correlation measures in the time and frequency domains. These measures are interpreted as reflecting different types of connectivity in the spinal networks, although the relation between the degree of correlation of the output motoneuron spike trains and of their synaptic inputs is unclear. Methodology/Principal Findings In this study, we analyze theoretically this relation and we complete this analysis by simulations and experimental data on the abductor digiti minimi muscle. The results demonstrate that correlation measures between motoneuron output spike trains are inherently influenced by the discharge rate and that this influence cannot be compensated by normalization. Because of the influence of discharge rate, frequency domain measures of correlation (coherence) do not identify the full frequency content of the common input signal when computed from pairs of motoneurons. Rather, an increase in sampling rate is needed by using cumulative spike trains of several motoneurons. Moreover, the application of averaging filters to the spike trains influences the magnitude of the estimated correlation levels calculated in the time, but not in the frequency domain (coherence). Conclusions It is concluded that the analysis of coherence in different frequency bands between cumulative spike trains of a sufficient number of motoneurons provides information on the spectrum of the common synaptic input. Nonetheless, the absolute values of coherent peaks cannot be compared across conditions with different cumulative discharge rates.
Collapse
|
17
|
Non-stationarity and power spectral shifts in EMG activity reflect motor unit recruitment in rat diaphragm muscle. Respir Physiol Neurobiol 2012; 185:400-9. [PMID: 22986086 DOI: 10.1016/j.resp.2012.08.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 08/28/2012] [Accepted: 08/28/2012] [Indexed: 11/23/2022]
Abstract
We hypothesized that a shift in diaphragm muscle (DIAm) EMG power spectral density (PSD) to higher frequencies reflects recruitment of more fatigable fast-twitch motor units and motor unit recruitment is reflected by EMG non-stationarity. DIAm EMG was recorded in anesthetized rats during eupnea, hypoxia-hypercapnia (10% O(2)-5% CO(2)), airway occlusion, and sneezing (maximal DIAm force). Although power in all frequency bands increased progressively across motor behaviors, PSD centroid frequency increased only during sneezing (p<0.05). The non-stationary period at the onset of EMG activity ranged from ∼80 ms during airway occlusion to ∼150 ms during eupnea. Within the initial non-stationary period of EMG activity 80-95% of motor units were recruited during different motor behaviors. Motor units augmented their discharge frequencies progressively beyond the non-stationary period; yet, EMG signal became stationary. In conclusion, non-stationarity of DIAm EMG reflects the period of motor unit recruitment, while a shift in the PSD towards higher frequencies reflects recruitment of more fatigable fast-twitch motor units.
Collapse
|
18
|
McSharry D, O'Connor C, McNicholas T, Langran S, O'Sullivan M, Lowery M, McNicholas WT. Genioglossus fatigue in obstructive sleep apnea. Respir Physiol Neurobiol 2012; 183:59-66. [PMID: 22677657 DOI: 10.1016/j.resp.2012.05.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/29/2012] [Accepted: 05/29/2012] [Indexed: 11/17/2022]
Abstract
Obstructive sleep apnea (OSA) is a prevalent disorder that may cause cardiovascular disease and fatal traffic accidents but the pathophysiology remains incompletely understood. Increased fatigability of the genioglossus (the principal upper airway dilator muscle) might be important in OSA pathophysiology but the existing literature is uncertain. We hypothesized that the genioglossus in OSA subjects would fatigue more than in controls. In 9 OSA subjects and 9 controls during wakefulness we measured maximum voluntary tongue protrusion force (Tpmax). Using surface electromyography arrays we measured the rate of decline in muscle fiber conduction velocity (MFCV) during an isometric fatiguing contraction at 30% Tpmax. The rate of decline in MFCV provides an objective means of quantifying localized muscle fatigue. Linear regression analysis of individual subject data demonstrated a significantly greater decrease in MFCV in OSA subjects compared to control subjects (29.2 ± 20.8% [mean ± SD] versus 11.2 ± 20.8%; p=0.04). These data support increased fatigability of the genioglossus muscle in OSA subjects which may be important in the pathophysiology of OSA.
Collapse
Affiliation(s)
- David McSharry
- Sleep Research Laboratory, St. Vincent's University Hospital, Dublin, Ireland.
| | | | | | | | | | | | | |
Collapse
|
19
|
Effect of lingual paralysis on swallowing and breathing coordination in rats. Respir Physiol Neurobiol 2012; 181:95-8. [DOI: 10.1016/j.resp.2012.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/19/2012] [Accepted: 01/24/2012] [Indexed: 11/21/2022]
|
20
|
Laine CM, Nickerson LA, Bailey EF. Cortical entrainment of human hypoglossal motor unit activities. J Neurophysiol 2011; 107:493-9. [PMID: 22049332 DOI: 10.1152/jn.00769.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Output from the primary motor cortex contains oscillations that can have frequency-specific effects on the firing of motoneurons (MNs). Whereas much is known about the effects of oscillatory cortical drive on the output of spinal MN pools, considerably less is known about the effects on cranial motor nuclei, which govern speech/oromotor control. Here, we investigated cortical input to one such motor pool, the hypoglossal motor nucleus (HMN), which controls muscles of the tongue. We recorded intramuscular genioglossus electromyogram (EMG) and scalp EEG from healthy adult subjects performing a tongue protrusion task. Cortical entrainment of HMN population activity was assessed by measuring coherence between EEG and multiunit EMG activity. In addition, cortical entrainment of individual MN firing activity was assessed by measuring phase locking between single motor unit (SMU) action potentials and EEG oscillations. We found that cortical entrainment of multiunit activity was detectable within the 15- to 40-Hz frequency range but was inconsistent across recordings. By comparison, cortical entrainment of SMU spike timing was reliable within the same frequency range. Furthermore, this effect was found to be intermittent over time. Our study represents an important step in understanding corticomuscular synchronization in the context of human oromotor control and is the first study to document SMU entrainment by cortical oscillations in vivo.
Collapse
Affiliation(s)
- Christopher M Laine
- Dept. of Physiology, College of Medicine, The Univ. of Arizona, 1713 E University Blvd., Tucson, AZ 85719-5057, USA
| | | | | |
Collapse
|
21
|
Fregosi RF. Respiratory related control of hypoglossal motoneurons--knowing what we do not know. Respir Physiol Neurobiol 2011; 179:43-7. [PMID: 21741499 DOI: 10.1016/j.resp.2011.06.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 06/24/2011] [Accepted: 06/26/2011] [Indexed: 10/18/2022]
Abstract
Because tongue position and stiffness help insure that the pharyngeal airspace is sufficiently open during breathing, the respiration-related behavior of the tongue muscles has been studied in detail, particularly during the last two decades. Although eight different muscles act upon the mammal tongue, we know very little about the respiration-related control of the majority of these, and almost nothing about how they work together as a complex electro-mechanical system. Other significant gaps include how hypoglossal motoneuron axons find their appropriate muscle target during development, whether the biophysical properties of hypoglossal motoneurons driving different muscles are the same, and how afferent information from cardiorespiratory reflex systems is transmitted from major brainstem integrating centers to the hypoglossal motoneuron pool. This brief review outlines some of these issues, with the hope that this will spur research in the field, ultimately leading to an improved understanding of the respiration-related control of the mammalian tongue musculature.
Collapse
Affiliation(s)
- Ralph F Fregosi
- Department of Physiology, College of Medicine and Department of Neuroscience, College of Science, The University of Arizona, Tucson, AZ 85721-0093, United States.
| |
Collapse
|
22
|
Bailey EF. Activities of human genioglossus motor units. Respir Physiol Neurobiol 2011; 179:14-22. [PMID: 21558022 DOI: 10.1016/j.resp.2011.04.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/14/2011] [Accepted: 04/17/2011] [Indexed: 01/13/2023]
Abstract
Upper airway muscles play an important role in regulating airway lumen and in increasing the ability of the pharynx to remain patent in the face of subatmospheric intraluminal pressures produced during inspiration. Due to the considerable technical challenges associated with recording from muscles of the upper airway, much of the experimental work conducted in human subjects has centered on recording respiratory-related activities of the extrinsic tongue protudor muscle, the genioglossus (GG). The GG is one of eight muscles that invest the human tongue (Abd-El-Malek, 1939). All eight muscles are innervated by the hypoglossal nerve (cranial nerve XII) the cell bodies of which are located in the hypoglossal motor nucleus (HMN) of the caudal medulla. Much of the earlier work on the respiratory-related activity of XII motoneurons was based on recordings obtained from single motor axons dissected from the whole XII nerve or from whole muscle GG EMG recordings. Detailed information regarding respiratory-related GG motor unit activities was lacking until as recently as 2006. This paper examines key findings that have emerged from the last decade of work conducted in human subjects. Wherever appropriate, these results are compared with results obtained from in vitro and in vivo studies conducted in non-human mammals. The review is written with the objective of facilitating some discussion and some new thoughts regarding future research directions. The material is framed around four topics: (a) motor unit type, (b) rate coding and recruitment, (c) motor unit activity patterns, and (d) a compartment based view of pharyngeal airway control.
Collapse
Affiliation(s)
- E Fiona Bailey
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, AZ 85721-0093, USA.
| |
Collapse
|