1
|
Jonikaitis D, Xia R, Moore T. Robust encoding of stimulus-response mapping by neurons in visual cortex. Proc Natl Acad Sci U S A 2025; 122:e2408079122. [PMID: 39993188 DOI: 10.1073/pnas.2408079122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 01/07/2025] [Indexed: 02/26/2025] Open
Abstract
Neural activity in sensory cortex is modulated by behavioral and cognitive factors, and this modulation is thought to contribute to the selection of specific sensory information needed to achieve behavioral goals. In contrast, more abstract behavioral variables that are independent of stimulus selection, such as stimulus-response mapping, are thought to be encoded by neurons outside of sensory cortex. We show that information about such mapping is robustly encoded in the responses of neurons in primate visual cortex. Monkeys were trained to alternate between two tasks that differed in the rule governing the mapping of a remembered visual cue onto an eye movement response. During the memory-delay period, neurons in area V4 reliably signaled the remembered cue location in both tasks. However, the encoding of cue location depended critically on the stimulus-response mapping rule. Thus, V4 delay activity encoded the mapping rule and signaled the preparation of the appropriate motor response rather than spatial working memory per se, contrary to previous assumptions. In addition, we probed the origins of motor-related delay activity and found that it was reduced during local inactivation of the frontal eye field (FEF). The results demonstrate that behavioral modulation of visual cortical activity is not solely related to the selection of sensory stimuli but instead reflects a distinct mechanism for sensory-guided motor output.
Collapse
Affiliation(s)
- Donatas Jonikaitis
- HHMI, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Ruobing Xia
- HHMI, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Tirin Moore
- HHMI, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
2
|
Guadron L, Titchener SA, Abbott CJ, Ayton LN, van Opstal J, Petoe MA, Goossens J. The Saccade Main Sequence in Patients With Retinitis Pigmentosa and Advanced Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2023; 64:1. [PMID: 36857076 PMCID: PMC9983702 DOI: 10.1167/iovs.64.3.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Purpose Most eye-movement studies in patients with visual field defects have examined the strategies that patients use while exploring a visual scene, but they have not investigated saccade kinematics. In healthy vision, saccade trajectories follow the remarkably stereotyped "main sequence": saccade duration increases linearly with saccade amplitude; peak velocity also increases linearly for small amplitudes, but approaches a saturation limit for large amplitudes. Recent theories propose that these relationships reflect the brain's attempt to optimize vision when planning eye movements. Therefore, in patients with bilateral retinal damage, saccadic behavior might differ to optimize vision under the constraints imposed by the visual field defects. Methods We compared saccadic behavior of patients with central vision loss, due to age-related macular degeneration (AMD), and patients with peripheral vision loss, due to retinitis pigmentosa (RP), to that of controls with normal vision (NV) using a horizontal saccade task. Results Both patient groups demonstrated deficits in saccade reaction times and target localization behavior, as well as altered saccade kinematics. Saccades were generally slower and the shape of the velocity profiles were often atypical, especially in the patients with RP. In the patients with AMD, the changes were far less dramatic. For both groups, saccade kinematics were affected most when the target was in the subjects' blind field. Conclusions We conclude that defects of the central and peripheral retina have distinct effects on the saccade main sequence, and that visual inputs play an important role in planning the kinematics of a saccade.
Collapse
Affiliation(s)
- Leslie Guadron
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Samuel A. Titchener
- Bionics Institute, East Melbourne, Victoria, Australia
- Medical Bionics Department, University of Melbourne, Melbourne, Victoria, Australia
| | - Carla J. Abbott
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, Melbourne, Victoria, Australia
- Department of Surgery (Ophthalmology), University of Melbourne, Melbourne, Victoria, Australia
| | - Lauren N. Ayton
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, Melbourne, Victoria, Australia
- Department of Surgery (Ophthalmology), University of Melbourne, Melbourne, Victoria, Australia
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - John van Opstal
- Department of Biophysics, Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Matthew A. Petoe
- Bionics Institute, East Melbourne, Victoria, Australia
- Medical Bionics Department, University of Melbourne, Melbourne, Victoria, Australia
| | - Jeroen Goossens
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Avila E, Flierman NA, Holland PJ, Roelfsema PR, Frens MA, Badura A, De Zeeuw CI. Purkinje Cell Activity in the Medial and Lateral Cerebellum During Suppression of Voluntary Eye Movements in Rhesus Macaques. Front Cell Neurosci 2022; 16:863181. [PMID: 35573834 PMCID: PMC9096024 DOI: 10.3389/fncel.2022.863181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
Volitional suppression of responses to distracting external stimuli enables us to achieve our goals. This volitional inhibition of a specific behavior is supposed to be mainly mediated by the cerebral cortex. However, recent evidence supports the involvement of the cerebellum in this process. It is currently not known whether different parts of the cerebellar cortex play differential or synergistic roles in the planning and execution of this behavior. Here, we measured Purkinje cell (PC) responses in the medial and lateral cerebellum in two rhesus macaques during pro- and anti-saccade tasks. During an antisaccade trial, non-human primates (NHPs) were instructed to make a saccadic eye movement away from a target, rather than toward it, as in prosaccade trials. Our data show that the cerebellum plays an important role not only during the execution of the saccades but also during the volitional inhibition of eye movements toward the target. Simple spike (SS) modulation during the instruction and execution periods of pro- and anti-saccades was prominent in PCs of both the medial and lateral cerebellum. However, only the SS activity in the lateral cerebellar cortex contained information about stimulus identity and showed a strong reciprocal interaction with complex spikes (CSs). Moreover, the SS activity of different PC groups modulated bidirectionally in both of regions, but the PCs that showed facilitating and suppressive activity were predominantly associated with instruction and execution, respectively. These findings show that different cerebellar regions and PC groups contribute to goal-directed behavior and volitional inhibition, but with different propensities, highlighting the rich repertoire of the cerebellar control in executive functions.
Collapse
Affiliation(s)
- Eric Avila
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Nico A. Flierman
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Peter J. Holland
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Pieter R. Roelfsema
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, VU University, Amsterdam, Netherlands
- Department of Psychiatry, Academic Medical Centre, Amsterdam, Netherlands
| | | | - Aleksandra Badura
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- *Correspondence: Aleksandra Badura,
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Chris I. De Zeeuw,
| |
Collapse
|
4
|
Guadron L, van Opstal AJ, Goossens J. Speed-accuracy tradeoffs influence the main sequence of saccadic eye movements. Sci Rep 2022; 12:5262. [PMID: 35347172 PMCID: PMC8960849 DOI: 10.1038/s41598-022-09029-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/15/2022] [Indexed: 11/15/2022] Open
Abstract
Several studies have proposed that an optimal speed-accuracy tradeoff underlies the stereotyped relationship between amplitude, duration and peak velocity of saccades (main sequence). To test this theory, we asked 8 participants to make saccades to Gaussian-blurred spots and manipulated the task's accuracy constraints by varying target size (1, 3, and 5°). The largest targets indeed yielded more endpoint scatter (and lower gains) than the smallest targets, although this effect subsided with target eccentricity. The main sequence depended on several interacting factors: saccade latency, saccade gain and target size. Early saccades, which were faster than amplitude-matched late saccades, followed the target-size dependency one would expect from a speed-accuracy tradeoff process. They had higher peak velocities and shorter durations for larger targets than for smaller targets. For late saccades, however, the opposite was found. Deviations from the main sequence also covaried with saccade gain, in line with the idea that motor noise underlies part of the endpoint variability. Thus, our data provide partial evidence that the saccadic system weighs the detrimental effects of motor noise on saccade accuracy against movement duration and speed, but other factors also modulate the kinematics. We discuss the possible involvement of parallel saccade pathways to account for our findings.
Collapse
Affiliation(s)
- Leslie Guadron
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - A John van Opstal
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, P.O. Box 9010//066, 6500 GL, Nijmegen, The Netherlands
| | - Jeroen Goossens
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
5
|
McSorley E, Gilchrist ID, McCloy R. The parallel programming of landing position in saccadic eye movement sequences. J Vis 2020; 20:2. [PMID: 31999821 PMCID: PMC7239640 DOI: 10.1167/jov.20.1.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Saccadic eye movements occur in sequences, gathering new information about the visual environment to support successful task completion. Here, we examine the control of these saccadic sequences and specifically the extent to which the spatial aspects of the saccadic responses are programmed in parallel. We asked participants to saccade to a series of visual targets and, while they shifted their gaze around the display, we displaced select targets. We found that saccade landing position was deviated toward the previous location of the target suggesting that partial parallel programming of target location information was occurring. The saccade landing position was also affected by the new target location, which demonstrates that the saccade landing position was also partially updated following the shift. This pattern was present even for targets that were the subject of the next fixation. Having a greater preview about the sequence path influenced saccade accuracy with saccades being less affected by relocations when there is less preview information. The results demonstrate that landing positions from a saccade sequence are programmed in parallel and combined with more immediate visual signals.
Collapse
|
6
|
McSorley E, Gilchrist ID, McCloy R. The role of fixation disengagement in the parallel programming of sequences of saccades. Exp Brain Res 2019; 237:3033-3045. [PMID: 31531688 PMCID: PMC6794246 DOI: 10.1007/s00221-019-05641-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/28/2019] [Indexed: 12/02/2022]
Abstract
One of the core mechanisms involved in the control of saccade responses to selected target stimuli is the disengagement from the current fixation location, so that the next saccade can be executed. To carry out everyday visual tasks, we make multiple eye movements that can be programmed in parallel. However, the role of disengagement in the parallel programming of saccades has not been examined. It is well established that the need for disengagement slows down saccadic response time. This may be important in allowing the system to program accurate eye movements and have a role to play in the control of multiple eye movements but as yet this remains untested. Here, we report two experiments that seek to examine whether fixation disengagement reduces saccade latencies when the task completion demands multiple saccade responses. A saccade contingent paradigm was employed and participants were asked to execute saccadic eye movements to a series of seven targets while manipulating when these targets were shown. This both promotes fixation disengagement and controls the extent that parallel programming can occur. We found that trial duration decreased as more targets were made available prior to fixation: this was a result both of a reduction in the number of saccades being executed and in their saccade latencies. This supports the view that even when fixation disengagement is not required, parallel programming of multiple sequential saccadic eye movements is still present. By comparison with previous published data, we demonstrate a substantial speeded of response times in these condition ("a gap effect") and that parallel programming is attenuated in these conditions.
Collapse
Affiliation(s)
- Eugene McSorley
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, RG6 6AL, UK.
| | - Iain D Gilchrist
- School of Experimental Psychology, University of Bristol, Bristol, BS8 1TU, UK
| | - Rachel McCloy
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, RG6 6AL, UK
| |
Collapse
|
7
|
Sarafyazd M, Jazayeri M. Hierarchical reasoning by neural circuits in the frontal cortex. Science 2019; 364:364/6441/eaav8911. [DOI: 10.1126/science.aav8911] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/01/2019] [Indexed: 12/20/2022]
Abstract
Humans process information hierarchically. In the presence of hierarchies, sources of failures are ambiguous. Humans resolve this ambiguity by assessing their confidence after one or more attempts. To understand the neural basis of this reasoning strategy, we recorded from dorsomedial frontal cortex (DMFC) and anterior cingulate cortex (ACC) of monkeys in a task in which negative outcomes were caused either by misjudging the stimulus or by a covert switch between two stimulus-response contingency rules. We found that both areas harbored a representation of evidence supporting a rule switch. Additional perturbation experiments revealed that ACC functioned downstream of DMFC and was directly and specifically involved in inferring covert rule switches. These results reveal the computational principles of hierarchical reasoning, as implemented by cortical circuits.
Collapse
|
8
|
Mikula L, Jacob M, Tran T, Pisella L, Khan AZ. Spatial and temporal dynamics of presaccadic attentional facilitation before pro- and antisaccades. J Vis 2019; 18:2. [PMID: 30326049 DOI: 10.1167/18.11.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The premotor theory of attention and the visual attention model make different predictions about the temporal and spatial allocation of presaccadic attentional facilitation. The current experiment investigated the spatial and temporal dynamics of presaccadic attentional facilitation during pro- and antisaccade planning; we investigated whether attention shifts only to the saccade goal location or to the target location or elsewhere, and when. Participants performed a dual-task paradigm with blocks of either anti- or prosaccades and also discriminated symbols appearing at different locations before saccade onset (measure of attentional allocation). In prosaccades blocks, correct prosaccade discrimination was best at the target location, while during errors, discrimination was best at the location opposite to the target location. This pattern was inversed in antisaccades blocks, although discrimination remained high opposite to the target location. In addition, we took the benefit of a large range of saccadic landing positions and showed that performance across both types of saccades was best at the actual saccade goal location (where the eye will actually land) rather than at the instructed position. Finally, temporal analyses showed that discrimination remained highest at the saccade goal location, from long before to closer to saccade onset, increasing slightly for antisaccades closer to saccade onset. These findings are in line with the premises of the premotor theory of attention, showing that attentional allocation is primarily linked both temporally and spatially to the saccade goal location.
Collapse
Affiliation(s)
- Laura Mikula
- School of Optometry, University of Montreal, Montreal, QC, Canada.,ImpAct team, Centre de Recherche en Neurosciences de Lyon (CRNL), Bron, France
| | - Marilyn Jacob
- School of Optometry, University of Montreal, Montreal, QC, Canada
| | - Trang Tran
- School of Optometry, University of Montreal, Montreal, QC, Canada
| | - Laure Pisella
- ImpAct team, Centre de Recherche en Neurosciences de Lyon (CRNL), Bron, France
| | - Aarlenne Z Khan
- School of Optometry, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
9
|
Abstract
Saccadic eye movements move the high-resolution fovea to point at regions of interest. Saccades can only be generated serially (i.e., one at a time). However, what remains unclear is the extent to which saccades are programmed in parallel (i.e., a series of such moments can be planned together) and how far ahead such planning occurs. In the current experiment, we investigate this issue with a saccade contingent preview paradigm. Participants were asked to execute saccadic eye movements in response to seven small circles presented on a screen. The extent to which participants were given prior information about target locations was varied on a trial-by-trial basis: participants were aware of the location of the next target only, the next three, five, or all seven targets. The addition of new targets to the display was made during the saccade to the next target in the sequence. The overall time taken to complete the sequence was decreased as more targets were available up to all seven targets. This was a result of a reduction in the number of saccades being executed and a reduction in their saccade latencies. Surprisingly, these results suggest that, when faced with a demand to saccade to a large number of target locations, saccade preparation about all target locations is carried out in parallel.
Collapse
|
10
|
Aponte EA, Tschan DG, Stephan KE, Heinzle J. Inhibition failures and late errors in the antisaccade task: influence of cue delay. J Neurophysiol 2018; 120:3001-3016. [PMID: 30110237 DOI: 10.1152/jn.00240.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the antisaccade task participants are required to saccade in the opposite direction of a peripheral visual cue (PVC). This paradigm is often used to investigate inhibition of reflexive responses as well as voluntary response generation. However, it is not clear to what extent different versions of this task probe the same underlying processes. Here, we explored with the Stochastic Early Reaction, Inhibition, and late Action (SERIA) model how the delay between task cue and PVC affects reaction time (RT) and error rate (ER) when pro- and antisaccade trials are randomly interleaved. Specifically, we contrasted a condition in which the task cue was presented before the PVC with a condition in which the PVC served also as task cue. Summary statistics indicate that ERs and RTs are reduced and contextual effects largely removed when the task is signaled before the PVC appears. The SERIA model accounts for RT and ER in both conditions and better so than other candidate models. Modeling demonstrates that voluntary pro- and antisaccades are frequent in both conditions. Moreover, early task cue presentation results in better control of reflexive saccades, leading to fewer fast antisaccade errors and more rapid correct prosaccades. Finally, high-latency errors are shown to be prevalent in both conditions. In summary, SERIA provides an explanation for the differences in the delayed and nondelayed antisaccade task. NEW & NOTEWORTHY In this article, we use a computational model to study the mixed antisaccade task. We contrast two conditions in which the task cue is presented either before or concurrently with the saccadic target. Modeling provides a highly accurate account of participants' behavior and demonstrates that a significant number of prosaccades are voluntary actions. Moreover, we provide a detailed quantitative analysis of the types of error that occur in pro- and antisaccade trials.
Collapse
Affiliation(s)
- Eduardo A Aponte
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich . Zurich , Switzerland
| | - Dominic G Tschan
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich . Zurich , Switzerland
| | - Klaas E Stephan
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich . Zurich , Switzerland.,Wellcome Centre for Human Neuroimaging, University College London . London , United Kingdom.,Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Jakob Heinzle
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich . Zurich , Switzerland
| |
Collapse
|
11
|
Coe BC, Munoz DP. Mechanisms of saccade suppression revealed in the anti-saccade task. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0192. [PMID: 28242726 DOI: 10.1098/rstb.2016.0192] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2016] [Indexed: 01/03/2023] Open
Abstract
The anti-saccade task has emerged as an important tool for investigating the complex nature of voluntary behaviour. In this task, participants are instructed to suppress the natural response to look at a peripheral visual stimulus and look in the opposite direction instead. Analysis of saccadic reaction times (SRT: the time from stimulus appearance to the first saccade) and the frequency of direction errors (i.e. looking toward the stimulus) provide insight into saccade suppression mechanisms in the brain. Some direction errors are reflexive responses with very short SRTs (express latency saccades), while other direction errors are driven by automated responses and have longer SRTs. These different types of errors reveal that the anti-saccade task requires different forms of suppression, and neurophysiological experiments in macaques have revealed several potential mechanisms. At the start of an anti-saccade trial, pre-emptive top-down inhibition of saccade generating neurons in the frontal eye fields and superior colliculus must be present before the stimulus appears to prevent express latency direction errors. After the stimulus appears, voluntary anti-saccade commands must compete with, and override, automated visually initiated saccade commands to prevent longer latency direction errors. The frequencies of these types of direction errors, as well as SRTs, change throughout the lifespan and reveal time courses for development, maturation, and ageing. Additionally, patients diagnosed with a variety of neurological and/or psychiatric disorders affecting the frontal lobes and/or basal ganglia produce markedly different SRT distributions and types of direction errors, which highlight specific deficits in saccade suppression and inhibitory control. The anti-saccade task therefore provides valuable insight into the neural mechanisms of saccade suppression and is a valuable tool in a clinical setting.This article is part of the themed issue 'Movement suppression: brain mechanisms for stopping and stillness'.
Collapse
Affiliation(s)
- Brian C Coe
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada K7l 3N6
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada K7l 3N6
| |
Collapse
|
12
|
McCoy B, Theeuwes J. Overt and covert attention to location-based reward. Vision Res 2017; 142:27-39. [PMID: 29100871 PMCID: PMC5773241 DOI: 10.1016/j.visres.2017.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 11/15/2022]
Abstract
Recent research on the impact of location-based reward on attentional orienting has indicated that reward factors play an influential role in spatial priority maps. The current study investigated whether and how reward associations based on spatial location translate from overt eye movements to covert attention. If reward associations can be tied to locations in space, and if overt and covert attention rely on similar overlapping neuronal populations, then both overt and covert attentional measures should display similar spatial-based reward learning. Our results suggest that location- and reward-based changes in one attentional domain do not lead to similar changes in the other. Specifically, although we found similar improvements at differentially rewarded locations during overt attentional learning, this translated to the least improvement at a highly rewarded location during covert attention. We interpret this as the result of an increased motivational link between the high reward location and the trained eye movement response acquired during learning, leading to a relative slowing during covert attention when the eyes remained fixated and the saccade response was suppressed. In a second experiment participants were not required to keep fixated during the covert attention task and we no longer observed relative slowing at the high reward location. Furthermore, the second experiment revealed no covert spatial priority of rewarded locations. We conclude that the transfer of location-based reward associations is intimately linked with the reward-modulated motor response employed during learning, and alternative attentional and task contexts may interfere with learned spatial priorities.
Collapse
Affiliation(s)
- Brónagh McCoy
- Department of Experimental and Applied Psychology, VU University Amsterdam, Amsterdam, The Netherlands.
| | - Jan Theeuwes
- Department of Experimental and Applied Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Caffeine increases the velocity of rapid eye movements in unfatigued humans. Psychopharmacology (Berl) 2017; 234:2311-2323. [PMID: 28536868 DOI: 10.1007/s00213-017-4638-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 05/02/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Caffeine is a widely used dietary stimulant that can reverse the effects of fatigue on cognitive, motor and oculomotor function. However, few studies have examined the effect of caffeine on the oculomotor system when homeostasis has not been disrupted by physical fatigue. This study examined the influence of a moderate dose of caffeine on oculomotor control and visual perception in participants who were not fatigued. METHODS Within a placebo-controlled crossover design, 13 healthy adults ingested caffeine (5 mg·kg-1 body mass) and were tested over 3 h. Eye movements, including saccades, smooth pursuit and optokinetic nystagmus, were measured using infrared oculography. RESULTS Caffeine was associated with higher peak saccade velocities (472 ± 60° s-1) compared to placebo (455 ± 62° s-1). Quick phases of optokinetic nystagmus were also significantly faster with caffeine, whereas pursuit eye movements were unchanged. Non-oculomotor perceptual tasks (global motion and global orientation processing) were unaffected by caffeine. CONCLUSIONS These results show that oculomotor control is modulated by a moderate dose of caffeine in unfatigued humans. These effects are detectable in the kinematics of rapid eye movements, whereas pursuit eye movements and visual perception are unaffected. Oculomotor functions may be sensitive to changes in central catecholamines mediated via caffeine's action as an adenosine antagonist, even when participants are not fatigued.
Collapse
|
14
|
McSorley E, McCloy R, Williams L. The Concurrent Programming of Saccades. PLoS One 2016; 11:e0168724. [PMID: 28005964 PMCID: PMC5179120 DOI: 10.1371/journal.pone.0168724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 12/05/2016] [Indexed: 11/19/2022] Open
Abstract
Sequences of saccades have been shown to be prepared concurrently however it remains unclear exactly what aspects of those saccades are programmed in parallel. To examine this participants were asked to make one or two target-driven saccades: a reflexive saccade; a voluntary saccade; a reflexive then a voluntary saccade; or vice versa. During the first response the position of a second target was manipulated. The new location of the second saccade target was found to impact on second saccade latencies and second saccade accuracy showing that some aspects of the second saccade program are prepared in parallel with the first. However, differences were found in the specific pattern of effects for each sequence type. These differences fit well within a general framework for saccade control in which a common priority map for saccade control is computed and the influence of saccade programs on one another depends not so much on the types of saccade being produced but rather on the rate at which their programs develop.
Collapse
Affiliation(s)
- Eugene McSorley
- School of Psychology & Clinical Language Sciences, University of Reading, Reading, Berkshire, United Kingdom
- * E-mail:
| | - Rachel McCloy
- School of Psychology & Clinical Language Sciences, University of Reading, Reading, Berkshire, United Kingdom
| | - Louis Williams
- School of Psychology & Clinical Language Sciences, University of Reading, Reading, Berkshire, United Kingdom
| |
Collapse
|
15
|
Lo CC, Wang XJ. Conflict Resolution as Near-Threshold Decision-Making: A Spiking Neural Circuit Model with Two-Stage Competition for Antisaccadic Task. PLoS Comput Biol 2016; 12:e1005081. [PMID: 27551824 PMCID: PMC4995026 DOI: 10.1371/journal.pcbi.1005081] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 07/23/2016] [Indexed: 11/18/2022] Open
Abstract
Automatic responses enable us to react quickly and effortlessly, but they often need to be inhibited so that an alternative, voluntary action can take place. To investigate the brain mechanism of controlled behavior, we investigated a biologically-based network model of spiking neurons for inhibitory control. In contrast to a simple race between pro- versus anti-response, our model incorporates a sensorimotor remapping module, and an action-selection module endowed with a “Stop” process through tonic inhibition. Both are under the modulation of rule-dependent control. We tested the model by applying it to the well known antisaccade task in which one must suppress the urge to look toward a visual target that suddenly appears, and shift the gaze diametrically away from the target instead. We found that the two-stage competition is crucial for reproducing the complex behavior and neuronal activity observed in the antisaccade task across multiple brain regions. Notably, our model demonstrates two types of errors: fast and slow. Fast errors result from failing to inhibit the quick automatic responses and therefore exhibit very short response times. Slow errors, in contrast, are due to incorrect decisions in the remapping process and exhibit long response times comparable to those of correct antisaccade responses. The model thus reveals a circuit mechanism for the empirically observed slow errors and broad distributions of erroneous response times in antisaccade. Our work suggests that selecting between competing automatic and voluntary actions in behavioral control can be understood in terms of near-threshold decision-making, sharing a common recurrent (attractor) neural circuit mechanism with discrimination in perception. We propose a novel neural circuit mechanism and construct a spiking neural network model for resolving conflict between an automatic response and a volitional one. In this mechanism the two types of responses compete against each other under the modulation of top-down control via multiple neural pathways. The model is able to reproduce a wide range of neuronal and behavioral features observed in various studies and provides insights into not just how subjects make correct responses and fast errors, but also why they make slow errors, a type of error often overlooked by previous modeling studies. The model suggests critical roles of tonic (non-racing) top-down inhibition and near-threshold decision-making in neural competition.
Collapse
Affiliation(s)
- Chung-Chuan Lo
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail: (CCL); (XJW)
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, New York, United States of America
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
- * E-mail: (CCL); (XJW)
| |
Collapse
|
16
|
Gillen C, Heath M. Target frequency influences antisaccade endpoint bias: Evidence for perceptual averaging. Vision Res 2014; 105:151-8. [DOI: 10.1016/j.visres.2014.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/10/2014] [Accepted: 10/14/2014] [Indexed: 11/29/2022]
|
17
|
Functional magnetic resonance imaging of sensorimotor transformations in saccades and antisaccades. Neuroimage 2014; 102 Pt 2:848-60. [DOI: 10.1016/j.neuroimage.2014.08.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/10/2014] [Accepted: 08/20/2014] [Indexed: 11/17/2022] Open
|
18
|
Chapman BB, Corneil BD. Short-duration stimulation of the supplementary eye fields perturbs anti-saccade performance while potentiating contralateral head orienting. Eur J Neurosci 2014; 39:295-307. [PMID: 24417515 DOI: 10.1111/ejn.12403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 09/30/2013] [Indexed: 11/29/2022]
Abstract
Many forms of brain stimulation utilize the notion of state dependency, whereby greater influences are observed when a given area is more engaged at the time of stimulation. Here, by delivering intracortical microstimulation (ICMS) to the supplementary eye fields (SEF) of monkeys performing interleaved pro- and anti-saccades, we show a surprising diversity of state-dependent effects of ICMS-SEF. Short-duration ICMS-SEF passed around cue presentation selectively disrupted anti-saccades by increasing reaction times and error rates bilaterally, and also recruited neck muscles, favoring contralateral head turning to a greater degree on anti-saccade trials. These results are consistent with the functional relevance of the SEF for anti-saccades. The multiplicity of stimulation-evoked effects, with ICMS-SEF simultaneously disrupting anti-saccade performance and facilitating contralateral head orienting, probably reflects both the diversity of cortical and subcortical targets of SEF projections, and the response of this oculomotor network to stimulation. We speculate that the bilateral disruption of anti-saccades arises via feedback loops that may include the thalamus, whereas neck muscle recruitment arises via feedforward polysynaptic pathways to the motor periphery. Consideration of both sets of results reveals a more complete picture of the highly complex and multiphasic response to ICMS-SEF that can play out differently in different effector systems.
Collapse
|
19
|
Skoblenick K, Everling S. N-methyl-d-aspartate receptor antagonist ketamine impairs action-monitoring activity in the prefrontal cortex. J Cogn Neurosci 2013; 26:577-92. [PMID: 24188365 DOI: 10.1162/jocn_a_00519] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Failures in monitoring of self-generated actions are thought to underlie the positive symptoms in schizophrenia. It has been hypothesized that these deficits may be caused by a dysfunction of N-methyl-d-aspartate receptors (NMDARs). Here we recorded the activity of prefrontal neurons in monkeys performing an antisaccade task, while we administered a subanesthetic dose of the noncompetitive NMDAR antagonist ketamine. Many neurons discriminated between correct antisaccades and response errors in their postresponse activity. Ketamine increased the activity for the neurons' nonpreferred response, thereby decreasing the neurons' performance selectivity. Ketamine also affected the monkeys' behavior after an error, consistent with a deficit in error detection. The results show that NMDARs play an important role in action monitoring in primates. The decrease in performance selectivity of prefrontal neurons after ketamine can help to explain the deficits in action monitoring found in humans after ketamine administration and provides support for the hypothesis that an NMDAR dysfunction underlies self-monitoring deficits and psychotic symptoms in schizophrenia.
Collapse
|
20
|
Terao Y, Fukuda H, Ugawa Y, Hikosaka O. New perspectives on the pathophysiology of Parkinson's disease as assessed by saccade performance: a clinical review. Clin Neurophysiol 2013; 124:1491-506. [PMID: 23499161 PMCID: PMC11479665 DOI: 10.1016/j.clinph.2013.01.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 01/01/2013] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
We reviewed basal ganglia (BG) dysfunction in Parkinson's disease (PD) based on recent findings on saccade performance. Hypometria in all saccade paradigms and impaired initiation of internally triggered saccades such as memory guided saccades (MGS) are reported, whereas visually guided saccades (VGS) are relatively spared, although they are also mildly affected. The ability to inhibit unwanted saccades is also impaired. We propose that three major drives converges on SC to determine the saccade abnormalities. The impairment in VGS may be caused by the excessive inhibition of SC due to the increased BG output, whereas for MGS, decreased activity of the frontal cortex-BG circuit may also be involved. The impaired suppression of unwanted saccades may result from the "leaky" inhibition of SC. When PD patients inspect pictures, they end up exploring a smaller area of them with smaller saccades compared to normal subjects. Levodopa slightly prolongs VGS latency and shortens MGS latency, by altering the balance between the direct and indirect pathways of the BG circuit. In contrast, deep brain stimulation of the subthalamic nucleus improves saccade hypometria in both VGS and MGS, presumably by acting relatively directly on the SC-substantia nigra pars reticulata pathway to remove the excessive SC inhibition.
Collapse
Affiliation(s)
- Yasuo Terao
- Department of Neurology, University of Tokyo, Japan.
| | | | | | | |
Collapse
|
21
|
Bonnet C, Hanuška J, Rusz J, Rivaud-Péchoux S, Sieger T, Majerová V, Serranová T, Gaymard B, Růžička E. Horizontal and vertical eye movement metrics: what is important? Clin Neurophysiol 2013; 124:2216-29. [PMID: 23806744 DOI: 10.1016/j.clinph.2013.05.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 04/19/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To assist other eye movement investigators in the design and analysis of their studies. METHODS We examined basic saccadic eye movements and smooth pursuit in the horizontal and vertical directions with video-oculography in a group of 145 healthy subjects between 19 and 82 years of age. RESULTS Gender and education level did not influence eye movement metrics. With age, the latency of leftward and vertical pro- and antisaccades increased (p<0.001), velocity of upward prosaccades decreased (p<0.001), gain of rightward and upward prosaccades diminished (p<0.001), and the error rate of antisaccades increased (p<0.001). Prosaccades and antisaccades were influenced by the direction of the target, resulting in a right/left and up/down asymmetry. The skewness of the saccade velocity profile was stable throughout the lifespan, and within the range of saccades analyzed in the present study, correlated with amplitude and duration only for antisaccades (p<0.001). CONCLUSIONS Some eye movement metrics must be separated by the direction of movement, others according to subject age, while others may be pooled. SIGNIFICANCE This study provides important information for new oculomotor laboratories concerning the constitution of subject groups and the analysis of eye movement metrics.
Collapse
Affiliation(s)
- Cecilia Bonnet
- Dept. of Neurology and Centre of Clinical Neuroscience, Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jantz JJ, Watanabe M, Everling S, Munoz DP. Threshold mechanism for saccade initiation in frontal eye field and superior colliculus. J Neurophysiol 2013; 109:2767-80. [PMID: 23486198 DOI: 10.1152/jn.00611.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In an influential model of frontal eye field (FEF) and superior colliculus (SC) activity, saccade initiation occurs when the discharge rate of either single neurons or a population of neurons encoding a saccade motor plan reaches a threshold level of activity. Conflicting evidence exists for whether this threshold is fixed or can change under different conditions. We tested the fixed-threshold hypothesis at the single-neuron and population levels to help resolve the inconsistency between previous studies. Two rhesus monkeys performed a randomly interleaved pro- and antisaccade task in which they had to look either toward (pro) or 180° away (anti) from a peripheral visual stimulus. We isolated visuomotor (VM) and motor (M) neurons in the FEF and SC and tested three specific predictions of a fixed-threshold hypothesis. We found little support for fixed thresholds. First, correlations were never totally absent between presaccadic discharge rate and saccadic reaction time when examining a larger (plausible) temporal period. Second, presaccadic discharge rates varied markedly between saccade tasks. Third, visual responses exceeded presaccadic motor discharges for FEF and SC VM neurons. We calculated that only a remarkably strong bias for M neurons in downstream projections could render the fixed-threshold hypothesis plausible at the population level. Also, comparisons of gap vs. overlap conditions indicate that increased inhibitory tone may be associated with stability of thresholds. We propose that fixed thresholds are the exception rather than the rule in FEF and SC, and that stabilization of an otherwise variable threshold depends on task-related, inhibitory modulation.
Collapse
Affiliation(s)
- Jay J Jantz
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
23
|
Neural activity in the macaque putamen associated with saccades and behavioral outcome. PLoS One 2012; 7:e51596. [PMID: 23251586 PMCID: PMC3519730 DOI: 10.1371/journal.pone.0051596] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 11/07/2012] [Indexed: 11/30/2022] Open
Abstract
It is now widely accepted that the basal ganglia nuclei form segregated, parallel loops with neocortical areas. The prevalent view is that the putamen is part of the motor loop, which receives inputs from sensorimotor areas, whereas the caudate, which receives inputs from frontal cortical eye fields and projects via the substantia nigra pars reticulata to the superior colliculus, belongs to the oculomotor loop. Tracer studies in monkeys and functional neuroimaging studies in human subjects, however, also suggest a potential role for the putamen in oculomotor control. To investigate the role of the putamen in saccadic eye movements, we recorded single neuron activity in the caudal putamen of two rhesus monkeys while they alternated between short blocks of pro- and anti-saccades. In each trial, the instruction cue was provided after the onset of the peripheral stimulus, thus the monkeys could either generate an immediate response to the stimulus based on the internal representation of the rule from the previous trial, or alternatively, could await the visual rule-instruction cue to guide their saccadic response. We found that a subset of putamen neurons showed saccade-related activity, that the preparatory mode (internally- versus externally-cued) influenced the expression of task-selectivity in roughly one third of the task-modulated neurons, and further that a large proportion of neurons encoded the outcome of the saccade. These results suggest that the caudal putamen may be part of the neural network for goal-directed saccades, wherein the monitoring of saccadic eye movements, context and performance feedback may be processed together to ensure optimal behavioural performance and outcomes are achieved during ongoing behaviour.
Collapse
|
24
|
Saccadic eye movements in children: a developmental study. Exp Brain Res 2012; 222:21-30. [PMID: 22836522 DOI: 10.1007/s00221-012-3192-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022]
Abstract
To our knowledge, there are no studies exploring the development of voluntary and reflexive saccades in children using different types of paradigms to investigate horizontal saccades. In the present study, we examined the development of horizontal saccades in children aged 6-15 years. Binocular eye movements were recorded using an infrared video-oculography system (mobileEBT(®), e(ye)BRAIN) in seventy-two children (aged 6-15). Several paradigms were used to stimulate reflexive and voluntary horizontal saccades: gap, step and overlap paradigms. Horizontal anti-saccades were also examined. In all paradigms, the latency of saccades decreased with the age of children and it did not depend on the direction of the saccades (left/right); the error rate in the anti-saccade task decreased with age; the gain of horizontal saccades improved with age; the peak velocity of horizontal saccades was stable throughout childhood. We conclude that saccadic performances are influenced by age and cortical circuits responsible for the preparation of reflexive or voluntary saccades are completed at 12 years old. These data could be used as reference values for further studies dealing with pathologic development.
Collapse
|
25
|
Frontal cortical regions controlling small and large amplitude saccades – A TMS study. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.baga.2011.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Abstract
Most of the human behaviors are executed automatically under familiar circumstances. These behaviors are prepotent in that they take precedence over any other potential alternatives. Yet, humans are also capable of engaging cognitive resources to inhibit such a prepotent behavior and replace it with an alternative controlled behavior in response to an unforeseen situation. This remarkable capability to switch behaviors in a short period of time is the hallmark of executive functions. In this article, we first argue that the prepotent automaticity could emerge at least in three different domains - innate, habitual and motivational. We then review neurophysiological findings on how the brain might realize its switching functions in each domain, primarily by focusing on the monkey oculomotor system as the experimental model. Emerging evidence now suggests that multiple neuronal populations in the shared cortico-basal ganglia network contribute to overriding prepotent eye movement, be its origin innate, habitual or motivational. This consideration suggests the general versatility of the cortico-basal ganglia network as the neural mechanism whereby humans and other animals keep themselves from becoming subservient to reflex, habit and motivational impulses.
Collapse
Affiliation(s)
- Masaki Isoda
- Unit on Neural Systems and Behavior, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0412, Japan.
| | | |
Collapse
|
27
|
Hu Y, Walker R. The neural basis of parallel saccade programming: an fMRI study. J Cogn Neurosci 2011; 23:3669-80. [PMID: 21563883 DOI: 10.1162/jocn_a_00048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The neural basis of parallel saccade programming was examined in an event-related fMRI study using a variation of the double-step saccade paradigm. Two double-step conditions were used: one enabled the second saccade to be partially programmed in parallel with the first saccade while in a second condition both saccades had to be prepared serially. The intersaccadic interval, observed in the parallel programming (PP) condition, was significantly reduced compared with latency in the serial programming (SP) condition and also to the latency of single saccades in control conditions. The fMRI analysis revealed greater activity (BOLD response) in the frontal and parietal eye fields for the PP condition compared with the SP double-step condition and when compared with the single-saccade control conditions. By contrast, activity in the supplementary eye fields was greater for the double-step condition than the single-step condition but did not distinguish between the PP and SP requirements. The role of the frontal eye fields in PP may be related to the advanced temporal preparation and increased salience of the second saccade goal that may mediate activity in other downstream structures, such as the superior colliculus. The parietal lobes may be involved in the preparation for spatial remapping, which is required in double-step conditions. The supplementary eye fields appear to have a more general role in planning saccade sequences that may be related to error monitoring and the control over the execution of the correct sequence of responses.
Collapse
Affiliation(s)
- Yanbo Hu
- University of London, Egham, Surrey, UK
| | | |
Collapse
|
28
|
Chiau HY, Tseng P, Su JH, Tzeng OJL, Hung DL, Muggleton NG, Juan CH. Trial type probability modulates the cost of antisaccades. J Neurophysiol 2011; 106:515-26. [PMID: 21543748 DOI: 10.1152/jn.00399.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The antisaccade task, where eye movements are made away from a target, has been used to investigate the flexibility of cognitive control of behavior. Antisaccades usually have longer saccade latencies than prosaccades, the so-called antisaccade cost. Recent studies have shown that this antisaccade cost can be modulated by event probability. This may mean that the antisaccade cost can be reduced, or even reversed, if the probability of surrounding events favors the execution of antisaccades. The probabilities of prosaccades and antisaccades were systematically manipulated by changing the proportion of a certain type of trial in an interleaved pro/antisaccades task. We aimed to disentangle the intertwined relationship between trial type probabilities and the antisaccade cost with the ultimate goal of elucidating how probabilities of trial types modulate human flexible behaviors, as well as the characteristics of such modulation effects. To this end, we examined whether implicit trial type probability can influence saccade latencies and also manipulated the difficulty of cue discriminability to see how effects of trial type probability would change when the demand on visual perceptual analysis was high or low. A mixed-effects model was applied to the analysis to dissect the factors contributing to the modulation effects of trial type probabilities. Our results suggest that the trial type probability is one robust determinant of antisaccade cost. These findings highlight the importance of implicit probability in the flexibility of cognitive control of behavior.
Collapse
Affiliation(s)
- Hui-Yan Chiau
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
29
|
Chapman BB, Corneil BD. Neuromuscular recruitment related to stimulus presentation and task instruction during the anti-saccade task. Eur J Neurosci 2010; 33:349-60. [DOI: 10.1111/j.1460-9568.2010.07496.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Karatekin C, Bingham C, White T. Oculomotor and pupillometric indices of pro- and antisaccade performance in youth-onset psychosis and attention deficit/hyperactivity disorder. Schizophr Bull 2010; 36:1167-86. [PMID: 19429843 PMCID: PMC2963044 DOI: 10.1093/schbul/sbp035] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The goals of the study were to examine inhibitory deficits on the antisaccade task in 8- to 20-year olds with youth-onset psychosis or attention deficit/hyperactivity disorder (ADHD) and healthy controls and to examine if age-related changes in performance differed across groups. In addition to the conventional measures of performance, pupillary dilations were used to obtain estimates of phasic and tonic level of arousal. Results showed that the psychosis, but not the ADHD, group had elevated antisaccade error rates; however, variability of error rates was high in all groups. These inhibitory failures were accompanied by a lower level of momentary cognitive effort (as indexed by pupillary dilations). The largest differences between the control and clinical groups were found not in the expected indices of inhibition but in the probability of correcting inhibitory errors and in variability of antisaccade response times, which were correlated with each other. These findings did not appear to be attributable to a deficit in maintaining task instructions in mind in either disorder or lack of motivation in ADHD. Instead, results point to impairments in both clinical groups in sustaining attention on a trial-by-trial basis, resulting in deficits in self-monitoring. Thus, results show inhibitory deficits in the context of more general attentional impairments in both disorders.
Collapse
Affiliation(s)
- Canan Karatekin
- Institute of Child Development, University of Minnesota, 51 East River Road, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
31
|
Khan AZ, Heinen SJ, McPeek RM. Attentional cueing at the saccade goal, not at the target location, facilitates saccades. J Neurosci 2010; 30:5481-8. [PMID: 20410101 PMCID: PMC2865435 DOI: 10.1523/jneurosci.4437-09.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 03/01/2010] [Accepted: 03/05/2010] [Indexed: 11/21/2022] Open
Abstract
Presenting a behaviorally irrelevant cue shortly before a target at the same location decreases the latencies of saccades to the target, a phenomenon known as exogenous attention facilitation. It remains unclear whether exogenous attention interacts with early, sensory stages or later, motor planning stages of saccade production. To distinguish between these alternatives, we used a saccadic adaptation paradigm to dissociate the location of the visual target from the saccade goal. Three male and four female human subjects performed both control trials, in which saccades were made to one of two target eccentricities, and adaptation trials, in which the target was shifted from one location to the other during the saccade. This manipulation adapted saccades so that they eventually were directed to the shifted location. In both conditions, a behaviorally irrelevant cue was flashed 66.7 ms before target appearance at a randomly selected one of seven positions that included the two target locations. In control trials, saccade latencies were shortest when the cue was presented at the target location and increased with cue-target distance. In contrast, adapted saccade latencies were shortest when the cue was presented at the adapted saccade goal, and not at the visual target location. The dynamics of adapted saccades were also altered, consistent with prior adaptation studies, except when the cue was flashed at the saccade goal. Overall, the results suggest that attentional cueing facilitates saccade planning rather than visual processing of the target.
Collapse
Affiliation(s)
- Aarlenne Z. Khan
- The Smith-Kettlewell Eye Research Institute, San Francisco, California 94115
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada, and
| | - Stephen J. Heinen
- The Smith-Kettlewell Eye Research Institute, San Francisco, California 94115
| | - Robert M. McPeek
- The Smith-Kettlewell Eye Research Institute, San Francisco, California 94115
- Department of Biological Sciences, SUNY College of Optometry, New York, New York 10036
| |
Collapse
|
32
|
Meeter M, Van der Stigchel S, Theeuwes J. A competitive integration model of exogenous and endogenous eye movements. BIOLOGICAL CYBERNETICS 2010; 102:271-291. [PMID: 20162429 DOI: 10.1007/s00422-010-0365-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 01/23/2010] [Indexed: 05/28/2023]
Abstract
We present a model of the eye movement system in which the programming of an eye movement is the result of the competitive integration of information in the superior colliculi (SC). This brain area receives input from occipital cortex, the frontal eye fields, and the dorsolateral prefrontal cortex, on the basis of which it computes the location of the next saccadic target. Two critical assumptions in the model are that cortical inputs are not only excitatory, but can also inhibit saccades to specific locations, and that the SC continue to influence the trajectory of a saccade while it is being executed. With these assumptions, we account for many neurophysiological and behavioral findings from eye movement research. Interactions within the saccade map are shown to account for effects of distractors on saccadic reaction time (SRT) and saccade trajectory, including the global effect and oculomotor capture. In addition, the model accounts for express saccades, the gap effect, saccadic reaction times for antisaccades, and recorded responses from neurons in the SC and frontal eye fields in these tasks.
Collapse
Affiliation(s)
- Martijn Meeter
- Department of Cognitive Psychology, Vrije Universiteit, Van Der Boechorststraat 1, 1081 BT, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
33
|
Liu CL, Chiau HY, Tseng P, Hung DL, Tzeng OJL, Muggleton NG, Juan CH. Antisaccade cost is modulated by contextual experience of location probability. J Neurophysiol 2009; 103:1438-47. [PMID: 20032240 DOI: 10.1152/jn.00815.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is well known that pro- and antisaccades may deploy different cognitive processes. However, the specific reason why antisaccades have longer latencies than prosaccades is still under debate. In three experiments, we studied the factors contributing to the antisaccade cost by taking attentional orienting and target location probabilities into account. In experiment 1, using a new antisaccade paradigm, we directly tested Olk and Kingstone's hypothesis, which attributes longer antisaccade latency to the time it takes to reorient from the visual target to the opposite saccadic target. By eliminating the reorienting component in our paradigm, we found no significant difference between the latencies of the two saccade types. In experiment 2, we varied the proportion of prosaccades made to certain locations and found that latencies in the high location-probability (75%) condition were faster than those in the low location-probability condition. Moreover, antisaccade latencies were significantly longer when location probability was high. This pattern can be explained by the notion of competing pathways for pro- and antisaccades in findings of others. In experiment 3, we further explored the degrees of modulation of location probability by decreasing the magnitude of high probability from 75 to 65%. We again observed a pattern similar to that seen in experiment 2 but with smaller modulation effects. Together, these experiments indicate that the reorienting process is a critical factor in producing the antisaccade cost. Furthermore, the antisaccade cost can be modulated by probabilistic contextual information such as location probabilities.
Collapse
Affiliation(s)
- Chia-Lun Liu
- Inst. of Cognitive Neuroscience, National Central Univ., No.300, Jhongda Rd., Jhongli City 320, Taiwan
| | | | | | | | | | | | | |
Collapse
|
34
|
Identifying sites of saccade amplitude plasticity in humans: transfer of adaptation between different types of saccade. Exp Brain Res 2009; 202:129-45. [DOI: 10.1007/s00221-009-2118-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 11/25/2009] [Indexed: 10/20/2022]
|
35
|
Campanella S, Petit G, Maurage P, Kornreich C, Verbanck P, Noël X. Chronic alcoholism: insights from neurophysiology. Neurophysiol Clin 2009; 39:191-207. [PMID: 19853791 DOI: 10.1016/j.neucli.2009.08.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 08/10/2009] [Accepted: 08/10/2009] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Increasing knowledge of the anatomical structures and cellular processes underlying psychiatric disorders may help bridge the gap between clinical signs and basic physiological processes. Accordingly, considerable insight has been gained in recent years into a common psychiatric condition, i.e., chronic alcoholism. MATERIAL AND METHODS We reviewed various physiological parameters that are altered in chronic alcoholic patients compared to healthy individuals--continuous electroencephalogram, oculomotor measures, cognitive event-related potentials and event-related oscillations--to identify links between these physiological parameters, altered cognitive processes and specific clinical symptoms. RESULTS Alcoholic patients display: (1) high beta and theta power in the resting electroencephalogram, suggesting hyperarousal of their central nervous system; (2) abnormalities in smooth pursuit eye movements, in saccadic inhibition during antisaccade tasks, and in prepulse inhibition, suggesting disturbed attention modulation and abnormal patterns of prefrontal activation that may stem from the same prefrontal "inhibitory" cortical dysfunction; (3) decreased amplitude for cognitive event-related potentials situated along the continuum of information-processing, suggesting that alcoholism is associated with neurophysiological deficits at the level of the sensory cortex and not only disturbances involving associative cortices and limbic structures; and (4) decreased theta, gamma and delta oscillations, suggesting cognitive disinhibition at a functional level. DISCUSSION The heterogeneity of alcoholic disorders in terms of symptomatology, course and outcome is the result of various pathophysiological processes that physiological parameters may help to define. These alterations may be related to precise cognitive processes that could be easily monitored neurophysiologically in order to create more homogeneous subgroups of alcoholic individuals.
Collapse
Affiliation(s)
- S Campanella
- Laboratory of Medical Psychology, Psychiatry Department, CHU Brugmann, University of Brussels, 4, place Vangehuchten, 1020 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
36
|
Ford KA, Everling S. Neural activity in primate caudate nucleus associated with pro- and antisaccades. J Neurophysiol 2009; 102:2334-41. [PMID: 19692516 DOI: 10.1152/jn.00125.2009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The basal ganglia (BG) play a central role in movement and it has been demonstrated that the discharge rate of neurons in these structures are modulated by the behavioral context of a given task. Here we used the antisaccade task, in which a saccade toward a flashed visual stimulus must be inhibited in favor of a saccade to the opposite location, to investigate the role of the caudate nucleus, a major input structure of the BG, in flexible behavior. In this study, we recorded extracellular neuronal activity while monkeys performed pro- and antisaccade trials. We identified two populations of neurons: those that preferred contralateral saccades (CSNs) and those that preferred ipsilateral saccades (ISNs). CSNs increased their firing rates for prosaccades, but not for antisaccades, and ISNs increased their firing rates for antisaccades, but not for prosaccades. We propose a model in which CSNs project to the direct BG pathway, facilitating saccades, and ISNs project to the indirect pathway, suppressing saccades. This model suggests one possible mechanism by which these neuronal populations could be modulating activity in the superior colliculus.
Collapse
Affiliation(s)
- Kristen A Ford
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | | |
Collapse
|
37
|
Campanella S, Guerit JM. How clinical neurophysiology may contribute to the understanding of a psychiatric disease such as schizophrenia. Neurophysiol Clin 2009; 39:31-9. [PMID: 19268845 DOI: 10.1016/j.neucli.2008.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 11/20/2008] [Accepted: 12/10/2008] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION The increasing knowledge about anatomical structures and cellular processes underlying psychiatric disorders may help bridge the gap between clinical manifestations and basic physiological processes. Accordingly, important insights have been brought these last years into a main psychiatric affection, i.e. schizophrenia. MATERIAL AND METHODS Here we reviewed and described, by comparison to healthy people, different physiological parameters - oculomotor measures, startle response, and cognitive event related potentials, which are altered in schizophrenia, in order to link these physiological parameters to dysfunctional cognitive processes and specific clinical symptoms. RESULTS Schizophrenic patients displayed: (1) abnormalities in smooth pursuit eye movements and saccadic inhibition during antisaccade tasks that may stem from the same prefrontal "inhibitory" cortical dysfunction; (2) deficits in prepulse inhibition and facilitation suggesting disturbed attentional modulations, which seem also correlated to abnormal patterns of prefrontal activation; and (3) decreased amplitude for cognitive ERP situated all along the continuum of the information processing, suggesting that schizophrenia shows neurophysiological deficits since the level of the sensory cortex and not only disturbances involving associative cortices and limbic structures. DISCUSSION The heterogeneity of schizophrenic disorders regarding symptomatology, course, and outcome is underlain by various pathophysiological processes that physiological parameters may help define. These alterations may be related to precise cognitive processes that are easily neurophysiologically monitored in order to create more homogeneous subgroups of schizophrenic patients.
Collapse
Affiliation(s)
- S Campanella
- Belgian Fund of Scientific Research (FNRS), Psychiatry Department (EEG), CHU Brugmann, Laboratory of Medical Psychology, University of Brussels, 4, place Vangehuchten, 1020 Brussels, Belgium.
| | | |
Collapse
|
38
|
Ford KA, Gati JS, Menon RS, Everling S. BOLD fMRI activation for anti-saccades in nonhuman primates. Neuroimage 2008; 45:470-6. [PMID: 19138749 DOI: 10.1016/j.neuroimage.2008.12.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 12/04/2008] [Accepted: 12/04/2008] [Indexed: 10/21/2022] Open
Abstract
Most of our knowledge about the functional organization of the nonhuman primate brain has come from single neuron recordings, whereas functional magnetic resonance imaging (fMRI) has rapidly become the method of choice for the study of the human brain. In some cases these two methods have resulted in conflicting models of frontal lobe function. Based on the finding that the frontal eye fields (FEF) exhibit a higher blood-oxygenation-level dependent (BOLD) activation for anti-saccades compared with pro-saccades, it has been proposed that this area is more involved in voluntary than automatic saccade generation. This model has been questioned by the finding of decreased single neuron activity in FEF for anti-compared with pro-saccades in monkeys. To reconcile these findings, we employed fMRI to compare BOLD activation between anti-saccades and pro-saccades in monkeys. FEF and a number of other cortical and subcortical areas showed an increased activation for anti-saccades. The results indicate that previous contrary findings between single neuron recordings and fMRI were due to differences between these techniques and were not related to differences between the two primate species.
Collapse
Affiliation(s)
- Kristen A Ford
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
39
|
Johnston K, Everling S. Neurophysiology and neuroanatomy of reflexive and voluntary saccades in non-human primates. Brain Cogn 2008; 68:271-83. [DOI: 10.1016/j.bandc.2008.08.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2008] [Indexed: 10/21/2022]
|
40
|
Yoshida A, Tanaka M. Enhanced Modulation of Neuronal Activity during Antisaccades in the Primate Globus Pallidus. Cereb Cortex 2008; 19:206-17. [DOI: 10.1093/cercor/bhn069] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
Chapman BB, Corneil BD. Properties of human eye-head gaze shifts in an anti-gaze shift task. Vision Res 2008; 48:538-48. [DOI: 10.1016/j.visres.2007.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 11/16/2007] [Accepted: 11/21/2007] [Indexed: 11/25/2022]
|
42
|
Brozović M, Gail A, Andersen RA. Gain mechanisms for contextually guided visuomotor transformations. J Neurosci 2007; 27:10588-96. [PMID: 17898230 PMCID: PMC6673148 DOI: 10.1523/jneurosci.2685-07.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 08/04/2007] [Accepted: 08/14/2007] [Indexed: 11/21/2022] Open
Abstract
A prevailing question in sensorimotor research is the integration of sensory signals with abstract behavioral rules (contexts) and how this results in decisions about motor actions. We used neural network models to study how context-specific visuomotor remapping may depend on the functional connectivity among multiple layers. Networks were trained to perform different rotational visuomotor associations, depending on the stimulus color (a nonspatial context signal). In network I, the context signal was propagated forward through the network (bottom-up), whereas in network II, it was propagated backwards (top-down). During the presentation of the visual cue stimulus, both networks integrate the context with the sensory information via a mechanism similar to the classic gain field. The recurrence in the networks hidden layers allowed a simulation of the multimodal integration over time. Network I learned to perform the proper visuomotor transformations based on a context-modulated memory of the visual cue in its hidden layer activity. In network II, a brief visual response, which was driven by the sensory input, is quickly replaced by a context-modulated motor-goal representation in the hidden layer. This happens because of a dominant feedback signal from the output layer that first conveys context information, and then, after the disappearance of the visual cue, conveys motor goal information. We also show that the origin of the context information is not necessarily closely tied to the top-down feedback. However, we suggest that the predominance of motor-goal representations found in the parietal cortex during context-specific movement planning might be the consequence of strong top-down feedback originating from within the parietal lobe or from the frontal lobe.
Collapse
Affiliation(s)
- Marina Brozović
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | |
Collapse
|
43
|
Abstract
The cortical control of eye movements is highly sophisticated. Not only can eye movements be made to the most salient target in a visual scene, but they can also be controlled by top-down rules as is required for visual search or reading. The cortical area called frontal eye fields (FEF) has been shown to play a key role in the visual to oculomotor transformations in tasks requiring an eye movement pattern that is not completely reactive, but follows a previously learned rule. The layered, local cortical circuit, which provides the anatomical substrate for all cortical computation, has been studied extensively in primary sensory cortex. These studies led to the concept of a "canonical circuit" for neocortex (Douglas et al., 1989; Douglas and Martin, 1991), which proposes that all areas of neocortex share a common basic circuit. However, it has not ever been explored whether in principle the detailed canonical circuit derived from cat area 17 (Binzegger et al., 2004) could implement the quite different functions of prefrontal cortex. Here, we show that the canonical circuit can, with a few modifications, model the primate FEF. The spike-based network of integrate-and-fire neurons was tested in tasks that were used in electrophysiological experiments in behaving macaque monkeys. The dynamics of the model matched those of neurons observed in the FEF, and the behavioral results matched those observed in psychophysical experiments. The close relationship between the model and the cortical architecture allows a detailed comparison of the simulation results with physiological data and predicts details of the anatomical circuit of the FEF.
Collapse
Affiliation(s)
- Jakob Heinzle
- Institute of Neuroinformatics, University and Swiss Federal Institute of Technology (ETH) Zürich, 8057 Zürich, Switzerland.
| | | | | |
Collapse
|
44
|
Kristjánsson A. Saccade landing point selection and the competition account of pro- and antisaccade generation: The involvement of visual attention ? A review. Scand J Psychol 2007; 48:97-113. [PMID: 17430363 DOI: 10.1111/j.1467-9450.2007.00537.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This paper presents a review and summary of experimental findings on the role of attention in the preparation of saccadic eye movements. The focus is on experiments where performance of prosaccades (saccades towards a suddenly appearing item) and antisaccades (saccades of equal amplitude in the direction opposite to where the target moved) is compared. Evidence suggests that these two opposite responses to the same stimulus event entail competition between neural pathways that generate reflexive movements to the target and neural mechanisms involved in inhibiting the reflex and generating a voluntary gaze shift in the opposite direction to the target appearance. Evidence for such a competition account is discussed in light of a large amount of experimental findings and the overall picture clearly indicates that this competition account has great explanatory power when data on saccadic reaction times and error rates are compared for the two types of saccade. The role of attention is also discussed in particular in light of the finding that the withdrawal of attention by a secondary task 200 to 500 ms before the saccade target appears, leads to speeded antisaccades (without a similar increase in error rates), showing that the results do not simply reflect a speed-accuracy trade-off. This result indicates that the tendency for "reflexive" prosaccades is diminished when attention is engaged in a different task. Furthermore, experiments are discussed that show that as the tendency for a reflexive prosaccade is weakened, antisaccades are speeded up, further supporting the competition account of pro- and antisaccade generation. In the light of evidence from neurophysiology of monkeys and humans, a tentative model of pro- and antisaccade generation is proposed.
Collapse
Affiliation(s)
- Arni Kristjánsson
- Faculty of Psychology, Department of Psychology, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
45
|
Walker R, McSorley E. The parallel programming of voluntary and reflexive saccades. Vision Res 2006; 46:2082-93. [PMID: 16473385 DOI: 10.1016/j.visres.2005.12.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 10/14/2005] [Accepted: 12/16/2005] [Indexed: 11/18/2022]
Abstract
A novel two-step paradigm was used to investigate the parallel programming of consecutive, stimulus-elicited ('reflexive') and endogenous ('voluntary') saccades. The mean latency of voluntary saccades, made following the first reflexive saccades in two-step conditions, was significantly reduced compared to that of voluntary saccades made in the single-step control trials. The latency of the first reflexive saccades was modulated by the requirement to make a second saccade: first saccade latency increased when a second voluntary saccade was required in the opposite direction to the first saccade, and decreased when a second saccade was required in the same direction as the first reflexive saccade. A second experiment confirmed the basic effect and also showed that a second reflexive saccade may be programmed in parallel with a first voluntary saccade. The results support the view that voluntary and reflexive saccades can be programmed in parallel on a common motor map.
Collapse
Affiliation(s)
- Robin Walker
- Department of Psychology, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK.
| | | |
Collapse
|
46
|
Karatekin C. Improving antisaccade performance in adolescents with attention-deficit/hyperactivity disorder (ADHD). Exp Brain Res 2006; 174:324-41. [PMID: 16639499 DOI: 10.1007/s00221-006-0467-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 03/21/2006] [Indexed: 10/24/2022]
Abstract
The goal of the study was to examine the effects of task manipulations on antisaccade accuracy and response times (RTs) of adolescents with attention-deficit/hyperactivity disorder (ADHD), age-matched controls, 10-year-olds and young adults. Order effects were tested by administering the task at the beginning and end of the session. Other manipulations involved a visual landmark to reduce demands on working memory and internal generation of saccades; spatially specific and non-specific cues at three intervals; and central engagement of attention through perceptual and cognitive means at three intervals. As expected, adolescents with ADHD were impaired relative to age-matched controls in terms of accuracy and saccadic RT on the first administration of the task. Although their accuracy improved with most of the manipulations, it did not improve disproportionately compared to age-matched controls. Nevertheless, with most of the manipulations, they could achieve the same level of accuracy as unaided controls on the first administration of the task. In contrast, the saccadic RTs of the ADHD group came close to normal under several conditions, indicating that elevated antisaccade RTs in this disorder may be related to attentional factors. The ADHD group made more premature saccades and fewer corrective saccades than both the age-matched and younger groups, suggesting difficulties with impulsivity and goal neglect. The findings suggest that cognitive scaffolds can ameliorate at least some of the inhibition deficits in adolescents with ADHD.
Collapse
Affiliation(s)
- Canan Karatekin
- Institute of Child Development, University of Minnesota, 51 E. River Road, Minneapolis, MN 55455, USA.
| |
Collapse
|
47
|
Edelman JA, Valenzuela N, Barton JJS. Antisaccade velocity, but not latency, results from a lack of saccade visual guidance. Vision Res 2006; 46:1411-21. [PMID: 16260025 DOI: 10.1016/j.visres.2005.09.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2005] [Revised: 09/15/2005] [Accepted: 09/16/2005] [Indexed: 10/25/2022]
Abstract
Antisaccades are slower in peak velocity, more dysmetric, and longer in latency than prosaccades. This study used a novel visually guided antisaccade task to determine how visual target presence affects antisaccade metrics. The results showed that peak velocity and endpoint error of visually guided antisaccades were more similar to prosaccades than to traditional antisaccades, whereas their latencies were similar to those of traditional antisaccades. The velocity of prosaccades, and to a lesser extent that of antisaccades, were boosted by the sudden appearance of a target. These results suggest that the lower velocity and increased dysmetria of traditional antisaccades result from the absence of a visual target, but their longer latency is more likely a result of suppressing a prosaccadic reflex.
Collapse
Affiliation(s)
- Jay A Edelman
- Department of Biology, The City College of New York, Convent Ave. at 138th St., J526, Marshak Science Building, New York, NY 10031, USA.
| | | | | |
Collapse
|
48
|
Everling S, DeSouza JFX. Rule-dependent activity for prosaccades and antisaccades in the primate prefrontal cortex. J Cogn Neurosci 2006; 17:1483-96. [PMID: 16197701 DOI: 10.1162/0898929054985455] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Everyday life typically requires behavior that involves far more than simple stimulus-response associations. Environmental cues are often ambiguous and require different actions depending on the situation. The prefrontal cortex (PFC) is thought to be crucial for this flexible control of behavior. An important task that probes this ability is the antisaccade task in which subjects have to suppress a glance towards a suddenly presented peripheral stimulus and instead look away from the stimulus to its mirror location. Here we recorded the activity of PFC neurons in monkeys trained to alternate between blocks of prosaccade and antisaccade trials with no external instruction cues. We found that the activity of many neurons was different between the two tasks during the fixation period before the peripheral stimulus was presented. These differences were already present on the first correct trials after a task switch. The activity of these neurons also discriminated between correct responses and errors. We hypothesize that the PFC provides bias signals to saccade-related areas that are necessary to preset the oculomotor system for different tasks.
Collapse
|
49
|
Van der Stigchel S, Meeter M, Theeuwes J. Eye movement trajectories and what they tell us. Neurosci Biobehav Rev 2006; 30:666-79. [PMID: 16497377 DOI: 10.1016/j.neubiorev.2005.12.001] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 12/13/2005] [Accepted: 12/13/2005] [Indexed: 11/21/2022]
Abstract
In the last two decades, research has shown that eye movement trajectories can be modified by situational determinants. These modifications can inform us about the mechanisms that control eye movements and they can yield information about the oculomotor, memory and attention system that is not easily obtained via other sources. Eye movement trajectories can deviate either towards or away from elements in the visual field. We review the conditions in which these deviations are found and the mechanisms underlying trajectory deviations. It is argued that deviations towards an element are caused by the unresolved competition in the oculomotor system between elements in a visual scene. Deviations away from an element are mainly observed in situations in which top-down preparation can influence the target selection process, but the exact cause of such deviations remains unclear.
Collapse
Affiliation(s)
- Stefan Van der Stigchel
- Department of Cognitive Psychology, Vrije Universiteit, van der Boechorststraat 1,1081 BT, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
50
|
Pratt J, Trottier L. Pro-saccades and anti-saccades to onset and offset targets. Vision Res 2005; 45:765-74. [PMID: 15639503 DOI: 10.1016/j.visres.2004.05.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 05/04/2004] [Indexed: 10/26/2022]
Abstract
Pro- and anti-saccades made to either onset or offset targets were examined to determine which of (1) changes in luminance or (2) the appearance of new peripheral objects, is more important in the reflexive generation of pro-saccades. In two experiments, pro-saccades had faster reaction times than did anti-saccades, but the difference was much greater for onset targets than offset targets (both with white targets on black backgrounds and black targets on white backgrounds). These findings suggest that there is a continuum of "prepotentness" in the oculomotor system with new peripheral objects being especially effective in generating reflexive pro-saccades.
Collapse
Affiliation(s)
- Jay Pratt
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, Ont., Canada M5S 3G3.
| | | |
Collapse
|