1
|
Effect of Long-Term Classical Ballet Dance Training on Postactivation Depression of the Soleus Hoffmann-Reflex. Motor Control 2022; 26:169-180. [PMID: 34986460 DOI: 10.1123/mc.2021-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022]
Abstract
Classical ballet dancing is a good model for studying the long-term activity-dependent plasticity of the central nervous system in humans, as it requires unique ankle movements to maintain ballet postures. The purpose of this study was to investigate whether postactivation depression is changed through long-term specific motor training. Eight ballet dancers and eight sedentary subjects participated in this study. The soleus Hoffmann reflexes were elicited at after the completion of a slow, passive dorsiflexion of the ankle. The results demonstrated that the depression of the soleus Hoffmann reflex (i.e., postactivation depression) was larger in classical ballet dancers than in sedentary subjects at two poststretch intervals. This suggests that the plastic change through long-term specific motor training is also expressed in postactivation depression of the soleus Hoffmann reflex. Increased postactivation depression would strengthen the supraspinal control of the plantarflexors and may contribute to fine ankle movements in classical ballet dancers.
Collapse
|
2
|
Vitry F, Papaiordanidou M, Martin A. Mechanisms modulating spinal excitability after nerve stimulation inducing extra torque. J Appl Physiol (1985) 2021; 131:1162-1175. [PMID: 34264132 DOI: 10.1152/japplphysiol.00005.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The study included three experiments aiming to examine the mechanisms responsible for spinal excitability modulation, as assessed by the H-reflex, following stimulation trains delivered at two different frequencies (20 and 100 Hz) inducing extra torque (ET). A first experiment (n = 15) was conducted to evaluate changes in presynaptic inhibition acting on Ia afferents induced by these electrical stimulation trains, assessed by conditioning the soleus H-reflex (tibial nerve stimulation) with stimulation of the common peroneal nerve (D1 inhibition) and of the femoral nerve (heteronymous Ia facilitation, HF). A second experiment (n = 12) permitted to investigate homosynaptic postactivation depression (HPAD) changes after the stimulation trains. A third experiment (n = 14) analyzed changes in motoneuron intrinsic properties after the stimulation trains, by electrically stimulating the descending corticospinal tract at the thoracic level, evoking thoracic motor-evoked potentials (TMEP). Main results showed that in all experiments, spinal excitability decreased after the 20-Hz train (P < 0.05), whereas this parameter significantly increased after the 100-Hz stimulation (P < 0.05). D1 and HF were not significantly modified after either stimulation. HPAD was significantly decreased only after the 20-Hz train, whereas TMEP was significantly increased only after the 100-Hz train (P < 0.05). It is concluded that the decreased spinal excitability observed after the 20-Hz train cannot be attributed to D1 presynaptic inhibition but rather to increased HPAD of the Ia afferents terminals, whereas the increase of this parameter obtained after the 100-Hz train can be assigned to changes in intrinsic motoneuron properties allowing to maintain Ia-α-motoneurons transmission efficacy.NEW & NOTEWORTHY Using different electrophysiological techniques, results show that the downregulation of spinal excitability observed after the 20-Hz train could be ascribed to homosynaptic postactivation depression of the Ia afferents terminals, whereas changes in intrinsic motoneuron properties could explain the increased spinal excitability observed after the 100-Hz train. A novel methodology for assessing soleus D1 presynaptic inhibition and heteronymous Ia facilitation, accounting for eventual modulations of test reflex amplitude throughout the session, was developed.
Collapse
Affiliation(s)
- Florian Vitry
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Maria Papaiordanidou
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Alain Martin
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| |
Collapse
|
3
|
Mildren RL, Peters RM, Carpenter MG, Blouin JS, Inglis JT. Soleus responses to Achilles tendon stimuli are suppressed by heel and enhanced by metatarsal cutaneous stimuli during standing. J Physiol 2021; 599:3611-3625. [PMID: 34047370 DOI: 10.1113/jp281744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023] Open
Abstract
KEY POINTS We examined the influence of cutaneous feedback from the heel and metatarsal regions of the foot sole on the soleus stretch reflex pathway during standing. We found that heel electrical stimuli suppressed and metatarsal stimuli enhanced the soleus vibration response. Follow-up experiments indicated that the interaction between foot sole cutaneous feedback and the soleus vibration response was likely not mediated by presynaptic inhibition and was contingent upon a modulation at the ⍺-motoneuron pool level. The spatially organized interaction between cutaneous feedback from the foot sole and the soleus vibration response provides information about how somatosensory information is combined to appropriately respond to perturbations during standing. ABSTRACT Cutaneous feedback from the foot sole provides balance-relevant information and has the potential to interact with spinal reflex pathways. In this study, we examined how cutaneous feedback from the foot sole (heel and metatarsals) influenced the soleus response to proprioceptive stimuli during standing. We delivered noisy vibration (10-115 Hz) to the right Achilles tendon while we intermittently applied electrical pulse trains (five 1-ms pulses at 200 Hz, every 0.8-1.0 s) to the skin under either the heel or the metatarsals of the ipsilateral foot sole. We analysed time-dependent (referenced to cutaneous stimuli) coherence and cross-correlations between the vibration acceleration and rectified soleus EMG. Vibration-EMG coherence was observed across a bandwidth of ∼10-80 Hz, and coherence was suppressed by heel but enhanced by metatarsal cutaneous stimuli. Cross-correlations showed soleus EMG was correlated with the vibration (∼40 ms lag) and cross-correlations were also suppressed by heel (from 104-155 ms) but enhanced by metatarsal (from 76-128 ms) stimuli. To examine the neural mechanisms mediating this reflex interaction, we conducted two further experiments to probe potential contributions from (1) presynaptic inhibition, and (2) modulations at the ⍺- and γ-motoneuron pools. Results suggest the cutaneous interactions with the stretch reflex pathway required a modulation at the ⍺-motoneuron pool and were likely not mediated by presynaptic inhibition. These findings demonstrate that foot sole cutaneous information functionally tunes the stretch reflex pathway during the control of upright posture and balance.
Collapse
Affiliation(s)
- Robyn L Mildren
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan M Peters
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Mark G Carpenter
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada
| | - Jean-Sébastien Blouin
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.,Institute for Computing, Information and Cognitive Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - J Timothy Inglis
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Dutt-Mazumder A, Segal RL, Thompson AK. Effect of Ankle Angles on the Soleus H-Reflex Excitability During Standing. Motor Control 2020; 24:189-203. [PMID: 31899887 PMCID: PMC7329593 DOI: 10.1123/mc.2018-0118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 11/18/2022]
Abstract
This study investigated effects of ankle joint angle on the Hoffman's reflex (H-reflex) excitability during loaded (weight borne with both legs) and unloaded (full body weight borne with the contralateral leg) standing in people without neurological injuries. Soleus H-reflex/M-wave recruitment curves were examined during upright standing on three different slopes that imposed plantar flexion (-15°), dorsiflexion (+15°), and neutral (0°) angles at the ankle, with the test leg loaded and unloaded. With the leg loaded and unloaded, maximum H-reflex/maximum M-wave ratio of -15° was significantly larger than those of 0° and +15° conditions. The maximum H-reflex/maximum M-wave ratios were 51%, 43%, and 41% with loaded and 56%, 46%, and 44% with unloaded for -15°, 0°, and +15° slope conditions, respectively. Thus, limb loading/unloading had limited impact on the extent of influence that ankle angles exert on the H-reflex excitability. This suggests that task-dependent central nervous system control of reflex excitability may regulate the influence of sensory input on the spinal reflex during standing.
Collapse
|
5
|
Souron R, Baudry S, Millet GY, Lapole T. Vibration‐induced depression in spinal loop excitability revisited. J Physiol 2019; 597:5179-5193. [DOI: 10.1113/jp278469] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/14/2019] [Indexed: 01/24/2023] Open
Affiliation(s)
- Robin Souron
- Univ LyonUJM Saint‐EtienneInter‐university Laboratory of Human Movement Biology EA 7424 F‐42023 Saint‐Etienne France
| | - Stéphane Baudry
- Laboratory of Applied BiologyResearch Unit in Applied NeurophysiologyULB Neuroscience InstituteUniversité Libre de Bruxelles Brussels Belgium
| | - Guillaume Y. Millet
- Univ LyonUJM Saint‐EtienneInter‐university Laboratory of Human Movement Biology EA 7424 F‐42023 Saint‐Etienne France
| | - Thomas Lapole
- Univ LyonUJM Saint‐EtienneInter‐university Laboratory of Human Movement Biology EA 7424 F‐42023 Saint‐Etienne France
| |
Collapse
|
6
|
Abstract
Human studies in the past three decades have provided us with an emerging understanding of how cortical and spinal networks collaborate to ensure the vast repertoire of human behaviors. Humans have direct cortical connections to spinal motoneurons, which bypass spinal interneurons and exert a direct (willful) muscle control with the aid of a context-dependent integration of somatosensory and visual information at cortical level. However, spinal networks also play an important role. Sensory feedback through spinal circuitries is integrated with central motor commands and contributes importantly to the muscle activity underlying voluntary movements. Regulation of spinal interneurons is used to switch between motor states such as locomotion (reciprocal innervation) and stance (coactivation pattern). Cortical regulation of presynaptic inhibition of sensory afferents may focus the central motor command by opening or closing sensory feedback pathways. In the future, human studies of spinal motor control, in close collaboration with animal studies on the molecular biology of the spinal cord, will continue to document the neural basis for human behavior.
Collapse
Affiliation(s)
- Jens Bo Nielsen
- Department of Neuroscience and Pharmacology and Department of Nutrition, Exercise and Sports, University of Copenhagen, DK-2200 Copenhagen N, Denmark;
| |
Collapse
|
7
|
Andrews JC, Stein RB, Roy FD. Reduced postactivation depression of soleus H reflex and root evoked potential after transcranial magnetic stimulation. J Neurophysiol 2015; 114:485-92. [PMID: 25995355 DOI: 10.1152/jn.01007.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/19/2015] [Indexed: 11/22/2022] Open
Abstract
Postactivation depression of the Hoffmann (H) reflex is associated with a transient period of suppression following activation of the reflex pathway. In soleus, the depression lasts for 100-200 ms during voluntary contraction and up to 10 s at rest. A reflex root evoked potential (REP), elicited after a single pulse of transcutaneous stimulation to the thoracolumbar spine, has been shown to exhibit similar suppression. The present study systematically characterized the effect of transcranial magnetic stimulation (TMS) on postactivation depression using double-pulse H reflexes and REPs. A TMS pulse reduced the period of depression to 10-15 ms for both reflexes. TMS could even produce postactivation facilitation of the H reflex, as the second reflex response was increased to 243 ± 51% of control values at the 75-ms interval. The time course was qualitatively similar for the REP, yet the overall increase was less. While recovery of the H reflex was slower in the relaxed muscle, the profile exhibited a distinct bimodal shape characterized by an early peak at the 25-ms interval, reaching 72 ± 23% of control values, followed by a trough at 50 ms, and then a gradual recovery at intervals > 50 ms. The rapid recovery of two successively depressed H reflexes, ∼ 25 ms apart, was also possible with double-pulse TMS. The effect of the TMS-induced corticospinal excitation on postactivation depression may be explained by a combination of pre- and postsynaptic mechanisms, although further investigation is required to distinguish between them.
Collapse
Affiliation(s)
- Jennifer C Andrews
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Richard B Stein
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - François D Roy
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada; and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Mezzarane RA, Magalhães FH, Chaud VM, Elias LA, Kohn AF. Enhanced D1 and D2 inhibitions induced by low-frequency trains of conditioning stimuli: differential effects on H- and T-reflexes and possible mechanisms. PLoS One 2015; 10:e0121496. [PMID: 25807195 PMCID: PMC4373906 DOI: 10.1371/journal.pone.0121496] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/01/2015] [Indexed: 11/26/2022] Open
Abstract
Mechanically evoked reflexes have been postulated to be less sensitive to presynaptic inhibition (PSI) than the H-reflex. This has implications on investigations of spinal cord neurophysiology that are based on the T-reflex. Preceding studies have shown an enhanced effect of PSI on the H-reflex when a train of ~10 conditioning stimuli at 1 Hz was applied to the nerve of the antagonist muscle. The main questions to be addressed in the present study are if indeed T-reflexes are less sensitive to PSI and whether (and to what extent and by what possible mechanisms) the effect of low frequency conditioning, found previously for the H-reflex, can be reproduced on T-reflexes from the soleus muscle. We explored two different conditioning-to-test (C-T) intervals: 15 and 100 ms (corresponding to D1 and D2 inhibitions, respectively). Test stimuli consisted of either electrical pulses applied to the posterior tibial nerve to elicit H-reflexes or mechanical percussion to the Achilles tendon to elicit T-reflexes. The 1 Hz train of conditioning electrical stimuli delivered to the common peroneal nerve induced a stronger effect of PSI as compared to a single conditioning pulse, for both reflexes (T and H), regardless of C-T-intervals. Moreover, the conditioning train of pulses (with respect to a single conditioning pulse) was proportionally more effective for T-reflexes as compared to H-reflexes (irrespective of the C-T interval), which might be associated with the differential contingent of Ia afferents activated by mechanical and electrical test stimuli. A conceivable explanation for the enhanced PSI effect in response to a train of stimuli is the occurrence of homosynaptic depression at synapses on inhibitory interneurons interposed within the PSI pathway. The present results add to the discussion of the sensitivity of the stretch reflex pathway to PSI and its functional role.
Collapse
Affiliation(s)
- Rinaldo André Mezzarane
- Laboratory of Signal Processing and Motor Control, College of Physical Education, Universidade de Brasília—UnB, Brasília, Brazil
- Biomedical Engineering Laboratory, Escola Politécnica, PTC, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| | - Fernando Henrique Magalhães
- Biomedical Engineering Laboratory, Escola Politécnica, PTC, Universidade de São Paulo, São Paulo, Brazil
- School of Arts, Sciences and Humanities—EACH, Universidade de São Paulo, São Paulo, Brazil
| | - Vitor Martins Chaud
- Biomedical Engineering Laboratory, Escola Politécnica, PTC, Universidade de São Paulo, São Paulo, Brazil
- Department of Electrical Engineering, Universidade Federal do Triângulo Mineiro—UFTM, Uberaba, Brazil
| | - Leonardo Abdala Elias
- Biomedical Engineering Laboratory, Escola Politécnica, PTC, Universidade de São Paulo, São Paulo, Brazil
- Department of Biomedical Engineering, School of Electrical and Computer Engineering, University of Campinas—UNICAMP, Campinas, Brazil
| | - André Fabio Kohn
- Biomedical Engineering Laboratory, Escola Politécnica, PTC, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Willerslev-Olsen M, Andersen JB, Sinkjaer T, Nielsen JB. Sensory feedback to ankle plantar flexors is not exaggerated during gait in spastic hemiplegic children with cerebral palsy. J Neurophysiol 2013; 111:746-54. [PMID: 24225545 DOI: 10.1152/jn.00372.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is still widely believed that exaggerated stretch reflexes and increased muscle tone in ankle plantar flexors contribute to reduced ankle joint movement during gait in children with cerebral palsy (CP). However, no study has directly measured stretch reflex activity during gait in these children. We investigated sensory feedback mechanisms during walking in 20 CP children and 41 control children. Stretch responses in plantar flexor muscles evoked in stance showed an age-related decline in control but not CP children. In swing the responses were abolished in control children, but significant responses were observed in 14 CP children. This was related to reduced activation of dorsiflexors in swing. Removal of sensory feedback in stance produced a drop in soleus activity of a similar size in control and CP children. Soleus activity was observed in swing to the same extent in control and CP children. Removal of sensory feedback in swing caused a larger drop in soleus activity in control children than in CP children. The lack of age-related decline in stretch reflexes and the inability to suppress reflexes in swing is likely related to lack of maturation of corticospinal control in CP children. Since soleus activity was not seen more frequently than in control children in swing and since sensory feedback did not contribute more to their soleus activity, spasticity is unlikely to contribute to foot drop and toe walking. We propose that altered central drive to the ankle muscles and increased passive muscle stiffness are the main causes of foot drop and toe walking.
Collapse
Affiliation(s)
- Maria Willerslev-Olsen
- Department of Nutrition, Exercise and Sport Science and Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
10
|
Activity-dependent plasticity of spinal circuits in the developing and mature spinal cord. Neural Plast 2012; 2012:964843. [PMID: 22900208 PMCID: PMC3415235 DOI: 10.1155/2012/964843] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 06/12/2012] [Indexed: 01/29/2023] Open
Abstract
Part of the development and maturation of the central nervous system (CNS) occurs through interactions with the environment. Through physical activities and interactions with the world, an animal receives considerable sensory information from various sources. These sources can be internally (proprioceptive) or externally (such as touch and pressure) generated senses. Ample evidence exists to demonstrate that the sensory information originating from large diameter afferents (Ia fibers) have an important role in inducing essential functional and morphological changes for the maturation of both the brain and the spinal cord. The Ia fibers transmit sensory information generated by muscle activity and movement. Such use or activity-dependent plastic changes occur throughout life and are one reason for the ability to acquire new skills and learn new movements. However, the extent and particularly the mechanisms of activity-dependent changes are markedly different between a developing nervous system and a mature nervous system. Understanding these mechanisms is an important step to develop strategies for regaining motor function after different injuries to the CNS. Plastic changes induced by activity occur both in the brain and spinal cord. This paper reviews the activity-dependent changes in the spinal cord neural circuits during both the developmental stages of the CNS and in adulthood.
Collapse
|
11
|
Rhythmic arm cycling differentially modulates stretch and H-reflex amplitudes in soleus muscle. Exp Brain Res 2011; 214:529-37. [PMID: 21901451 DOI: 10.1007/s00221-011-2851-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
Abstract
During rhythmic arm cycling, soleus H-reflex amplitudes are reduced by modulation of group Ia presynaptic inhibition. This suppression of reflex amplitude is graded to the frequency of arm cycling with a threshold of 0.8 Hz. Despite the data on modulation of the soleus H-reflex amplitude induced by rhythmic arm cycling, comparatively little is known about the modulation of stretch reflexes due to remote limb movement. Therefore, the present study was intended to explore the effect of arm cycling on stretch and H-reflex amplitudes in the soleus muscle. In so doing, additional information on the mechanism of action during rhythmic arm cycling would be revealed. Although both reflexes share the same afferent pathway, we hypothesized that stretch reflex amplitudes would be less suppressed by arm cycling because they are less inhibited by presynaptic inhibition. Failure to reject this hypothesis would add additional strength to the argument that Ia presynaptic inhibition is the mechanism modulating soleus H-reflex amplitude during rhythmic arm cycling. Participants were seated in a customized chair with feet strapped to footplates. Three motor tasks were performed: static control trials and arm cycling at 1 and 2 Hz. Soleus H-reflexes were evoked using single 1 ms pulses of electrical stimulation delivered to the tibial nerve at the popliteal fossa. A constant M-wave and ~6% MVC activation of soleus were maintained across conditions. Stretch reflexes were evoked using a single sinusoidal pulse at 100 Hz given by a vibratory shaker placed over the triceps surae tendon and controlled by a custom-written LabView program. Results demonstrated that rhythmic arm cycling that was effective for conditioning soleus H-reflexes did not show a suppressive effect on the amplitude of the soleus stretch reflex. We suggest this indicates that stretch reflexes are less sensitive to conditioning by rhythmic arm movement, as compared to H-reflexes, due to the relative insensitivity to Ia presynaptic inhibition.
Collapse
|
12
|
Frigon A, Johnson MD, Heckman CJ. Altered activation patterns by triceps surae stretch reflex pathways in acute and chronic spinal cord injury. J Neurophysiol 2011; 106:1669-78. [PMID: 21734111 DOI: 10.1152/jn.00504.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spinal reflexes are modified by spinal cord injury (SCI) due the loss of excitatory inputs from supraspinal structures and changes within the spinal cord. The stretch reflex is one of the simplest pathways of the central nervous system and was used presently to evaluate how inputs from primary and secondary muscle spindles interact with spinal circuits before and after spinal transection (i.e., spinalization) in 12 adult decerebrate cats. Seven cats were spinalized and allowed to recover for 1 mo (i.e., chronic spinal state), whereas 5 cats were evaluated before (i.e., intact state) and after acute spinalization (i.e., acute spinal state). Stretch reflexes were evoked by stretching the left triceps surae (TS) muscles. The force evoked by TS muscles was recorded along with the activity of several hindlimb muscles. Stretch reflexes were abolished in the acute spinal state due to an inability to activate TS muscles, such as soleus (Sol) and lateral gastrocnemius (LG). In chronic spinal cats, reflex force had partly recovered but Sol and LG activity remained considerably depressed, despite the fact that injecting clonidine could recruit these muscles during locomotor-like activity. In contrast, other muscles not recruited in the intact state, most notably semitendinosus and sartorius, were strongly activated by stretching TS muscles in chronic spinal cats. Therefore, stretch reflex pathways from TS muscles to multiple hindlimb muscles undergo functional reorganization following spinalization, both acute and chronic. Altered activation patterns by stretch reflex pathways could explain some sensorimotor deficits observed during locomotion and postural corrections after SCI.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
| | | | | |
Collapse
|
13
|
Garrison MK, Yates CC, Reese NB, Skinner RD, Garcia-Rill E. Wind-up of stretch reflexes as a measure of spasticity in chronic spinalized rats: The effects of passive exercise and modafinil. Exp Neurol 2011; 227:104-9. [PMID: 20932828 PMCID: PMC3019091 DOI: 10.1016/j.expneurol.2010.09.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/18/2010] [Accepted: 09/23/2010] [Indexed: 01/29/2023]
Abstract
Spasticity is a common disorder following spinal cord injury that can impair function and quality of life. While a number of mechanisms are thought to play a role in spasticity, the role of motoneuron persistent inward currents (PICs) is emerging as pivotal. The presence of PICs can be evidenced by temporal summation or wind-up of reflex responses to brief afferent inputs. In this study, a combined neurophysiological and novel biomechanical approach was used to assess the effects of passive exercise and modafinil administration on hyper-reflexia and spasticity following complete T-10 transection in the rat. Animals were divided into 3 groups (n=8) and provided daily passive cycling exercise, oral modafinil, or no intervention. After 6weeks, animals were tested for wind-up of the stretch reflex (SR) during repeated dorsiflexion stretches of the ankle. H-reflexes were tested in a subset of animals. Both torque and gastrocnemius electromyography showed evidence of SR wind-up in the transection only group that was significantly different from both treatment groups (p<0.05). H-reflex frequency dependent depression was also restored to normal levels in both treatment groups. The results provide support for the use of passive cycling exercise and modafinil in the treatment of spasticity and provide insight into the possible contribution of PICs.
Collapse
Affiliation(s)
- M Kevin Garrison
- Center for Translational Neuroscience, Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72035, USA.
| | | | | | | | | |
Collapse
|
14
|
Yates C, Garrison K, Reese NB, Charlesworth A, Garcia-Rill E. Chapter 11--novel mechanism for hyperreflexia and spasticity. PROGRESS IN BRAIN RESEARCH 2011; 188:167-80. [PMID: 21333809 DOI: 10.1016/b978-0-444-53825-3.00016-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We established that hyperreflexia is delayed after spinal transection in the adult rat and that passive exercise could normalize low frequency-dependent depression of the H-reflex. We were also able to show that such passive exercise will normalize hyperreflexia in patients with spinal cord injury (SCI). Recent results demonstrate that spinal transection results in changes in the neuronal gap junction protein connexin 36 below the level of the lesion. Moreover, a drug known to increase electrical coupling was found to normalize hyperreflexia in the absence of passive exercise, suggesting that changes in electrical coupling may be involved in hyperreflexia. We also present results showing that a measure of spasticity, the stretch reflex, is rendered abnormal by transection and normalized by the same drug. These data suggest that electrical coupling may be dysregulated in SCI, leading to some of the symptoms observed. A novel therapy for hyperreflexia and spasticity may require modulation of electrical coupling.
Collapse
Affiliation(s)
- C Yates
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | | | | | | |
Collapse
|
15
|
Lamy JC, Russmann H, Shamim EA, Meunier S, Hallett M. Paired associative stimulation induces change in presynaptic inhibition of Ia terminals in wrist flexors in humans. J Neurophysiol 2010; 104:755-64. [PMID: 20538768 DOI: 10.1152/jn.00761.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Enhancements in the strength of corticospinal projections to muscles are induced in conscious humans by paired associative stimulation (PAS) to the motor cortex. Although most of the previous studies support the hypothesis that the increase of the amplitude of motor evoked potentials (MEPs) by PAS involves long-term potentiation (LTP)-like mechanism in cortical synapses, changes in spinal excitability after PAS have been reported, suggestive of parallel modifications in both cortical and spinal excitability. In a first series of experiments (experiment 1), we confirmed that both flexor carpi radialis (FCR) MEPs and FCR H reflex recruitment curves are enhanced by PAS. To elucidate the mechanism responsible for this change in the H reflex amplitude, we tested, using the same subjects, the hypothesis that enhanced H reflexes are caused by a down-regulation of the efficacy of mechanisms controlling Ia afferent discharge, including presynaptic Ia inhibition and postactivation depression. To address this question, amounts of both presynaptic Ia inhibition of FCR Ia terminals (D1 and D2 inhibitions methods; experiment 2) and postactivation depression (experiment 3) were determined before and after PAS. Results showed that PAS induces a significant decrease of presynaptic Ia inhibition of FCR terminals, which was concomitant with the facilitation of the H reflex. Postactivation depression was unaffected by PAS. It is argued that enhancement of segmental excitation by PAS relies on a selective effect of PAS on the interneurons controlling presynaptic inhibition of Ia terminals.
Collapse
Affiliation(s)
- Jean-Charles Lamy
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | |
Collapse
|
16
|
Passive knee movement-induced modulation of the soleus H-reflex and alteration in the fascicle length of the medial gastrocnemius muscle in humans. J Electromyogr Kinesiol 2010; 20:513-22. [DOI: 10.1016/j.jelekin.2009.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 09/04/2009] [Accepted: 09/28/2009] [Indexed: 11/17/2022] Open
|
17
|
Hwang IS, Huang CY, Wu PS, Chen YC, Wang CH. Assessment of H reflex sensitivity with M wave alternation consequent to fatiguing contractions. Int J Neurosci 2009; 118:1317-30. [PMID: 18698513 DOI: 10.1080/00207450802055606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The objective of this study was to examine the changes in H reflex sensitivity after neuromuscular fatigue associated with fluctuations of the M wave. In the maximal and submaximal voluntary contraction (MVC and SMVC) paradigms, subjects performed voluntary plantarflexion at 100% MVC and 40% MVC respectively until the limit of torque maintenance was reached. In the submaximal electrical stimulation (SMES) paradigm, the tricep surae was exhausted with sustained electrical stimulation of 40% of the maximal tolerable intensity at a 40-Hz stimulus rate. The H reflexes and maximal M waves (M(max)) of the soleus were recorded before and after the three fatigue paradigms, and the H reflex was standardized with M(max) to minimize possible bias due to fatigue-induced M wave fluctuation. The results showed a significant increase in the standardized H reflex due to the SMES paradigm in spite of M(max) potentiation. The SMVC paradigm led to a reduction in size of the standardized H reflex without modification of M(max), whereas the standardized H reflex was not mediated by the MVC paradigm, which contributed to a noticeable M(max) potentiation. The present study underscored the fact that the H reflex sensitivity and M wave amplitude were not necessarily suppressed consequent to neuromuscular fatigue, but varied with the activation history of a muscle for size-dependent efficacy of the Ia transmission pathways and postactivation potentiation.
Collapse
Affiliation(s)
- Ing-Shiou Hwang
- School of Physical Therapy, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
18
|
Impaired efficacy of spinal presynaptic mechanisms in spastic stroke patients. Brain 2008; 132:734-48. [DOI: 10.1093/brain/awn310] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
19
|
Ross KT, Nichols TR. Heterogenic feedback between hindlimb extensors in the spontaneously locomoting premammillary cat. J Neurophysiol 2008; 101:184-97. [PMID: 19005003 DOI: 10.1152/jn.90338.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electrophysiological studies in anesthetized animals have revealed that pathways carrying force information from Golgi tendon organs in antigravity muscles mediate widespread inhibition among other antigravity muscles in the feline hindlimb. More recent evidence in paralyzed or nonparalyzed decerebrate cats has shown that some inhibitory pathways are suppressed and separate excitatory pathways from Golgi tendon organ afferents are opened on the transition from steady force production to locomotor activity. To obtain additional insight into the functions of these pathways during locomotion, we investigated the distribution of force-dependent inhibition and excitation during spontaneous locomotion and during constant force exertion in the premammillary decerebrate cat. We used four servo-controlled stretching devices to apply controlled stretches in various combinations to the gastrocnemius muscles (G), plantaris muscle (PLAN), flexor hallucis longus muscle (FHL), and quadriceps muscles (QUADS) during treadmill stepping and the crossed-extension reflex (XER). We recorded the force responses from the same muscles and were therefore able to evaluate autogenic (intramuscular) and heterogenic (intermuscular) reflexes among this set of muscles. In previous studies using the intercollicular decerebrate cat, heterogenic inhibition among QUADS, G, FHL, and PLAN was bidirectional. During treadmill stepping, heterogenic feedback from QUADS onto G and G onto PLAN and FHL remained inhibitory and was force-dependent. However, heterogenic inhibition from PLAN and FHL onto G, and from G onto QUADS, was weaker than during the XER. We propose that pathways mediating heterogenic inhibition may remain inhibitory under some forms of locomotion on a level surface but that the strengths of these pathways change to result in a proximal to distal gradient of inhibition. The potential contributions of heterogenic inhibition to interjoint coordination and limb stability are discussed.
Collapse
Affiliation(s)
- Kyla T Ross
- Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr., Atlanta, GA 30332, USA.
| | | |
Collapse
|
20
|
Lundbye-Jensen J, Nielsen JB. Immobilization induces changes in presynaptic control of group Ia afferents in healthy humans. J Physiol 2008; 586:4121-35. [PMID: 18599534 DOI: 10.1113/jphysiol.2008.156547] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neural plasticity occurs throughout adult life in response to maturation, use and disuse. Recent studies have documented that H-reflex amplitudes increase following a period of immobilization. To elucidate the mechanisms contributing to the increase in H-reflex size following immobilization we immobilized the left foot and ankle joint for 2 weeks in 12 able-bodied subjects. Disynaptic reciprocal inhibition of soleus (SOL) motoneurons and presynaptic control of SOL group Ia afferents was measured before and after the immobilization as well as following 2 weeks of recovery. Following immobilization, maximal voluntary plantar- and dorsiflexion torque (MVC) was significantly reduced and the maximal SOL H-reflex amplitude increased with no changes in the maximal compound motor response (M(max)). Decreased presynaptic inhibition of the Ia afferents probably contributed to the increase of the H-reflex size, since we observed a significant decrease in the long-latency depression of the SOL H-reflex evoked by peroneal nerve stimulation (D2 inhibition) and an increase in the size of the monosynaptic Ia facilitation of the SOL H-reflex evoked by femoral nerve stimulation. These two measures provide independent evidence of changes in presynaptic inhibition of SOL Ia afferents and taken together suggest that GABAergic presynaptic inhibition of the SOL Ia afferents is decreased following 2 weeks of immobilization. The depression of the SOL H-reflex when evoked at intervals shorter than 10 s (homosynaptic post-activation depression) also decreased following immobilization, suggesting that the activity-dependent regulation of transmitter release from the afferents was also affected by immobilization. We observed no significant changes in disynaptic reciprocal Ia inhibition. Two weeks after cast removal measurements returned to pre-immobilization levels. Together, these observations suggest that disuse causes plastic changes in spinal interneuronal circuitries responsible for presynaptic control of sensory input to the spinal cord. This may be of significance for the motor disabilities seen following immobilization as well as the development of spasticity following central motor lesions.
Collapse
Affiliation(s)
- Jesper Lundbye-Jensen
- Department of Neuroscience and Pharmacology, University of Copenhagen, The Panum Institute 22.3, Blegdamsvej 3, DK-2200 København N, Denmark.
| | | |
Collapse
|
21
|
Grey MJ, Klinge K, Crone C, Lorentzen J, Biering-Sørensen F, Ravnborg M, Nielsen JB. Post-activation depression of Soleus stretch reflexes in healthy and spastic humans. Exp Brain Res 2007; 185:189-97. [PMID: 17932663 DOI: 10.1007/s00221-007-1142-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Accepted: 09/14/2007] [Indexed: 11/26/2022]
Affiliation(s)
- Michael J Grey
- Department of Exercise and Sport Science & Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark.
| | | | | | | | | | | | | |
Collapse
|
22
|
Maluf KS, Barry BK, Riley ZA, Enoka RM. Reflex responsiveness of a human hand muscle when controlling isometric force and joint position. Clin Neurophysiol 2007; 118:2063-71. [PMID: 17646129 PMCID: PMC2020450 DOI: 10.1016/j.clinph.2007.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 05/08/2007] [Accepted: 06/12/2007] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study compared reflex responsiveness of the first dorsal interosseus muscle during two tasks that employ different strategies to stabilize the finger while exerting the same net muscle torque. METHODS Healthy human subjects performed two motor tasks that involved either pushing up against a rigid restraint to exert a constant isometric force equal to 20% of maximum or maintaining a constant angle at the metacarpophalangeal joint while supporting an equivalent inertial load. Each task consisted of six 40-s contractions during which electrical and mechanical stimuli were delivered. RESULTS The amplitude of short and long latency reflex responses to mechanical stretch did not differ significantly between tasks. In contrast, reflexes evoked by electrical stimulation were significantly greater when supporting the inertial load. CONCLUSIONS Agonist motor neurons exhibited heightened reflex responsiveness to synaptic input from heteronymous afferents when controlling the position of an inertial load. Task differences in the reflex response to electrical stimulation were not reflected in the response to mechanical perturbation, indicating a difference in the efficacy of the pathways that mediate these effects. SIGNIFICANCE Results from this study suggest that modulation of spinal reflex pathways may contribute to differences in the control of force and position during isometric contractions of the first dorsal interosseus muscle.
Collapse
Affiliation(s)
- Katrina S Maluf
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309-0354, USA.
| | | | | | | |
Collapse
|
23
|
Knikou M, Kay E, Schmit BD. Parallel facilitatory reflex pathways from the foot and hip to flexors and extensors in the injured human spinal cord. Exp Neurol 2007; 206:146-58. [PMID: 17543951 PMCID: PMC1937333 DOI: 10.1016/j.expneurol.2007.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 04/27/2007] [Accepted: 05/02/2007] [Indexed: 11/16/2022]
Abstract
Spinal integration of sensory signals associated with hip position, muscle loading, and cutaneous sensation of the foot contributes to movement regulation. The exact interactive effects of these sensory signals under controlled dynamic conditions are unknown. The purpose of the present study was to establish the effects of combined plantar cutaneous afferent excitation and hip movement on the Hoffmann (H) and flexion reflexes in people with a spinal cord injury (SCI). The flexion and H-reflexes were elicited through stimulation of the right sural (at non-nociceptive levels) and posterior tibial nerves respectively. Reflex responses were recorded from the ipsilateral tibialis anterior (TA) (flexion reflex) and soleus (H-reflex) muscles. The plantar cutaneous afferents were stimulated at three times the perceptual threshold (200 Hz, 24-ms pulse train) at conditioning-test intervals that ranged from 3 to 90 ms. Sinusoidal movements were imposed to the right hip joint at 0.2 Hz with subjects supine. Control and conditioned reflexes were recorded as the hip moved in flexion and extension. Leg muscle activity and sagittal-plane joint torques were recorded. We found that excitation of plantar cutaneous afferents facilitated the soleus H-reflex and the long latency flexion reflex during hip extension. In contrast, the short latency flexion reflex was depressed by plantar cutaneous stimulation during hip flexion. Oscillatory joint forces were present during the transition phase of the hip movement from flexion to extension when stimuli were delivered during hip flexion. Hip-mediated input interacts with feedback from the foot sole to facilitate extensor and flexor reflex activity during the extension phase of movement. The interactive effects of these sensory signals may be a feature of impaired gait, but when they are appropriately excited, they may contribute to locomotion recovery in these patients.
Collapse
Affiliation(s)
- Maria Knikou
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, and Department of Physical Medicine and Rehabilitation, Feinberg Medical School, Northwestern University, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
24
|
Nielsen JB, Crone C, Hultborn H. The spinal pathophysiology of spasticity--from a basic science point of view. Acta Physiol (Oxf) 2007; 189:171-80. [PMID: 17250567 DOI: 10.1111/j.1748-1716.2006.01652.x] [Citation(s) in RCA: 273] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spasticity is a term, which was introduced to describe the velocity-sensitive increased resistance of a limb to manipulation in subjects with lesions of descending motor pathways. This distinguishes spasticity from the changes in passive muscle properties, which are often seen in these patients, but are not velocity-sensitive. Increased excitability of the stretch reflex is thus a central component of the definition of spasticity. This review describes changes in cellular properties and transmission in a number of spinal reflex pathways, which may explain the increased stretch reflex excitability. The review focuses mainly on results derived from the use of non-invasive electrophysiological techniques, which have been developed during the past 20-30 years to investigate spinal neuronal networks in human subjects, but work from animal models is also considered. The reflex hyperexcitability develops over several months following the primary lesion and involves adaptation in the spinal neuronal circuitries caudal to the lesion. In animal models, changes in cellular properties (such as 'plateau potentials') have been reported, but the relevance of these changes to human spasticity has not been clarified. In humans, numerous studies have suggested that reduction of spinal inhibitory mechanisms (in particular that of disynaptic reciprocal inhibition) is involved. The inter-subject variability of these mechanisms and the lack of objective quantitative measures of spasticity have impeded disclosure of a clear causal relationship between the alterations in the inhibitory mechanisms and the stretch reflex hyperexcitability. Techniques which make such a quantitative measure possible as well as longitudinal studies where development of reflex excitability and changes in the inhibitory mechanisms are followed over time are in great demand.
Collapse
Affiliation(s)
- J B Nielsen
- Department of Exercise and Sport Science, University of Copenhagen, Copenhagen N, Denmark.
| | | | | |
Collapse
|
25
|
Mazzaro N, Grey MJ, do Nascimento OF, Sinkjaer T. Afferent-mediated modulation of the soleus muscle activity during the stance phase of human walking. Exp Brain Res 2006; 173:713-23. [PMID: 16639501 DOI: 10.1007/s00221-006-0451-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 03/10/2006] [Indexed: 11/29/2022]
Abstract
The aim of this study was to investigate the contribution of proprioceptive feedback to the amplitude modulation of the soleus muscle activity during human walking. We have previously shown that slow-velocity, small-amplitude ankle dorsiflexion enhancements and reductions applied during the stance phase of the step cycle generate, respectively, increments and decrements on the ongoing soleus activity. We have also shown that the increments in soleus activity are at least partially mediated by feedback from group Ia fibres. In the present study, we further investigated the afferent-mediated contribution from muscle group II afferents, cutaneous and proprioceptive afferents from the foot, and load-sensitive afferents to the soleus EMG. Slow-velocity, small-amplitude ankle trajectory modifications were combined with the pharmaceutical depression of group II polysynaptic pathways with tizanidine hydrochloride, anaesthetic blocking of sensory information from the foot with injections of lidocaine hydrochloride, and modulation of load feedback by increasing and decreasing the body load. The depression of the group II afferents significantly reduced the soleus response to the ankle trajectory modifications. Blocking sensory feedback from the foot did not have an effect on the soleus muscle activity. Changes in body load affected the ongoing soleus activity level; however, it did not affect the amplitude of the soleus EMG responses to the ankle trajectory modifications. These results suggest that the feedback from group II afferents, and possibly from load-sensitive afferents, contribute to the amplitude modulation of the soleus muscle activity during the stance phase of the step cycle. However, feedback from cutaneous afferents and instrinsic proprioceptive afferents from the foot does not seem to contribute to this muscle activation.
Collapse
Affiliation(s)
- Nazarena Mazzaro
- Center for Sensory-Motor Interaction (SMI), Aalborg University, 9220 Aalborg, Denmark.
| | | | | | | |
Collapse
|
26
|
Morita H, Shindo M, Ikeda SI. Paradoxical modulation of tendon tap reflex during voluntary contraction in Parkinson's disease. Clin Neurophysiol 2005; 116:769-74. [PMID: 15792885 DOI: 10.1016/j.clinph.2004.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 10/19/2004] [Accepted: 11/03/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Inadequate supraspinal modulation of spinal motor control mechanisms such as alpha-gamma coactivation is supposed to cause difficulty in maintaining proper voluntary contraction in Parkinson's disease (PD). METHODS Subjects were 42 patients with PD and 20 normal volunteers. Soleus H-reflex and tendon tap reflex (T-reflex) were recorded. The maximal reflexes (H(max) and T(max)) at rest were recorded first. Next, the stimulus intensities were fixed to obtain a reflex size of around 25% of M(max) at rest for both H- and T-reflexes, and the reflexes were recorded at rest, during tonic plantarflexion (TPF), and at the onset of plantarflexion. RESULTS H(max) at rest was 55% and T(max) 30% in normal subjects, while they were 36 and 31%, respectively, in PD. The size ratio of T(max) and H(max) at rest in PD was larger than normal. In PD, the size of H-reflex increased with TPF as in normal subjects, but T-reflex decreased. These changes in T-reflex were correlated with the grade of rigidity, bradykinesia, and time for 10 m gait. H-reflex had no such correlations. CONCLUSIONS T-reflex was abnormally modulated in PD especially during tonic contraction. SIGNIFICANCE Inappropriate supraspinal modulation of the spinal reflex pathways disturbs motor performance in PD.
Collapse
Affiliation(s)
- Hiroshi Morita
- The Third Department of Medicine, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto 390-8621, Japan.
| | | | | |
Collapse
|
27
|
Cardoso F, Dornas L, Cunningham M, Oliveira JT. Nerve conduction study in Sydenham's chorea. Mov Disord 2005; 20:360-3. [PMID: 15551347 DOI: 10.1002/mds.20318] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Sydenham's chorea (SC) is a late complication of group A beta-hemolytic streptococci infection presumably caused by an abnormal autoimmune reaction. Despite rare case reports of peripheral neuropathy associated with streptococcal infection, there is no investigation of peripheral nerve in SC. We performed nerve conduction studies in a cohort of patients with SC. The neurophysiology investigation comprised measurement of amplitude and sensory conduction velocity of median, ulnar, and sural nerves; amplitude and motor conduction velocity; and F-wave latency of median, ulnar, fibular, and tibial nerves. Twenty-six patients entered the study (12 females, 14 males; mean age 12.8 +/- 3.6 years). Thirteen subjects had absent or decreased deep reflexes. All investigated neurophysiological parameters fell within the normal range for our population. We failed to find neurophysiological evidence of peripheral nerve involvement in patients with a history of SC. Our findings suggest that the possible autoimmune dysfunction in SC patients is not targeted against epitopes present in peripheral nerves.
Collapse
Affiliation(s)
- Francisco Cardoso
- Movement Disorders Clinic, Department of Psychiatry and Neurology, The Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | | | | | | |
Collapse
|
28
|
Nafati G, Rossi-Durand C, Schmied A. Proprioceptive control of human wrist extensor motor units during an attention-demanding task. Brain Res 2004; 1018:208-20. [PMID: 15276880 DOI: 10.1016/j.brainres.2004.05.066] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2004] [Indexed: 11/17/2022]
Abstract
The responsiveness of the tonically firing single motor units (SMU) to Ia afferent volleys elicited by either mechanical (T-reflex) or electrical nerve stimulation (H-reflex) was tested in the extensor carpi radialis muscle (ECR) while the subjects were maintaining a steady wrist extension force using visual feedback set either at low or high gain. The aim was to determine whether the proprioceptive control of tonic motoneuronal activity depends on the level of attentiveness required by the behavioural context. The response probability of the SMUs to tendon taps was significantly higher (p<0.0001) and that to electrical nerve stimulation was lower (p<0.001) during the more demanding task. Since these changes in SMU responsiveness were not accompanied by any differences in either the motor unit firing patterns or the mean levels of EMG muscle activity, it can be concluded that there were no attention-related changes in the net excitatory drive to the ECR motoneurons. These results are consistent with the idea that fusimotor sensitization of the muscle spindle may have occurred in the more demanding task: an increase in the mechanical sensitivity of the muscle spindles would certainly account for both the T-reflex facilitation and the H-reflex depression observed. The attention-demanding task therefore seemed to involve an independent fusimotor drive activation process. The results of this study suggest that an adaptation of the fusimotor system occurs in humans, depending on the levels of attention and accuracy required to perform the ongoing motor task, as previously reported to occur in animals.
Collapse
Affiliation(s)
- Gilel Nafati
- Laboratoire de Plasticité et PhysioPathologie de la Motricité (P3M), UMR 6196, CNRS/Université de la Méditerranée, 31, chemin Joseph-Aiguier, 13402 Marseille Cedex 20, France
| | | | | |
Collapse
|
29
|
Repetitive Sensory Input Increases Reciprocal Ia Inhibition In Individuals With Incomplete Spinal Cord Injury. J Neurol Phys Ther 2004. [DOI: 10.1097/01253086-200409000-00003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Donelan JM, Pearson KG. Contribution of sensory feedback to ongoing ankle extensor activity during the stance phase of walking. Can J Physiol Pharmacol 2004; 82:589-98. [PMID: 15523516 DOI: 10.1139/y04-043] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Numerous investigations over the past 15 years have demonstrated that sensory feedback plays a critical role in establishing the timing and magnitude of muscle activity during walking. Here we review recent studies reporting that sensory feedback makes a substantial contribution to the activation of extensor motoneurons during the stance phase. Quantitative analysis of the effects of loading and unloading ankle extensor muscles during walking on a horizontal surface has shown that sensory feedback can increase the activity of ankle extensor muscles by up to 60%. There is currently some uncertainty about which sensory receptors are responsible for this enhancement of extensor activity, but likely candidates are the secondary spindle endings in the ankle extensors of humans and the Golgi tendon organs in the ankle extensors of humans and cats. Two important issues arise from the finding that sensory feedback from the leg regulates the magnitude of extensor activity. The first is the extent to which differences in the magnitude of activity in extensor muscles during different locomotor tasks can be directly attributed to changes in the magnitude of sensory signals, and the second is whether the enhancement of extensor activity is determined primarily by feedback from a specific group of receptors or from numerous groups of receptors distributed throughout the leg. Limitations of current experimental strategies prevent a straightforward empirical resolution of these issues. A potentially fruitful approach in the immediate future is to develop models of the known and hypothesized neuronal networks controlling motoneuronal activity, and use these simulations to control forward dynamic models of the musculo-skeletal system. These simulations would help understand how sensory signals are modified with a change in locomotor task and, in conjunction with physiological experiments, establish the extent to which these modifications can account for changes in the magnitude of motoneuronal activity.Key words: walking, sensory feedback, proprioceptors, pattern generation.
Collapse
Affiliation(s)
- J Maxwell Donelan
- Department of Physiology, Centrre for Neuroscience, University of Alberta, Edmonton T6G 2H7, Alberta, Canada.
| | | |
Collapse
|
31
|
Nielsen JB. Sensorimotor integration at spinal level as a basis for muscle coordination during voluntary movement in humans. J Appl Physiol (1985) 2004; 96:1961-7. [PMID: 15075316 DOI: 10.1152/japplphysiol.01073.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spinal reflexes have traditionally been treated as separate from voluntary movements. However, animal experiments since the 1950s and human experiments since the 1970s have documented that sensory activities in afferents from muscles, skin, and joints are integrated with descending motor commands at the level of common spinal interneurons. Two different roles of this sensorimotor integration at the spinal level may be discerned. First, sensory feedback evoked by the active muscles may help to drive the motoneurons. Second, external stimuli, such as sudden perturbations of a limb, may give rise to “error signals,” which are integrated into the ongoing motor activity and form the basis of corrective responses. When interpreting experimental data, it is important to consider these two different roles. Application of external stimuli may provide little information about how the spinal cord integrates sensory feedback evoked as part of ongoing movements. The complexity of the spinal machinery that is activated by external stimuli also makes the interpretation of data obtained from experiments dealing with artificial external stimuli, such as electrical stimuli, difficult. Nevertheless, such experiments have provided and will continue to provide very valuable information about how the brain and spinal cord ensure coordination of muscle activity during voluntary movement. So far, spinal control mechanisms have only been investigated to a limited extent in relation to sports and occupational activities. Provided that researchers consider the methodological problems of the techniques and that they seek independent validation of the findings, this may be a very fruitful research field in the future.
Collapse
Affiliation(s)
- Jens Bo Nielsen
- Institute of Physical Exercise and Sport Science and Department of Medical Physiology, The Panum Institute, Copenhagen University, 2200 Copenhagen, Denmark.
| |
Collapse
|