1
|
Rao N, Ostry DJ. Probing sensorimotor memory through the human speech-audiomotor system. J Neurophysiol 2025; 133:479-489. [PMID: 39740348 DOI: 10.1152/jn.00337.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025] Open
Abstract
Our knowledge of human sensorimotor learning and memory is predominantly based on the visuospatial workspace and limb movements. Humans also have a remarkable ability to produce and perceive speech sounds. We asked whether the human speech-auditory system could serve as a model to characterize the retention of sensorimotor memory in a workspace that is functionally independent of the visuospatial one. Using adaptation to altered auditory feedback, we investigated the durability of a newly acquired speech-acoustical memory (8- and 24-h delay), its sensitivity to the manner of acquisition (abrupt vs. gradual perturbation), and factors affecting memory retrieval. We observed extensive retention of learning (∼70%) but found no evidence for offline gains. The speech-acoustical memory was insensitive to the manner of its acquisition. To assess factors affecting memory retrieval, tests were first done in the absence of auditory feedback (with masking noise). Under these conditions, it appeared there was no memory for prior learning as if after an overnight delay, speakers had returned to their habitual speech production modes. However, when speech was reintroduced, resulting in speech error feedback, speakers returned immediately to their fully adapted state. This rapid switch shows that the two modes of speech production (adapted and habitual) can coexist in parallel in sensorimotor memory. The findings demonstrate extensive persistence of speech-acoustical memory and reveal context-specific memory retrieval processes in speech-motor learning. We conclude that the human speech-auditory system can be used to characterize sensorimotor memory in a workspace that is distinct from the visuospatial workspace.NEW & NOTEWORTHY There is extensive retention of speech-motor learning. Two parallel modes exist in speech motor memory, one with access to everyday habitual speech and the other with access to newly learned speech-acoustical maps. The availability of speech error feedback triggers a switch between these two modes. Properties of sensorimotor memory in the human speech-auditory system are behaviorally similar to, but functionally independent of, their visuospatial counterparts.
Collapse
Affiliation(s)
- Nishant Rao
- Yale Child Study Center, Yale School of Medicine, Yale University, New Haven, Connecticut, United States
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - David J Ostry
- Yale Child Study Center, Yale School of Medicine, Yale University, New Haven, Connecticut, United States
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Solano A, Lerner G, Griffa G, Deleglise A, Caffaro P, Riquelme L, Perez-Chada D, Della-Maggiore V. Sleep Consolidation Potentiates Sensorimotor Adaptation. J Neurosci 2024; 44:e0325242024. [PMID: 39074983 PMCID: PMC11376339 DOI: 10.1523/jneurosci.0325-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 07/31/2024] Open
Abstract
Contrary to its well-established role in declarative learning, the impact of sleep on motor memory consolidation remains a subject of debate. Current literature suggests that while motor skill learning benefits from sleep, consolidation of sensorimotor adaptation (SMA) depends solely on the passage of time. This has led to the proposal that SMA may be an exception to other types of memories. Here, we addressed this ongoing controversy in humans through three comprehensive experiments using the visuomotor adaptation paradigm (N = 290, 150 females). In Experiment 1, we investigated the impact of sleep on memory retention when the temporal gap between training and sleep was not controlled. In line with the previous literature, we found that memory consolidates with the passage of time. In Experiment 2, we used an anterograde interference protocol to determine the time window during which SMA memory is most fragile and, thus, potentially most sensitive to sleep intervention. Our results show that memory is most vulnerable during the initial hour post-training. Building on this insight, in Experiment 3, we investigated the impact of sleep when it coincided with the critical first hour of memory consolidation. This manipulation unveiled a benefit of sleep (30% memory enhancement) alongside an increase in spindle density and spindle-SO coupling during NREM sleep, two well-established neural markers of sleep consolidation. Our findings reconcile seemingly conflicting perspectives on the active role of sleep in motor learning and point to common mechanisms at the basis of memory formation.
Collapse
Affiliation(s)
- Agustin Solano
- Universidad de Buenos Aires-CONICET. Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Facultad de Medicina, Departamento de Ciencias Fisiológicas, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Gonzalo Lerner
- Universidad de Buenos Aires-CONICET. Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Facultad de Medicina, Departamento de Ciencias Fisiológicas, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Guillermina Griffa
- Universidad de Buenos Aires-CONICET. Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Facultad de Medicina, Departamento de Ciencias Fisiológicas, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Alvaro Deleglise
- Universidad de Buenos Aires-CONICET. Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Facultad de Medicina, Departamento de Ciencias Fisiológicas, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Pedro Caffaro
- Universidad de Buenos Aires-CONICET. Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Facultad de Medicina, Departamento de Ciencias Fisiológicas, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Luis Riquelme
- Universidad de Buenos Aires-CONICET. Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Facultad de Medicina, Departamento de Ciencias Fisiológicas, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Daniel Perez-Chada
- Departamento de Medicina Interna, Servicio de Medicina Pulmonar y Sueño, Hospital Universitario Austral, Pilar, Buenos Aires B1629AHJ, Argentina
| | - Valeria Della-Maggiore
- Universidad de Buenos Aires-CONICET. Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Facultad de Medicina, Departamento de Ciencias Fisiológicas, Ciudad de Buenos Aires C1121ABG, Argentina
- Department of Neurology and Neurosurgery, McGill University Montreal, Quebec H3A2B4, Canada
- Escuela de Ciencia y Tecnología (ECyT), Universidad Nacional de San Martin, San Martin, Buenos Aires, CP 1650, Argentina
| |
Collapse
|
3
|
Potential Benefits of Daytime Naps on Consecutive Days for Motor Adaptation Learning. Clocks Sleep 2022; 4:387-401. [PMID: 36134945 PMCID: PMC9497798 DOI: 10.3390/clockssleep4030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Daytime napping offers benefits for motor memory learning and is used as a habitual countermeasure to improve daytime functioning. A single nap has been shown to ameliorate motor memory learning, although the effect of consecutive napping on motor memory consolidation remains unclear. This study aimed to explore the effect of daytime napping over multiple days on motor memory learning. Twenty university students were divided into a napping group and no-nap (awake) group. The napping group performed motor adaption tasks before and after napping for three consecutive days, whereas the no-nap group performed the task on a similar time schedule as the napping group. A subsequent retest was conducted one week after the end of the intervention. Significant differences were observed only for speed at 30 degrees to complete the retention task, which was significantly faster in the napping group than in the awake group. No significant consolidation effects over the three consecutive nap intervention periods were confirmed. Due to the limitations of the different experimental environments of the napping and the control group, the current results warrant further investigation to assess whether consecutive napping may benefit motor memory learning, which is specific to speed.
Collapse
|
4
|
Hamel R, Demers O, Lepage JF, Bernier PM. The Effects of Post-Learning Alcohol Ingestion on Human Motor Memory Consolidation. Eur J Neurosci 2022; 56:4600-4618. [PMID: 35841189 PMCID: PMC9544401 DOI: 10.1111/ejn.15772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/07/2022] [Indexed: 11/27/2022]
Abstract
The neurochemical mechanisms underlying motor memory consolidation remain largely unknown. Based on converging work showing that ethyl alcohol retrogradely enhances declarative memory consolidation, this work tested the hypothesis that post‐learning alcohol ingestion would enhance motor memory consolidation. In a within‐subject and fully counterbalanced design, participants (n = 24; 12M; 12F) adapted to a gradually introduced visual deviation and ingested, immediately after adaptation, a placebo (PBO), a medium (MED) or high (HIGH) dose of alcohol. The alcohol doses were bodyweight‐ and gender‐controlled to yield peak breath alcohol concentrations of 0.00% in the PBO, ~0.05% in the MED and ~0.095% in the HIGH condition. Retention was evaluated 24 h later through reach aftereffects when participants were sober. The results revealed that retention levels were neither significantly nor meaningfully different in both the MED and HIGH conditions as compared to PBO (all absolute Cohen's dz values < ~0.2; small to negligible effects), indicating that post‐learning alcohol ingestion did not alter motor memory consolidation. Given alcohol's known pharmacological GABAergic agonist and NMDA antagonist properties, one possibility is that these neurochemical mechanisms do not decisively contribute to motor memory consolidation. As converging work demonstrated alcohol's retrograde enhancement of declarative memory, the present results suggest that distinct neurochemical mechanisms underlie declarative and motor memory consolidation. Elucidating the neurochemical mechanisms underlying the consolidation of different memory systems may yield insights into the effects of over‐the‐counter drugs on everyday learning and memory but also inform the development of pharmacological interventions seeking to alter human memory consolidation.
Collapse
Affiliation(s)
- R Hamel
- Département de kinanthropologie, Faculté des sciences de l'activité physique, Université de Sherbrooke, Québec, Canada.,Département de pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Québec, Canada.,Centre de recherche du Centre hospitalier de l'Université de Sherbrooke, Québec, Canada
| | - O Demers
- Département de kinanthropologie, Faculté des sciences de l'activité physique, Université de Sherbrooke, Québec, Canada.,Département de pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Québec, Canada.,Centre de recherche du Centre hospitalier de l'Université de Sherbrooke, Québec, Canada
| | - J F Lepage
- Département de pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Québec, Canada.,Centre de recherche du Centre hospitalier de l'Université de Sherbrooke, Québec, Canada
| | - P M Bernier
- Département de kinanthropologie, Faculté des sciences de l'activité physique, Université de Sherbrooke, Québec, Canada.,Centre de recherche du Centre hospitalier de l'Université de Sherbrooke, Québec, Canada
| |
Collapse
|
5
|
Solano A, Riquelme LA, Perez-Chada D, Della-Maggiore V. Motor Learning Promotes the Coupling between Fast Spindles and Slow Oscillations Locally over the Contralateral Motor Network. Cereb Cortex 2021; 32:2493-2507. [PMID: 34649283 DOI: 10.1093/cercor/bhab360] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 01/03/2023] Open
Abstract
Recent studies from us and others suggest that traditionally declarative structures mediate some aspects of the encoding and consolidation of procedural memories. This evidence points to the existence of converging physiological pathways across memory systems. Here, we examined whether the coupling between slow oscillations (SO) and spindles, a mechanism well established in the consolidation of declarative memories, is relevant for the stabilization of human motor memories. To this aim, we conducted an electroencephalography study in which we quantified various parameters of these oscillations during a night of sleep that took place immediately after learning a visuomotor adaptation (VMA) task. We found that VMA increased the overall density of fast (≥12 Hz), but not slow (<12 Hz), spindles during nonrapid eye movement sleep, stage 3 (NREM3). This modulation occurred rather locally over the hemisphere contralateral to the trained hand. Although adaptation learning did not affect the density of SOs, it substantially enhanced the number of fast spindles locked to the active phase of SOs. The fact that only coupled spindles predicted overnight memory retention points to the relevance of this association in motor memory consolidation. Our work provides evidence in favor of a common mechanism at the basis of the stabilization of declarative and motor memories.
Collapse
Affiliation(s)
- Agustín Solano
- IFIBIO Houssay, Department of Physiology, School of Medicine, University of Buenos Aires, C1121ABG, Argentina
| | - Luis A Riquelme
- IFIBIO Houssay, Department of Physiology, School of Medicine, University of Buenos Aires, C1121ABG, Argentina
| | - Daniel Perez-Chada
- Department of Internal Medicine, Pulmonary and Sleep Medicine Service, Austral University Hospital, Buenos Aires B1629AHJ, Argentina
| | - Valeria Della-Maggiore
- IFIBIO Houssay, Department of Physiology, School of Medicine, University of Buenos Aires, C1121ABG, Argentina
| |
Collapse
|
6
|
Nicolini C, Fahnestock M, Gibala MJ, Nelson AJ. Understanding the Neurophysiological and Molecular Mechanisms of Exercise-Induced Neuroplasticity in Cortical and Descending Motor Pathways: Where Do We Stand? Neuroscience 2020; 457:259-282. [PMID: 33359477 DOI: 10.1016/j.neuroscience.2020.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
Exercise is a promising, cost-effective intervention to augment successful aging and neurorehabilitation. Decline of gray and white matter accompanies physiological aging and contributes to motor deficits in older adults. Exercise is believed to reduce atrophy within the motor system and induce neuroplasticity which, in turn, helps preserve motor function during aging and promote re-learning of motor skills, for example after stroke. To fully exploit the benefits of exercise, it is crucial to gain a greater understanding of the neurophysiological and molecular mechanisms underlying exercise-induced brain changes that prime neuroplasticity and thus contribute to postponing, slowing, and ameliorating age- and disease-related impairments in motor function. This knowledge will allow us to develop more effective, personalized exercise protocols that meet individual needs, thereby increasing the utility of exercise strategies in clinical and non-clinical settings. Here, we review findings from studies that investigated neurophysiological and molecular changes associated with acute or long-term exercise in healthy, young adults and in healthy, postmenopausal women.
Collapse
Affiliation(s)
- Chiara Nicolini
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Margaret Fahnestock
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
7
|
Johnstone A, Grigoras I, Petitet P, Capitão LP, Stagg CJ. A single, clinically relevant dose of the GABA B agonist baclofen impairs visuomotor learning. J Physiol 2020; 599:307-322. [PMID: 33085094 PMCID: PMC7611062 DOI: 10.1113/jp280378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/15/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Baclofen is a GABAB agonist prescribed as a treatment for spasticity in stroke, brain injury and multiple sclerosis patients, who are often undergoing concurrent motor rehabilitation. Decreasing GABAergic inhibition is a key feature of motor learning and so there is a possibility that GABA agonist drugs, such as baclofen, could impair these processes, potentially impacting rehabilitation. Here, we examined the effect of 10 mg of baclofen, in 20 young healthy individuals, and found that the drug impaired retention of visuomotor learning with no significant effect on motor sequence learning. Overall baclofen did not alter transcranial magnetic stimulation-measured GABAB inhibition, although the change in GABAB inhibition correlated with aspects of visuomotor learning retention. Further work is needed to investigate whether taking baclofen impacts motor rehabilitation in patients. ABSTRACT The GABAB agonist baclofen is taken daily as a treatment for spasticity by millions of stroke, brain injury and multiple sclerosis patients, many of whom are also undergoing motor rehabilitation. However, decreases in GABA are suggested to be a key feature of human motor learning, which raises questions about whether drugs increasing GABAergic activity may impair motor learning and rehabilitation. In this double-blind, placebo-controlled study, we investigated whether a single 10 mg dose of the GABAB agonist baclofen impaired motor sequence learning and visuomotor learning in 20 young healthy participants of both sexes. Participants trained on visuomotor and sequence learning tasks using their right hand. Transcranial magnetic stimulation (TMS) measures of corticospinal excitability, GABAA (short-interval intracortical inhibition, 2.5 ms) and GABAB (long-interval intracortical inhibition, 150 ms) receptor activation were recorded from left M1. Behaviourally, baclofen caused a significant reduction of visuomotor aftereffect (F1,137.8 = 6.133, P = 0.014) and retention (F1,130.7 = 4.138, P = 0.044), with no significant changes to sequence learning. There were no overall changes to TMS measured GABAergic inhibition with this low dose of baclofen. This result confirms the causal importance of GABAB inhibition in mediating visuomotor learning and suggests that chronic baclofen use could negatively impact aspects of motor rehabilitation.
Collapse
Affiliation(s)
- Ainslie Johnstone
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Department of Psychiatry, OHBA, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.,Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, UK
| | - Ioana Grigoras
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Department of Psychiatry, OHBA, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.,MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Pierre Petitet
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Liliana P Capitão
- Department of Psychiatry, University of Oxford, Oxford, UK.,Oxford Health NHS Foundation Trust, Oxford, UK
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Department of Psychiatry, OHBA, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.,MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Martelli F, Palermo E, Del Prete Z, Rossi S. Using an ankle robotic device for motor performance and motor learning evaluation. Heliyon 2020; 6:e03262. [PMID: 32021934 PMCID: PMC6994316 DOI: 10.1016/j.heliyon.2020.e03262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/14/2019] [Accepted: 01/15/2020] [Indexed: 11/18/2022] Open
Abstract
In this paper we performed the evaluation of ankle motor performance and motor learning during a goal-directed task, executed using the pediAnklebot robot. The protocol consisted of 3 phases (Familiarization, Adaptation, and Wash Out) repeated one time for each movement direction (plantarflexion, dorsiflexion, inversion, and eversion). During Familiarization and Wash out subjects performed goal-directed movements in unperturbed environment, whereas during Adaptation phase, a curl viscous force field was applied and it was randomly removed 10 times out of 200. Ankle motor performance was evaluated by means of a set of indices grouped into: accuracy, smoothness, temporal, and stopping indices. Learning Index was calculated to study the motor learning during the adaptation phase, which was subdivided into 5 temporal intervals (target sets). The outcomes related to the ankle motor performance highlighted that the best performance in terms of accuracy and smoothness of the trajectories was obtained in dorsiflexion movements in the sagittal plane, and in inversion rotations in the frontal plane. Differences between movement directions revealed an anisotropic behavior of the ankle joint. Results of the Learning index showed a capability of the subjects to rapidly adapt to a perturbed force field depending on the magnitude of the perceived field.
Collapse
Affiliation(s)
- Francesca Martelli
- Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Roma, Italy
| | - Eduardo Palermo
- Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Roma, Italy
| | - Zaccaria Del Prete
- Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Roma, Italy
| | - Stefano Rossi
- Department of Economics, Engineering, Society and Business Organization (DEIM), University of Tuscia, Viterbo, Italy
| |
Collapse
|
9
|
Sugawara K, Tanabe S, Suzuki T, Higashi T. Effect of electrical stimulation of antagonist muscles for voluntary motor drive. Somatosens Mot Res 2019; 36:109-115. [PMID: 31092131 DOI: 10.1080/08990220.2019.1615426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Voluntary motor drive is an important central command that descends via the corticospinal tract to initiate muscle contraction. When electrical stimulation (ES) is applied to an antagonist or agonist muscle, it changes the agonist muscle's representative motor cortex and thus its voluntary motor drive. In this study, we used a reaction time task to compare the effects of weak and strong ES of the antagonist or agonist muscle during the premotor period of a wrist extension. We recorded motor evoked potentials (MEPs) induced by transcranial magnetic stimulation (TMS) that was applied to the extensor carpi radialis (ECR; agonist) and flexor carpi radialis (FCR; antagonist). When stronger ES intensities were applied to the antagonist, the MEP control ratio in the ECR significantly increased during the premotor time. Furthermore, the MEP control ratio with stronger antagonist ES intensity was significantly larger than that in the agonist for the same ES intensity. In the FCR, the MEP control ratio was also significantly greater at the strong ES intensity than at the weak ES intensity. Furthermore, the MEP control ratio in the antagonist with a strong ES intensity was significantly larger than that in the agonist with the same ES intensity. These results suggest that agonist corticomotor excitability might be enhanced by ES of the antagonist, which in turn strongly activates the descending motor system in the preparation of agonist contraction.
Collapse
Affiliation(s)
- Kenichi Sugawara
- a Faculty of Health and Social Work, Division of Physical Therapy , Kanagawa University of Human Services , Yokosuka , Japan
| | - Shigeo Tanabe
- b Faculty of Rehabilitation, School of Health Sciences , Fujita Health University , Toyoake , Japan
| | - Tomotaka Suzuki
- a Faculty of Health and Social Work, Division of Physical Therapy , Kanagawa University of Human Services , Yokosuka , Japan
| | - Toshio Higashi
- c Division of Physical Therapy and Occupational Therapy Science, Graduate School of Health Science , Nagasaki University , Nagasaki , Japan
| |
Collapse
|
10
|
Variable training but not sleep improves consolidation of motor adaptation. Sci Rep 2018; 8:15977. [PMID: 30374027 PMCID: PMC6206141 DOI: 10.1038/s41598-018-34225-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 10/12/2018] [Indexed: 12/17/2022] Open
Abstract
How motor memory consolidates still remains elusive. Consolidation of motor skills has been shown to depend on periods of sleep. Conversely, motor adaptation during tasks not dependent on the hippocampus may not depend on sleep. Some research suggests that the training schedule affects the sleep dependency of motor adaptation tasks. Here, we investigated whether sleep differentially affects memory consolidation that depends on the training schedule. Healthy men were trained with their dominant, right hand on a force-field adaptation task and re-tested after an 11-h consolidation period involving overnight sleep (Sleep) or daytime wakefulness (Wake). Retesting included a transfer test of the non-dominant hand. Half of the subjects in each group adapted to different force-field magnitudes during training with low inter-trial force variability (Sleep-Blocked; Wake-Blocked), and the other half were trained with a high-variability schedule (Sleep-Random; Wake-Random). EEG was recorded during task execution and overnight polysomnography. Consolidation was comparable between Wake and Sleep groups, although performance changes over sleep correlated with sleep spindles nesting in slow-wave upstates. Higher training variability improved retest performance, including transfer learning, and these improvements correlated with higher alpha power in contralateral parietal areas. These enhanced consolidation effects might be fostered by feedback rather than feedforward mechanisms.
Collapse
|
11
|
Context-dependent concurrent adaptation to static and moving targets. PLoS One 2018; 13:e0192476. [PMID: 29420650 PMCID: PMC5805303 DOI: 10.1371/journal.pone.0192476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/24/2018] [Indexed: 11/20/2022] Open
Abstract
Is the neural control of movements towards moving targets independent to that of static targets? In the following experiments, we used a visuomotor rotation adaptation paradigm to examine the extent to which adapting arm movements to static targets generalize to that of moving targets (i.e. pursuit or tracking). In the first and second experiments, we showed that adaptation to perturbed tracking movements generalizes to reaching movements; reach aftereffects following perturbed tracking were about half the size (≈9°) of those produced following reach training (≈ 19°). Given these findings, in the final experiment we associated opposing perturbations (-30° and +30°) with either reaching or tracking movements and presented them within the same experimental block to determine whether these contexts allow for dual adaptation. We found that the group that experienced opposing perturbations was able to reduce both reaching and tracking errors, as well as produce reach aftereffects following dual training of ≈7°, which were substantially smaller than those produced when reach training was not concurrent with tracking training. This reduction in reach aftereffects is consistent with the extent of the interference from tracking training as measured by the reach aftereffects produced when only that condition was performed. These results suggest partial, but not complete, overlap in the learning processes involved in the acquisition of tracking and reaching movements.
Collapse
|
12
|
King BR, Hoedlmoser K, Hirschauer F, Dolfen N, Albouy G. Sleeping on the motor engram: The multifaceted nature of sleep-related motor memory consolidation. Neurosci Biobehav Rev 2017; 80:1-22. [DOI: 10.1016/j.neubiorev.2017.04.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 12/16/2022]
|
13
|
The Effect of Sleep on Multiple Memory Systems. COGNITIVE NEUROSCIENCE OF MEMORY CONSOLIDATION 2017. [DOI: 10.1007/978-3-319-45066-7_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Immink MA. Post-training Meditation Promotes Motor Memory Consolidation. Front Psychol 2016; 7:1698. [PMID: 27847492 PMCID: PMC5088212 DOI: 10.3389/fpsyg.2016.01698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/14/2016] [Indexed: 11/13/2022] Open
Abstract
Following training, motor memory consolidation is thought to involve either memory stabilization or off-line learning processes. The extent to which memory stabilization or off-line learning relies on post-training wakeful periods or sleep is not clear and thus, novel research approaches are needed to further explore the conditions that promote motor memory consolidation. The present experiment represents the first empirical test of meditation as potential facilitator of motor memory consolidation. Twelve adult residents of a yoga center with a mean of 9 years meditation experience were trained on a sequence key pressing task. Three hours after training, the meditation group completed a 30 min session of yoga nidra meditation while a control group completed 30 min of light work duties. A wakeful period of 4.5 h followed meditation after which participants completed a test involving both trained and untrained sequences. Training performance did not significantly differ between groups. Comparison of group performance at test, revealed a performance benefit of post-training meditation but this was limited to trained sequences only. That the post-training meditation performance benefit was specific to trained sequences is consistent with the notion of meditation promoting motor memory consolidation as opposed to general motor task performance benefits from meditation. Further, post-training meditation appears to have promoted motor memory stabilization as opposed to off-line learning. These findings represent the first demonstration of meditation related motor memory consolidation and are consistent with a growing body of literature demonstrating the benefits of meditation for cognitive function, including memory.
Collapse
Affiliation(s)
- Maarten A Immink
- School of Health Sciences, Centre for Sleep Research and Cognitive Neuroscience Laboratory, University of South Australia, Adelaide SA, Australia
| |
Collapse
|
15
|
Taubert M, Stein T, Kreutzberg T, Stockinger C, Hecker L, Focke A, Ragert P, Villringer A, Pleger B. Remote Effects of Non-Invasive Cerebellar Stimulation on Error Processing in Motor Re-Learning. Brain Stimul 2016; 9:692-699. [PMID: 27157059 DOI: 10.1016/j.brs.2016.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/21/2016] [Accepted: 04/10/2016] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND While concurrent transcranial direct current stimulation (tDCS) affects motor memory acquisition and long-term retention, it is unclear how behavioral interference modulates long-term tDCS effects. Behavioral interference can be introduced through a secondary task learned in-between motor memory acquisition and later recall of the original task. OBJECTIVE/HYPOTHESIS The cerebellum is important for the processing of errors if movements should be adapted to external perturbations (motor memory acquisition). We hypothesized that concurrent cerebellar tDCS during adaptation influences both memory acquisition and re-acquisition if motor errors are enlarged due to behavioral interference. METHODS In a sham-controlled and double-blinded study, we applied anodal and cathodal tDCS to the ipsilateral cerebellum while subjects adapted reaching movements to an external, clockwise force field perturbation (acquisition task A) with their dominant right arm. Behavioral interference by an oppositely oriented, counter-clockwise perturbation (secondary task B) was introduced in between the acquisition and re-acquisition (24 h later) sessions. RESULTS Learning task B disrupted memory retention of A and re-increased motor errors in the re-acquisition session. Anodal but not sham or cathodal tDCS impaired motor memory acquisition and, additionally, increased motor errors during re-acquisition of the original motor memory. CONCLUSION(S) Behavioral interference disrupted motor memory retention but tDCS delivered online during memory acquisition induced lasting and robust effects on re-acquisition performance one day later. Our data also suggest different error-processing mechanisms at work during motor memory acquisition and re-acquisition.
Collapse
Affiliation(s)
- Marco Taubert
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.
| | - Thorsten Stein
- YIG "Computational Motor Control and Learning", BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology Karlsruhe, 76131 Karlsruhe, Germany
| | - Tommy Kreutzberg
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Christian Stockinger
- YIG "Computational Motor Control and Learning", BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology Karlsruhe, 76131 Karlsruhe, Germany
| | - Lukas Hecker
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Anne Focke
- YIG "Computational Motor Control and Learning", BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology Karlsruhe, 76131 Karlsruhe, Germany
| | - Patrick Ragert
- Institute of General Kinesiology and Athletics Training, University of Leipzig, 04109 Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; Clinic for Cognitive Neurology, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Burkhard Pleger
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| |
Collapse
|
16
|
Taubert M, Villringer A, Lehmann N. Endurance Exercise as an "Endogenous" Neuro-enhancement Strategy to Facilitate Motor Learning. Front Hum Neurosci 2015; 9:692. [PMID: 26834602 PMCID: PMC4714627 DOI: 10.3389/fnhum.2015.00692] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 12/07/2015] [Indexed: 11/13/2022] Open
Abstract
Endurance exercise improves cardiovascular and musculoskeletal function and may also increase the information processing capacities of the brain. Animal and human research from the past decade demonstrated widespread exercise effects on brain structure and function at the systems-, cellular-, and molecular level of brain organization. These neurobiological mechanisms may explain the well-established positive influence of exercise on performance in various behavioral domains but also its contribution to improved skill learning and neuroplasticity. With respect to the latter, only few empirical and theoretical studies are available to date. The aim of this review is (i) to summarize the existing neurobiological and behavioral evidence arguing for endurance exercise-induced improvements in motor learning and (ii) to develop hypotheses about the mechanistic link between exercise and improved learning. We identify major knowledge gaps that need to be addressed by future research projects to advance our understanding of how exercise should be organized to optimize motor learning.
Collapse
Affiliation(s)
- Marco Taubert
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, LeipzigGermany; Clinic for Cognitive Neurology, University Hospital Leipzig, LeipzigGermany
| | - Nico Lehmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig Germany
| |
Collapse
|
17
|
Cumulative effects of anodal and priming cathodal tDCS on pegboard test performance and motor cortical excitability. Behav Brain Res 2015; 287:27-33. [PMID: 25804362 DOI: 10.1016/j.bbr.2015.03.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/10/2015] [Accepted: 03/14/2015] [Indexed: 11/24/2022]
Abstract
Transcranial direct current stimulation (tDCS) protocols applied over the primary motor cortex are associated with changes in motor performance. This transcranial magnetic stimulation (TMS) study examines whether cathodal tDCS prior to motor training, combined with anodal tDCS during motor training improves motor performance and off-line learning. Three study groups (n=36) were trained on the grooved pegboard test (GPT) in a randomized, between-subjects design: SHAM-sham stimulation prior and during training, STIM1-sham stimulation prior and atDCS during training, STIM2-ctDCS stimulation prior and atDCS during training. Motor performance was assessed by GPT completion time and retested 14 days later to determine off-line learning. Cortical excitability was assessed via TMS at baseline (T0), prior training (T1), after training (T2), and 60 min after training (T3). Motor evoked potentials (MEP) were recorded from m. abductor pollicis brevis of the active left hand. GPT completion time was reduced for both stimulated groups compared to SHAM. For STIM2 this reduction in time was significantly higher than for STIM1 and further off-line learning occurred after STIM2. After ctDCS at T1, MEP amplitude and intracortical facilitation was decreased and intracortical inhibition was increased. After atDCS at T2, an opposite effect was observed for STIM1 and STIM2. For STIM2 these neuromodulatory effects were retained until T3. It is concluded that application of atDCS during the training improves pegboard performance and that additional priming with ctDCS has a positive effect on off-line learning. These cumulative behavioral gains were indicated by the preceding neuromodulatory changes.
Collapse
|
18
|
de Xivry JJO, Shadmehr R. Electrifying the motor engram: effects of tDCS on motor learning and control. Exp Brain Res 2014; 232:3379-95. [PMID: 25200178 PMCID: PMC4199902 DOI: 10.1007/s00221-014-4087-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/26/2014] [Indexed: 01/08/2023]
Abstract
Learning to control our movements is accompanied by neuroplasticity of motor areas of the brain. The mechanisms of neuroplasticity are diverse and produce what is referred to as the motor engram, i.e., the neural trace of the motor memory. Transcranial direct current stimulation (tDCS) alters the neural and behavioral correlates of motor learning, but its precise influence on the motor engram is unknown. In this review, we summarize the effects of tDCS on neural activity and suggest a few key principles: (1) Firing rates are increased by anodal polarization and decreased by cathodal polarization, (2) anodal polarization strengthens newly formed associations, and (3) polarization modulates the memory of new/preferred firing patterns. With these principles in mind, we review the effects of tDCS on motor control, motor learning, and clinical applications. The increased spontaneous and evoked firing rates may account for the modulation of dexterity in non-learning tasks by tDCS. The facilitation of new association may account for the effect of tDCS on learning in sequence tasks while the ability of tDCS to strengthen memories of new firing patterns may underlie the effect of tDCS on consolidation of skills. We then describe the mechanisms of neuroplasticity of motor cortical areas and how they might be influenced by tDCS. We end with current challenges for the fields of brain stimulation and motor learning.
Collapse
Affiliation(s)
- Jean-Jacques Orban de Xivry
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM) and Institute of Neuroscience (IoNS), Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Department of Biomedical Engineering Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Pekny SE, Shadmehr R. Optimizing effort: increased efficiency of motor memory with time away from practice. J Neurophysiol 2014; 113:445-54. [PMID: 25355964 DOI: 10.1152/jn.00638.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In motor tasks, efficiency can be measured via the commands that are produced to accomplish a goal. To maximize efficiency, the nervous system should produce task-relevant motor commands while avoiding behaviors that are task-irrelevant. The current view is that this is achieved through training, i.e., the optimum motor commands are learned by trial and error. However, in contrast to this view, there are numerous examples in which during an experiment, task-irrelevant commands are continuously produced. To address this, we trained human volunteers to reach in a force field. With practice, they learned to produce forces that compensated for the field, generating task-relevant commands that were necessary to achieve success. As expected, training also resulted in generalization, the transfer of learning to other movements. We designed the task so that any forces produced as a result of generalization were unnecessary and therefore task-irrelevant. Importantly, there were no explicit cues to indicate that production of these forces was task-irrelevant. Rather, the only indicator was effort itself. Could this inefficiency of the motor commands be reduced? We found that even with extensive practice, the production of task-irrelevant forces persisted. However, if subjects were given sufficient time away from practice (6 or 24 h but not 3 or 30 min), they spontaneously reduced production of the task-irrelevant forces. Therefore, practice alone was insufficient to allow for increased efficiency of motor output. Time away from practice was a required element for optimization of effort.
Collapse
Affiliation(s)
- Sarah E Pekny
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
20
|
Hoedlmoser K, Birklbauer J, Schabus M, Eibenberger P, Rigler S, Mueller E. The impact of diurnal sleep on the consolidation of a complex gross motor adaptation task. J Sleep Res 2014; 24:100-9. [PMID: 25256866 PMCID: PMC4491357 DOI: 10.1111/jsr.12207] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 06/09/2014] [Indexed: 12/30/2022]
Abstract
Diurnal sleep effects on consolidation of a complex, ecological valid gross motor adaptation task were examined using a bicycle with an inverse steering device. We tested 24 male subjects aged between 20 and 29 years using a between-subjects design. Participants were trained to adapt to the inverse steering bicycle during 45 min. Performance was tested before (TEST1) and after (TEST2) training, as well as after a 2 h retention interval (TEST3). During retention, participants either slept or remained awake. To assess gross motor performance, subjects had to ride the inverse steering bicycle 3 × 30 m straight-line and 3 × 30 m through a slalom. Beyond riding time, we sophisticatedly measured performance accuracy (standard deviation of steering angle) in both conditions using a rotatory potentiometer. A significant decrease of accuracy during straight-line riding after nap and wakefulness was shown. Accuracy during slalom riding remained stable after wakefulness but was reduced after sleep. We found that the duration of rapid eye movement sleep as well as sleep spindle activity are negatively related with gross motor performance changes over sleep. Together these findings suggest that the consolidation of adaptation to a new steering device does not benefit from a 2 h midday nap. We speculate that in case of strongly overlearned motor patterns such as normal cycling, diurnal sleep spindles and rapid eye movement sleep might even help to protect everyday needed skills, and to rapidly forget newly acquired, interfering and irrelevant material.
Collapse
Affiliation(s)
- Kerstin Hoedlmoser
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | | | | | | | | | | |
Collapse
|
21
|
Christova M, Rafolt D, Golaszewski S, Nardone R, Gallasch E. Electrical stimulation during skill training with a therapeutic glove enhances the induction of cortical plasticity and has a positive effect on motor memory. Behav Brain Res 2014; 270:171-8. [DOI: 10.1016/j.bbr.2014.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/05/2014] [Accepted: 05/12/2014] [Indexed: 11/16/2022]
Affiliation(s)
- Monica Christova
- Department of Physiology, Medical University of Graz, Harrachgasse 21/5, 8010 Graz, Austria; Department of Physiotherapy, University of Applied Sciences FH JOANNEUM, Graz, Austria.
| | - Dietmar Rafolt
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
| | - Stefan Golaszewski
- Department of Neurology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Raffaele Nardone
- Department of Neurology, Paracelsus Medical University of Salzburg, Salzburg, Austria; Department of Neurology, F. Tappeiner Hospital, Merano, Italy
| | - Eugen Gallasch
- Department of Physiology, Medical University of Graz, Harrachgasse 21/5, 8010 Graz, Austria
| |
Collapse
|
22
|
Bédard P, Sanes JN. Brain representations for acquiring and recalling visual-motor adaptations. Neuroimage 2014; 101:225-35. [PMID: 25019676 DOI: 10.1016/j.neuroimage.2014.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/23/2014] [Accepted: 07/05/2014] [Indexed: 11/17/2022] Open
Abstract
Humans readily learn and remember new motor skills, a process that likely underlies adaptation to changing environments. During adaptation, the brain develops new sensory-motor relationships, and if consolidation occurs, a memory of the adaptation can be retained for extended periods. Considerable evidence exists that multiple brain circuits participate in acquiring new sensory-motor memories, though the networks engaged in recalling these and whether the same brain circuits participate in their formation and recall have less clarity. To address these issues, we assessed brain activation with functional MRI while young healthy adults learned and recalled new sensory-motor skills by adapting to world-view rotations of visual feedback that guided hand movements. We found cerebellar activation related to adaptation rate, likely reflecting changes related to overall adjustments to the visual rotation. A set of parietal and frontal regions, including inferior and superior parietal lobules, premotor area, supplementary motor area and primary somatosensory cortex, exhibited non-linear learning-related activation that peaked in the middle of the adaptation phase. Activation in some of these areas, including the inferior parietal lobule, intra-parietal sulcus and somatosensory cortex, likely reflected actual learning, since the activation correlated with learning after-effects. Lastly, we identified several structures having recall-related activation, including the anterior cingulate and the posterior putamen, since the activation correlated with recall efficacy. These findings demonstrate dynamic aspects of brain activation patterns related to formation and recall of a sensory-motor skill, such that non-overlapping brain regions participate in distinctive behavioral events.
Collapse
Affiliation(s)
- Patrick Bédard
- Department of Neuroscience, Brown University, Providence, RI 02912 USA
| | - Jerome N Sanes
- Department of Neuroscience, Brown University, Providence, RI 02912 USA; Institute for Brain Science, Brown University, Providence, RI 02912 USA; Center for Neurorestoration and Neurotechnology, Providence Veterans Administration Medical Center, Providence, RI 02908 USA.
| |
Collapse
|
23
|
Stockinger C, Focke A, Stein T. Catch trials in force field learning influence adaptation and consolidation of human motor memory. Front Hum Neurosci 2014; 8:231. [PMID: 24795598 PMCID: PMC4001009 DOI: 10.3389/fnhum.2014.00231] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/31/2014] [Indexed: 11/13/2022] Open
Abstract
Force field studies are a common tool to investigate motor adaptation and consolidation. Thereby, subjects usually adapt their reaching movements to force field perturbations induced by a robotic device. In this context, so-called catch trials, in which the disturbing forces are randomly turned off, are commonly used to detect after-effects of motor adaptation. However, catch trials also produce sudden large motor errors that might influence the motor adaptation and the consolidation process. Yet, the detailed influence of catch trials is far from clear. Thus, the aim of this study was to investigate the influence of catch trials on motor adaptation and consolidation in force field experiments. Therefore, 105 subjects adapted their reaching movements to robot-generated force fields. The test groups adapted their reaching movements to a force field A followed by learning a second interfering force field B before retest of A (ABA). The control groups were not exposed to force field B (AA). To examine the influence of diverse catch trial ratios, subjects received catch trials during force field adaptation with a probability of either 0, 10, 20, 30, or 40%, depending on the group. First, the results on motor adaptation revealed significant differences between the diverse catch trial ratio groups. With increasing amount of catch trials, the subjects' motor performance decreased and subjects' ability to accurately predict the force field—and therefore internal model formation—was impaired. Second, our results revealed that adapting with catch trials can influence the following consolidation process as indicated by a partial reduction to interference. Here, the optimal catch trial ratio was 30%. However, detection of consolidation seems to be biased by the applied measure of performance.
Collapse
Affiliation(s)
- Christian Stockinger
- YIG "Computational Motor Control and Learning", BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Anne Focke
- YIG "Computational Motor Control and Learning", BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Thorsten Stein
- YIG "Computational Motor Control and Learning", BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology Karlsruhe, Germany
| |
Collapse
|
24
|
Urbain C, Houyoux E, Albouy G, Peigneux P. Consolidation through the looking-glass: sleep-dependent proactive interference on visuomotor adaptation in children. J Sleep Res 2013; 23:44-52. [PMID: 24010959 DOI: 10.1111/jsr.12082] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 07/15/2013] [Indexed: 11/28/2022]
Abstract
Although a beneficial role of post-training sleep for declarative memory has been consistently evidenced in children, as in adults, available data suggest that procedural memory consolidation does not benefit from sleep in children. However, besides the absence of performance gains in children, sleep-dependent plasticity processes involved in procedural memory consolidation might be expressed through differential interference effects on the learning of novel but related procedural material. To test this hypothesis, 32 10-12-year-old children were trained on a motor rotation adaptation task. After either a sleep or a wake period, they were first retested on the same rotation applied at learning, thus assessing offline sleep-dependent changes in performance, then on the opposite (unlearned) rotation to assess sleep-dependent modulations in proactive interference coming from the consolidated visuomotor memory trace. Results show that children gradually improve performance over the learning session, showing effective adaptation to the imposed rotation. In line with previous findings, no sleep-dependent changes in performance were observed for the learned rotation. However, presentation of the opposite, unlearned deviation elicited significantly higher interference effects after post-training sleep than wakefulness in children. Considering that a definite feature of procedural motor memory and skill acquisition is the implementation of highly automatized motor behaviour, thus lacking flexibility, our results suggest a better integration and/or automation or motor adaptation skills after post-training sleep, eventually resulting in higher proactive interference effects on untrained material.
Collapse
Affiliation(s)
- Charline Urbain
- UR2NF, Neuropsychology and Functional Neuroimaging Research Group at CRCN, Center for Research in Cognition and Neurosciences and UNI, ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium; Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC), Erasme Hospital, ULB, Brussels, Belgium
| | | | | | | |
Collapse
|
25
|
Urbain C, Galer S, Van Bogaert P, Peigneux P. Pathophysiology of sleep-dependent memory consolidation processes in children. Int J Psychophysiol 2013; 89:273-83. [DOI: 10.1016/j.ijpsycho.2013.06.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 06/13/2013] [Accepted: 06/17/2013] [Indexed: 11/30/2022]
|
26
|
King BR, Fogel SM, Albouy G, Doyon J. Neural correlates of the age-related changes in motor sequence learning and motor adaptation in older adults. Front Hum Neurosci 2013; 7:142. [PMID: 23616757 PMCID: PMC3628357 DOI: 10.3389/fnhum.2013.00142] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/01/2013] [Indexed: 11/14/2022] Open
Abstract
As the world's population ages, a deeper understanding of the relationship between aging and motor learning will become increasingly relevant in basic research and applied settings. In this context, this review aims to address the effects of age on motor sequence learning (MSL) and motor adaptation (MA) with respect to behavioral, neurological, and neuroimaging findings. Previous behavioral research investigating the influence of aging on motor learning has consistently reported the following results. First, the initial acquisition of motor sequences is not altered, except under conditions of increased task complexity. Second, older adults demonstrate deficits in motor sequence memory consolidation. And, third, although older adults demonstrate deficits during the exposure phase of MA paradigms, the aftereffects following removal of the sensorimotor perturbation are similar to young adults, suggesting that the adaptive ability of older adults is relatively intact. This paper will review the potential neural underpinnings of these behavioral results, with a particular emphasis on the influence of age-related dysfunctions in the cortico-striatal system on motor learning.
Collapse
Affiliation(s)
- Bradley R King
- Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, University of Montreal Montreal, QC, Canada
| | | | | | | |
Collapse
|
27
|
Vigaru BC, Lambercy O, Schubring-Giese M, Hosp JA, Schneider M, Osei-Atiemo C, Luft A, Gassert R. A robotic platform to assess, guide and perturb rat forelimb movements. IEEE Trans Neural Syst Rehabil Eng 2013; 21:796-805. [PMID: 23335672 DOI: 10.1109/tnsre.2013.2240014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Animal models are widely used to explore the mechanisms underlying sensorimotor control and learning. However, current experimental paradigms allow only limited control over task difficulty and cannot provide detailed information on forelimb kinematics and dynamics. Here we propose a novel robotic device for use in motor learning investigations with rats. The compact, highly transparent, three degree-of-freedom manipulandum is capable of rendering nominal forces of 2 N to guide or perturb rat forelimb movements, while providing objective and quantitative assessments of endpoint motor performance in a 50×30 mm(2) planar workspace. Preliminary experiments with six healthy rats show that the animals can be familiarized with the experimental setup and are able to grasp and manipulate the end-effector of the robot. Further, dynamic perturbations and guiding force fields (i.e., haptic tunnels) rendered by the device had significant influence on rat motor behavior (ANOVA, ). This approach opens up new research avenues for future characterizations of motor learning stages, both in healthy and in stroke models.
Collapse
|
28
|
Albouy G, Vandewalle G, Sterpenich V, Rauchs G, Desseilles M, Balteau E, Degueldre C, Phillips C, Luxen A, Maquet P. Sleep stabilizes visuomotor adaptation memory: a functional magnetic resonance imaging study. J Sleep Res 2012; 22:144-54. [PMID: 23121320 DOI: 10.1111/j.1365-2869.2012.01059.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/27/2012] [Indexed: 11/27/2022]
Abstract
The beneficial effect of sleep on motor memory consolidation is well known for motor sequence memory, but remains unsettled for visuomotor adaptation in humans. The aim of this study was to characterize more clearly the influence of sleep on consolidation of visuomotor adaptation using a between-subjects functional magnetic resonance imaging (fMRI) design contrasting sleep to total sleep deprivation. Our behavioural results, based on seven different parameters, show that sleep stabilizes performance whereas sleep deprivation deteriorates it. During training, while a set of cerebellar, striatal and cortical areas is activated in proportion to performance improvement, the recruitment of the hippocampus and frontal cortex protects motor memory against the detrimental effects of sleep deprivation. During retest after sleep loss a cerebello-cortical network, usually involved in the earliest stage of learning, was recruited to perform the task. In contrast, no changes in cerebral activity were observed after sleep, suggesting that it may only support the stabilization of the visuomotor adaptation memory trace.
Collapse
|
29
|
Activity-dependent plasticity of spinal circuits in the developing and mature spinal cord. Neural Plast 2012; 2012:964843. [PMID: 22900208 PMCID: PMC3415235 DOI: 10.1155/2012/964843] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 06/12/2012] [Indexed: 01/29/2023] Open
Abstract
Part of the development and maturation of the central nervous system (CNS) occurs through interactions with the environment. Through physical activities and interactions with the world, an animal receives considerable sensory information from various sources. These sources can be internally (proprioceptive) or externally (such as touch and pressure) generated senses. Ample evidence exists to demonstrate that the sensory information originating from large diameter afferents (Ia fibers) have an important role in inducing essential functional and morphological changes for the maturation of both the brain and the spinal cord. The Ia fibers transmit sensory information generated by muscle activity and movement. Such use or activity-dependent plastic changes occur throughout life and are one reason for the ability to acquire new skills and learn new movements. However, the extent and particularly the mechanisms of activity-dependent changes are markedly different between a developing nervous system and a mature nervous system. Understanding these mechanisms is an important step to develop strategies for regaining motor function after different injuries to the CNS. Plastic changes induced by activity occur both in the brain and spinal cord. This paper reviews the activity-dependent changes in the spinal cord neural circuits during both the developmental stages of the CNS and in adulthood.
Collapse
|
30
|
Carpinella I, Cattaneo D, Bertoni R, Ferrarin M. Robot Training of Upper Limb in Multiple Sclerosis: Comparing Protocols With or WithoutManipulative Task Components. IEEE Trans Neural Syst Rehabil Eng 2012; 20:351-60. [DOI: 10.1109/tnsre.2012.2187462] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Abstract
It has been hypothesized that the generalization patterns that accompany learning carry the signatures of the neural systems that are engaged in that learning. Reach adaptation in force fields has generalization patterns that suggest primary engagement of a neural system that encodes movements in the intrinsic coordinates of joints and muscles, and lesser engagement of a neural system that encodes movements in the extrinsic coordinates of the task. Among the cortical motor areas, the intrinsic coordinate system is most prominently represented in the primary sensorimotor cortices. Here, we used transcranial direct current stimulation (tDCS) to alter mechanisms of synaptic plasticity and found that when it was applied to the motor cortex, it increased generalization in intrinsic coordinates but not extrinsic coordinates. However, when tDCS was applied to the posterior parietal cortex, it had no effects on learning or generalization in the force field task. The results suggest that during force field adaptation, the component of learning that produces generalization in intrinsic coordinates depends on the plasticity in the sensorimotor cortex.
Collapse
|
32
|
Mandelblat-Cerf Y, Novick I, Vaadia E. Expressions of multiple neuronal dynamics during sensorimotor learning in the motor cortex of behaving monkeys. PLoS One 2011; 6:e21626. [PMID: 21754994 PMCID: PMC3130782 DOI: 10.1371/journal.pone.0021626] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 06/03/2011] [Indexed: 11/18/2022] Open
Abstract
Previous studies support the notion that sensorimotor learning involves multiple processes. We investigated the neuronal basis of these processes by recording single-unit activity in motor cortex of non-human primates (Macaca fascicularis), during adaptation to force-field perturbations. Perturbed trials (reaching to one direction) were practiced along with unperturbed trials (to other directions). The number of perturbed trials relative to the unperturbed ones was either low or high, in two separate practice schedules. Unsurprisingly, practice under high-rate resulted in faster learning with more pronounced generalization, as compared to the low-rate practice. However, generalization and retention of behavioral and neuronal effects following practice in high-rate were less stable; namely, the faster learning was forgotten faster. We examined two subgroups of cells and showed that, during learning, the changes in firing-rate in one subgroup depended on the number of practiced trials, but not on time. In contrast, changes in the second subgroup depended on time and practice; the changes in firing-rate, following the same number of perturbed trials, were larger under high-rate than low-rate learning. After learning, the neuronal changes gradually decayed. In the first subgroup, the decay pace did not depend on the practice rate, whereas in the second subgroup, the decay pace was greater following high-rate practice. This group shows neuronal representation that mirrors the behavioral performance, evolving faster but also decaying faster at learning under high-rate, as compared to low-rate. The results suggest that the stability of a new learned skill and its neuronal representation are affected by the acquisition schedule.
Collapse
Affiliation(s)
- Yael Mandelblat-Cerf
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel.
| | | | | |
Collapse
|
33
|
NMDA receptors are not required for pattern completion during associative memory recall. PLoS One 2011; 6:e19326. [PMID: 21559402 PMCID: PMC3084823 DOI: 10.1371/journal.pone.0019326] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 03/26/2011] [Indexed: 01/09/2023] Open
Abstract
Pattern completion, the ability to retrieve complete memories initiated by subsets of external cues, has been a major focus of many computation models. A previously study reports that such pattern completion requires NMDA receptors in the hippocampus. However, such a claim was derived from a non-inducible gene knockout experiment in which the NMDA receptors were absent throughout all stages of memory processes as well as animal's adult life. This raises the critical question regarding whether the previously described results were truly resulting from the requirement of the NMDA receptors in retrieval. Here, we have examined the role of the NMDA receptors in pattern completion via inducible knockout of NMDA receptors limited to the memory retrieval stage. By using two independent mouse lines, we found that inducible knockout mice, lacking NMDA receptor in either forebrain or hippocampus CA1 region at the time of memory retrieval, exhibited normal recall of associative spatial reference memory regardless of whether retrievals took place under full-cue or partial-cue conditions. Moreover, systemic antagonism of NMDA receptor during retention tests also had no effect on full-cue or partial-cue recall of spatial water maze memories. Thus, both genetic and pharmacological experiments collectively demonstrate that pattern completion during spatial associative memory recall does not require the NMDA receptor in the hippocampus or forebrain.
Collapse
|
34
|
Kuriyama K, Honma M, Koyama S, Kim Y. D-cycloserine facilitates procedural learning but not declarative learning in healthy humans: a randomized controlled trial of the effect of D-cycloserine and valproic acid on overnight properties in the performance of non-emotional memory tasks. Neurobiol Learn Mem 2011; 95:505-9. [PMID: 21402164 DOI: 10.1016/j.nlm.2011.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/14/2011] [Accepted: 02/28/2011] [Indexed: 10/18/2022]
Abstract
Although D-cycloserine (DCS), a partial agonist of the N-methyl-d-aspartate (NMDA) receptor, and valproic acid (VPA), a histone deacetylase inhibitor, have been investigated for their roles in the facilitation of emotional learning, the effects on non-emotional declarative and procedural learning have not been clarified. We performed a randomized, blind, placebo-controlled, 4-arm clinical trial to determine the effects of DCS and VPA on the overnight properties of declarative and procedural learning in 60 healthy adults. Subjects were orally administrated a placebo, 100 mg DCS, 400 mg VPA, or a combination of 100 mg DCS and 400 mg VPA before they performed declarative and procedural learning tasks. Subjects then had their performance retested the following day. We observed that DCS facilitated procedural but not declarative learning and that VPA did not contribute to learning. Surprisingly, however, VPA attenuated the enhancement effect of DCS when coadministered with it. These results suggest that DCS acts as an enhancer of hippocampus-independent learning and that VPA may have an extinguishing pharmacological effect on excitatory post-synaptic action potentials that NMDA receptors regulate within procedural learning.
Collapse
Affiliation(s)
- Kenichi Kuriyama
- Department of Adult Mental Health, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | | | | | | |
Collapse
|
35
|
Orban de Xivry JJ, Criscimagna-Hemminger SE, Shadmehr R. Contributions of the motor cortex to adaptive control of reaching depend on the perturbation schedule. Cereb Cortex 2010; 21:1475-84. [PMID: 21131448 DOI: 10.1093/cercor/bhq192] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
During adaptation, motor commands tend to repeat as performance plateaus. It has been hypothesized that this repetition produces plasticity in the motor cortex (M1). Here, we considered a force field reaching paradigm, varied the perturbation schedule to potentially alter the amount of repetition, and quantified the interaction between disruption of M1 using transcranial magnetic stimulation (TMS) and the schedule of perturbations. In the abrupt condition (introduction of the perturbation on a single trial followed by constant perturbation), motor output adapted rapidly and was then followed by significant repetition as performance plateaued. TMS of M1 had no effect on the rapid adaptation phase but reduced adaptation at the plateau. In the intermediate condition (introduction of the perturbation over 45 trials), disruption of M1 had no effect on the phase in which motor output changed but again impaired adaptation when performance had plateaued. Finally, when the perturbation was imposed gradually (over 240 trials), the motor commands continuously changed during adaptation and never repeated, and disruption of M1 had no effect on performance. Therefore, TMS of M1 appeared to reduce adaptation of motor commands during a specific phase of learning: when motor commands tended to repeat.
Collapse
Affiliation(s)
- Jean-Jacques Orban de Xivry
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
36
|
Heidegger T, Krakow K, Ziemann U. Effects of antiepileptic drugs on associative LTP-like plasticity in human motor cortex. Eur J Neurosci 2010; 32:1215-22. [PMID: 20726885 DOI: 10.1111/j.1460-9568.2010.07375.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antiepileptic drugs (AEDs) are used extensively in clinical practice but relatively little is known on their specific effects at the systems level of human cortex. Here we tested, using a double-blind randomized placebo-controlled crossover design in healthy subjects, the effects of a single therapeutic oral dose of seven AEDs with different modes of action (tiagabine, diazepam, gabapentin, lamotrigine, topiramate, levetiracetam and piracetam) on long-term potentiation (LTP)-like motor cortical plasticity induced by paired associative transcranial magnetic stimulation (PAS). PAS-induced LTP-like plasticity was assessed from the increase in motor evoked potential amplitude in a hand muscle contralateral to the stimulated motor cortex. Levetiracetam significantly reduced LTP-like plasticity when compared to the placebo condition. Tiagabine, diazepam, lamotrigine and piracetam resulted in nonsignificant trends towards reduction of LTP-like plasticity while gabapentin and topiramate had no effect. The particularly depressant effect of levetiracetam is probably explained by its unique mode of action through binding at the vesicle membrane protein SV2A. Enhancement of gamma-amino butyric acid-dependent cortical inhibition by tiagabine, diazepam and possibly levetiracetam, and blockage of voltage-gated sodium channels by lamotrigine, may also depress PAS-induced LTP-like plasticity but these mechanisms appear to be less relevant. Findings may inform about AED-related adverse effects on important LTP-dependent central nervous systems processes such as learning or memory formation. The particular depressant effect of levetiracetam on LTP-like plasticity may also relate to the unique properties of this drug to inhibit epileptogenesis, a potentially LTP-associated process.
Collapse
Affiliation(s)
- Tonio Heidegger
- Department of Neurology, Goethe-University of Frankfurt, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany
| | | | | |
Collapse
|
37
|
Sing GC, Smith MA. Reduction in learning rates associated with anterograde interference results from interactions between different timescales in motor adaptation. PLoS Comput Biol 2010; 6. [PMID: 20808880 PMCID: PMC2924244 DOI: 10.1371/journal.pcbi.1000893] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 07/16/2010] [Indexed: 11/18/2022] Open
Abstract
Prior experiences can influence future actions. These experiences can not only drive adaptive changes in motor output, but they can also modulate the rate at which these adaptive changes occur. Here we studied anterograde interference in motor adaptation – the ability of a previously learned motor task (Task A) to reduce the rate of subsequently learning a different (and usually opposite) motor task (Task B). We examined the formation of the motor system's capacity for anterograde interference in the adaptive control of human reaching-arm movements by determining the amount of interference after varying durations of exposure to Task A (13, 41, 112, 230, and 369 trials). We found that the amount of anterograde interference observed in the learning of Task B increased with the duration of Task A. However, this increase did not continue indefinitely; instead, the interference reached asymptote after 15–40 trials of Task A. Interestingly, we found that a recently proposed multi-rate model of motor adaptation, composed of two distinct but interacting adaptive processes, predicts several key features of the interference patterns we observed. Specifically, this computational model (without any free parameters) predicts the initial growth and leveling off of anterograde interference that we describe, as well as the asymptotic amount of interference that we observe experimentally (R2 = 0.91). Understanding the mechanisms underlying anterograde interference in motor adaptation may enable the development of improved training and rehabilitation paradigms that mitigate unwanted interference. The act of learning one task can not only have direct effects on the performance of other tasks, but it can also affect the ability to learn other tasks. One example of the latter is the phenomenon of anterograde interference in motor adaptation, in which the learning of one adaptation can substantially reduce the rate at which the opposite adaptation can be learned. Here we show that the amount of anterograde interference depends systematically on the strength of a particular component of the initial adaptation rather than on the total amount of adaptation that is achieved. This component of the motor memory evolves more slowly than the overall learning and acts in combination with a quickly evolving component of memory to produce the observed improvement in task performance. We proceed to show that a simple computational model of the interactions between these adaptive processes predicts greater than 90% of the variance in the observed interference patterns, suggesting that this quantitative model may enable the development of improved training and rehabilitation paradigms that mitigate unwanted interference.
Collapse
Affiliation(s)
- Gary C. Sing
- School of Engineering & Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Maurice A. Smith
- Center for Brain Science, School of Engineering & Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
38
|
Sing GC, Joiner WM, Nanayakkara T, Brayanov JB, Smith MA. Primitives for Motor Adaptation Reflect Correlated Neural Tuning to Position and Velocity. Neuron 2009; 64:575-89. [PMID: 19945398 DOI: 10.1016/j.neuron.2009.10.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2009] [Indexed: 10/20/2022]
|
39
|
Doyon J, Korman M, Morin A, Dostie V, Hadj Tahar A, Benali H, Karni A, Ungerleider LG, Carrier J. Contribution of night and day sleep vs. simple passage of time to the consolidation of motor sequence and visuomotor adaptation learning. Exp Brain Res 2009; 195:15-26. [PMID: 19277618 PMCID: PMC2752878 DOI: 10.1007/s00221-009-1748-y] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 02/16/2009] [Indexed: 10/21/2022]
Abstract
There is increasing evidence supporting the notion that the contribution of sleep to consolidation of motor skills depends on the nature of the task used in practice. We compared the role of three post-training conditions in the expression of delayed gains on two different motor skill learning tasks: finger tapping sequence learning (FTSL) and visuomotor adaptation (VMA). Subjects in the DaySleep and ImmDaySleep conditions were trained in the morning and at noon, respectively, afforded a 90-min nap early in the afternoon and were re-tested 12 h post-training. In the NightSleep condition, subjects were trained in the evening on either of the two learning paradigms and re-tested 12 h later following sleep, while subjects in the NoSleep condition underwent their training session in the morning and were re-tested 12 h later without any intervening sleep. The results of the FTSL task revealed that post-training sleep (day-time nap or night-time sleep) significantly promoted the expression of delayed gains at 12 h post-training, especially if sleep was afforded immediately after training. In the VMA task, however, there were no significant differences in the gains expressed at 12 h post-training in the three conditions. These findings suggest that "off-line" performance gains reflecting consolidation processes in the FTSL task benefit from sleep, even a short nap, while the simple passage of time is as effective as time in sleep for consolidation of VMA to occur. They also imply that procedural memory consolidation processes differ depending on the nature of task demands.
Collapse
Affiliation(s)
- Julien Doyon
- Functional Neuroimaging Unit, University of Montreal Geriatric Institute, 4565 Queen-Mary, Montreal, QC H3W 1W5, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hunter T, Sacco P, Nitsche MA, Turner DL. Modulation of internal model formation during force field-induced motor learning by anodal transcranial direct current stimulation of primary motor cortex. J Physiol 2009; 587:2949-61. [PMID: 19403605 DOI: 10.1113/jphysiol.2009.169284] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Human subjects can quickly adapt and maintain performance of arm reaching when experiencing novel physical environments such as robot-induced velocity-dependent force fields. Using anodal transcranial direct current stimulation (tDCS) this study showed that the primary motor cortex may play a role in motor adaptation of this sort. Subjects performed arm reaching movement trials in three phases: in a null force field (baseline), in a velocity-dependent force field (adaptation; 25 N s m(-1)) and once again in a null force field (de-adaptation). Active or sham tDCS was directed to the motor cortex representation of biceps brachii muscle during the adaptation phase of the motor learning protocol. During the adaptation phase, the global error in arm reaching (summed error from an ideal trajectory) was similar in both tDCS conditions. However, active tDCS induced a significantly greater global reaching (overshoot) error during the early stage of de-adaptation compared to the sham tDCS condition. The overshoot error may be representative of the development of a greater predictive movement to overcome the expected imposed force. An estimate of the predictive, initial movement trajectory (signed error in the first 150 ms of movement) was significantly augmented during the adaptation phase with active tDCS compared to sham tDCS. Furthermore, this increase was linearly related to the change of the overshoot summed error in the de-adaptation process. Together the results suggest that anodal tDCS augments the development of an internal model of the novel adapted movement and suggests that the primary motor cortex is involved in adaptation of reaching movements of healthy human subjects.
Collapse
Affiliation(s)
- Timothy Hunter
- The Brain Function and NeuRobotics Lab, School of Health and Bioscience, University of East London, London E15 4LZ, UK.
| | | | | | | |
Collapse
|
41
|
Huang VS, Krakauer JW. Robotic neurorehabilitation: a computational motor learning perspective. J Neuroeng Rehabil 2009; 6:5. [PMID: 19243614 PMCID: PMC2653497 DOI: 10.1186/1743-0003-6-5] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 02/25/2009] [Indexed: 01/19/2023] Open
Abstract
Conventional neurorehabilitation appears to have little impact on impairment over and above that of spontaneous biological recovery. Robotic neurorehabilitation has the potential for a greater impact on impairment due to easy deployment, its applicability across of a wide range of motor impairment, its high measurement reliability, and the capacity to deliver high dosage and high intensity training protocols. We first describe current knowledge of the natural history of arm recovery after stroke and of outcome prediction in individual patients. Rehabilitation strategies and outcome measures for impairment versus function are compared. The topics of dosage, intensity, and time of rehabilitation are then discussed. Robots are particularly suitable for both rigorous testing and application of motor learning principles to neurorehabilitation. Computational motor control and learning principles derived from studies in healthy subjects are introduced in the context of robotic neurorehabilitation. Particular attention is paid to the idea of context, task generalization and training schedule. The assumptions that underlie the choice of both movement trajectory programmed into the robot and the degree of active participation required by subjects are examined. We consider rehabilitation as a general learning problem, and examine it from the perspective of theoretical learning frameworks such as supervised and unsupervised learning. We discuss the limitations of current robotic neurorehabilitation paradigms and suggest new research directions from the perspective of computational motor learning.
Collapse
Affiliation(s)
- Vincent S Huang
- Motor Performance Laboratory, Department of Neurology, The Neurological Institute, Columbia University College of Physicians and Surgeons, New York, New York, USA.
| | | |
Collapse
|
42
|
Contributions of the basal ganglia and functionally related brain structures to motor learning. Behav Brain Res 2008; 199:61-75. [PMID: 19061920 DOI: 10.1016/j.bbr.2008.11.012] [Citation(s) in RCA: 506] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 11/07/2008] [Accepted: 11/10/2008] [Indexed: 11/21/2022]
Abstract
This review discusses the cerebral plasticity, and the role of the cortico-striatal system in particular, observed as one is learning or planning to execute a newly learned motor behavior up to when the skill is consolidated or has become highly automatized. A special emphasis is given to imaging work describing the neural substrate mediating motor sequence learning and motor adaptation paradigms. These results are then put into a plausible neurobiological model of motor skill learning, which proposes an integrated view of the brain plasticity mediating this form of memory at different stages of the acquisition process.
Collapse
|
43
|
Abstract
Can memories be unlearned, or is unlearning a form of acquiring a new memory that competes with the old, effectively masking it? We considered motor memories that were acquired when people learned to use a novel tool. We trained people to reach with tool A and quantified recall in error-clamp trials, i.e., trials in which the memory was reactivated but error-dependent learning was minimized. We measured both the magnitude of the memory and its resistance to change. With passage of time between acquisition and reactivation (up to 24 h), memory of A slowly declined, but with reactivation remained resistant to change. After learning of tool A, brief exposure to tool B brought performance back to baseline, i.e., apparent extinction. Yet, for up to a few minutes after A+B training, output in error-clamp trials increased from baseline to match those who had trained only in A. This spontaneous recovery and convergence demonstrated that B did not produce any unlearning of A. Rather, it masked A with a new memory that was very fragile. We tracked the memory of B as a function of time and found that within minutes it was transformed from a fragile to a more stable state. Therefore, a sudden performance error in a well-learned motor task does not produce unlearning, but rather installs a competing but fragile memory that with passage of time acquires stability. Learning not only engages processes that adapt at multiple timescales, but once practice ends, the fast states are partially transformed into slower states.
Collapse
|
44
|
Song S. Consciousness and the consolidation of motor learning. Behav Brain Res 2008; 196:180-6. [PMID: 18951924 DOI: 10.1016/j.bbr.2008.09.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 09/26/2008] [Accepted: 09/29/2008] [Indexed: 10/21/2022]
Abstract
It is no secret that motor learning benefits from repetition. For example, pianists devote countless hours to performing complicated sequences of key presses, and golfers practice their swings thousands of times to reach a level of proficiency. Interestingly, the subsequent waking and sleeping hours after practice also play important roles in motor learning. During this time, a motor skill can consolidate into a more stable form that can lead to improved future performance without intervening practice. Though it is widely believed that sleep is crucial for this consolidation of motor learning, this is not generally true. In many instances only day-time consolidates motor learning, while in other instances neither day-time nor sleep consolidates learning. Recent studies have suggested that conscious awareness during motor training can determine whether sleep or day-time plays a role in consolidation. However, ongoing studies suggest that this explanation is also incomplete. In addition to conscious awareness, attention is an important factor to consider. This review discusses how attention and conscious awareness interact with day and night processes to consolidate a motor memory.
Collapse
Affiliation(s)
- Sunbin Song
- Interdisciplinary Program in Neuroscience, Department of Psychology, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
45
|
Gidley Larson JC, Bastian AJ, Donchin O, Shadmehr R, Mostofsky SH. Acquisition of internal models of motor tasks in children with autism. ACTA ACUST UNITED AC 2008; 131:2894-903. [PMID: 18819989 DOI: 10.1093/brain/awn226] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Children with autism exhibit a host of motor disorders including poor coordination, poor tool use and delayed learning of complex motor skills like riding a tricycle. Theory suggests that one of the crucial steps in motor learning is the ability to form internal models: to predict the sensory consequences of motor commands and learn from errors to improve performance on the next attempt. The cerebellum appears to be an important site for acquisition of internal models, and indeed the development of the cerebellum is abnormal in autism. Here, we examined autistic children on a range of tasks that required a change in the motor output in response to a change in the environment. We first considered a prism adaptation task in which the visual map of the environment was shifted. The children were asked to throw balls to visual targets with and without the prism goggles. We next considered a reaching task that required moving the handle of a novel tool (a robotic arm). The tool either imposed forces on the hand or displaced the cursor associated with the handle position. In all tasks, the children with autism adapted their motor output by forming a predictive internal model, as exhibited through after-effects. Surprisingly, the rates of acquisition and washout were indistinguishable from normally developing children. Therefore, the mechanisms of acquisition and adaptation of internal models in self-generated movements appeared normal in autism. Sparing of adaptation suggests that alternative mechanisms contribute to impaired motor skill development in autism. Furthermore, the findings may have therapeutic implications, highlighting a reliable mechanism by which children with autism can most effectively alter their behaviour.
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW New insights into the psychophysiological determinants of performance changes and brain plasticity associated with motor sequence learning have recently been gained through behavioral and imaging studies in healthy individuals. In addition, using a variety of motor sequential paradigms in groups of patients affected by a movement disorder, major advances have been achieved in our understanding of the pathophysiological mechanisms underlying Parkinson's and Huntington's diseases, as well as primary forms of dystonia. RECENT FINDINGS This review begins by describing the latest findings in normal participants with regards to the dynamic alterations in neural networks observed across the different phases of motor sequence learning. It then focuses on the hotly debated issue of motor memory consolidation, highlighting the results of novel studies that investigated the role of both day and night sleep, the neural substrates and the developmental evolution mediating this process. Finally, this paper addresses current work looking at motor sequence learning in movement disorders that helps to better comprehend the functional contribution of basal ganglia structures to this type of memory, to assess the impact of such diseases on related patterns of brain activation, as well as to identify the neuronal compensatory mechanisms educed by these basal ganglia disorders. SUMMARY Such advances have major implications, not only for optimizing ways to learn new skilled behaviors in real-life situations, but also for guiding therapeutic approaches in patients with movement disorders.
Collapse
|
47
|
Gould EM, Holmes SJ. The effect of dextromethorphan in preventing cholecalciferol-induced poison shyness and sickness-induced anorexia in the laboratory Norway rat. PEST MANAGEMENT SCIENCE 2008; 64:197-202. [PMID: 17912688 DOI: 10.1002/ps.1468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND Overcoming bait and poison shyness is critical to the success of pest control operations against rats and other rodents. The authors hypothesized that the N-methyl-D-aspartate receptor blocker, dextromethorphan, could prevent the acquired memory of sickness and sickness-induced anorexia resulting from rodents eating poisoned bait. RESULTS Cholecalciferol (1/4 LD(50)) was mixed with dextromethorphan and fed to rats on two 2 day sessions, with an 18 day break in between. Dextromethorphan did not prevent poison shyness; during the second poisoning period, both the cholecalciferol only and the cholecalciferol plus dextromethorphan groups had lower intakes of the bait compared with the control and dextromethorphan only groups. In addition to the previously recorded symptoms of cholecalciferol poisoning, the rats in this trial were observed to have nose bleeds, weepy eyes, laboured breathing and, in the case of the cholecalciferol only treated group, a period of decreased water intake followed by a period of increased water intake. There was also a period of increased water intake in the cholecalciferol plus dextromethorphan group. CONCLUSION Dextromethorphan failed to prevent poison shyness and the anorectic effect of cholecalciferol. However, it did reduce anorexia from 17 days in the cholecaliferol group to 8 days in the cholecalciferol plus dextromethorphan group.
Collapse
Affiliation(s)
- Elaine M Gould
- Health and Food Sector, HortResearch, East Street, PB 3123, Hamilton, New Zealand.
| | | |
Collapse
|
48
|
Simultaneous sensorimotor adaptation and sequence learning. Exp Brain Res 2007; 184:451-6. [DOI: 10.1007/s00221-007-1213-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 11/07/2007] [Indexed: 10/22/2022]
|
49
|
Duque J, Mazzocchio R, Stefan K, Hummel F, Olivier E, Cohen LG. Memory Formation in the Motor Cortex Ipsilateral to a Training Hand. Cereb Cortex 2007; 18:1395-406. [DOI: 10.1093/cercor/bhm173] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
50
|
Floel A, Cohen LG. Contribution of noninvasive cortical stimulation to the study of memory functions. ACTA ACUST UNITED AC 2007; 53:250-9. [PMID: 17023050 DOI: 10.1016/j.brainresrev.2006.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2006] [Revised: 08/28/2006] [Accepted: 08/29/2006] [Indexed: 10/24/2022]
Abstract
In the memory domain, a large body of experimental evidence about subsystems of memory has been collected from classic lesion studies and functional brain imaging. Animal studies have provided information on molecular mechanisms of memory formation. Compared to this work, transcranial magnetic stimulation and transcranial direct current stimulation have made their own unique contribution. Here, we describe how noninvasive brain stimulation has been used to study the functional contribution of specific cortical areas during a given memory task, how these techniques can be used to assess LTP- and LTD-like plasticity in the living human brain, and how they can be employed to modulate memory formation in humans, suggesting an adjuvant role in neurorehabilitative treatments following brain injury.
Collapse
Affiliation(s)
- A Floel
- Human Cortical Physiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.
| | | |
Collapse
|