1
|
Baloglu E, Nonnenmacher G, Seleninova A, Berg L, Velineni K, Ermis-Kaya E, Mairbäurl H. The role of hypoxia-induced modulation of alveolar epithelial Na +- transport in hypoxemia at high altitude. Pulm Circ 2020; 10:50-58. [PMID: 33110497 PMCID: PMC7557693 DOI: 10.1177/2045894020936662] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Reabsorption of excess alveolar fluid is driven by vectorial Na+-transport across alveolar epithelium, which protects from alveolar flooding and facilitates gas exchange. Hypoxia inhibits Na+-reabsorption in cultured cells and in-vivo by decreasing activity of epithelial Na+-channels (ENaC), which impairs alveolar fluid clearance. Inhibition also occurs during in-vivo hypoxia in humans and laboratory animals. Signaling mechanisms that inhibit alveolar reabsorption are poorly understood. Because cellular adaptation to hypoxia is regulated by hypoxia-inducible transcription factors (HIF), we tested whether HIFs are involved in decreasing Na+-transport in hypoxic alveolar epithelium. Expression of HIFs was suppressed in cultured rat primary alveolar epithelial cells (AEC) with shRNAs. Hypoxia (1.5% O2, 24 h) decreased amiloride-sensitive transepithelial Na+-transport, decreased the mRNA expression of α-, β-, and γ-ENaC subunits, and reduced the amount of αβγ-ENaC subunits in the apical plasma membrane. Silencing HIF-2α partially prevented impaired fluid reabsorption in hypoxic rats and prevented the hypoxia-induced decrease in α- but not the βγ-subunits of ENaC protein expression resulting in a less active form of ENaC in hypoxic AEC. Inhibition of alveolar reabsorption also caused pulmonary vasoconstriction in ventilated rats. These results indicate that a HIF-2α-dependent decrease in Na+-transport in hypoxic alveolar epithelium decreases alveolar reabsorption. Because susceptibles to high-altitude pulmonary edema (HAPE) have decreased Na+-transport even in normoxia, inhibition of alveolar reabsorption by hypoxia at high altitude might further impair alveolar gas exchange. Thus, aggravated hypoxemia might further enhance hypoxic pulmonary vasoconstriction and might subsequently cause HAPE.
Collapse
Affiliation(s)
- Emel Baloglu
- Department of Pharmacology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey.,Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | | | - Anna Seleninova
- Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | - Lena Berg
- Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | - Kalpana Velineni
- Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | - Ezgi Ermis-Kaya
- Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | - Heimo Mairbäurl
- Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany.,Translational Pneumology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
2
|
Eichstaedt CA, Benjamin N, Grünig E. Genetics of pulmonary hypertension and high-altitude pulmonary edema. J Appl Physiol (1985) 2020; 128:1432-1438. [PMID: 32324476 DOI: 10.1152/japplphysiol.00113.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heritable pulmonary arterial hypertension (PAH) is an autosomal dominantly inherited disease caused by mutations in the bone morphogenetic protein receptor 2 (BMPR2) gene and/or genes of its signaling pathway in ~85% of patients. A genetic predisposition to high-altitude pulmonary edema (HAPE) has long been suspected because of familial HAPE cases, but very few possibly disease-causing mutations have been identified to date. This minireview provides an overview of genetic analyses investigating common polymorphisms in HAPE-susceptible patients and the directed identification of disease-causing mutations in PAH patients. Increased pulmonary artery pressure is highlighted as an overlapping clinical feature of the two diseases. Moreover, studies showing increased pulmonary artery pressures in HAPE-susceptible patients during exercise or hypoxia as well as in healthy BMPR2 mutation carriers are illustrated. Finally, high-altitude pulmonary hypertension is introduced and future research perspectives outlined.
Collapse
Affiliation(s)
- Christina A Eichstaedt
- Centre for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital, Heidelberg Germany.,Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Nicola Benjamin
- Centre for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital, Heidelberg Germany.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Ekkehard Grünig
- Centre for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital, Heidelberg Germany.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
3
|
The Hen or the Egg: Impaired Alveolar Oxygen Diffusion and Acute High-altitude Illness? Int J Mol Sci 2019; 20:ijms20174105. [PMID: 31443549 PMCID: PMC6747186 DOI: 10.3390/ijms20174105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 01/11/2023] Open
Abstract
Individuals ascending rapidly to altitudes >2500 m may develop symptoms of acute mountain sickness (AMS) within a few hours of arrival and/or high-altitude pulmonary edema (HAPE), which occurs typically during the first three days after reaching altitudes above 3000-3500 m. Both diseases have distinct pathologies, but both present with a pronounced decrease in oxygen saturation of hemoglobin in arterial blood (SO2). This raises the question of mechanisms impairing the diffusion of oxygen (O2) across the alveolar wall and whether the higher degree of hypoxemia is in causal relationship with developing the respective symptoms. In an attempt to answer these questions this article will review factors affecting alveolar gas diffusion, such as alveolar ventilation, the alveolar-to-arterial O2-gradient, and balance between filtration of fluid into the alveolar space and its clearance, and relate them to the respective disease. The resultant analysis reveals that in both AMS and HAPE the main pathophysiologic mechanisms are activated before aggravated decrease in SO2 occurs, indicating that impaired alveolar epithelial function and the resultant diffusion limitation for oxygen may rather be a consequence, not the primary cause, of these altitude-related illnesses.
Collapse
|
4
|
Paul S, Gangwar A, Patir H, Bhargava K, Ahmad Y. Reverse translating SULT1A1, a potential biomarker in roentgenographically tested rat model of rapid HAPE induction. Life Sci 2019; 229:132-138. [DOI: 10.1016/j.lfs.2019.05.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 01/22/2023]
|
5
|
Fronius M, Clauss WG, Althaus M. Why Do We have to Move Fluid to be Able to Breathe? Front Physiol 2012; 3:146. [PMID: 22661953 PMCID: PMC3357553 DOI: 10.3389/fphys.2012.00146] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 05/01/2012] [Indexed: 12/11/2022] Open
Abstract
The ability to breathe air represents a fundamental step in vertebrate evolution that was accompanied by several anatomical and physiological adaptations. The morphology of the air-blood barrier is highly conserved within air-breathing vertebrates. It is formed by three different plies, which are represented by the alveolar epithelium, the basal lamina, and the endothelial layer. Besides these conserved morphological elements, another common feature of vertebrate lungs is that they contain a certain amount of fluid that covers the alveolar epithelium. The volume and composition of the alveolar fluid is regulated by transepithelial ion transport mechanisms expressed in alveolar epithelial cells. These transport mechanisms have been reviewed extensively. Therefore, the present review focuses on the properties and functional significance of the alveolar fluid. How does the fluid enter the alveoli? What is the fate of the fluid in the alveoli? What is the function of the alveolar fluid in the lungs? The review highlights the importance of the alveolar fluid, its volume and its composition. Maintenance of the fluid volume and composition within certain limits is critical to facilitate gas exchange. We propose that the alveolar fluid is an essential element of the air-blood barrier. Therefore, it is appropriate to refer to this barrier as being formed by four plies, namely (1) the thin fluid layer covering the apical membrane of the epithelial cells, (2) the epithelial cell layer, (3) the basal membrane, and (4) the endothelial cells.
Collapse
Affiliation(s)
- Martin Fronius
- Molecular Cell Physiology, Institute of Animal Physiology, Justus-Liebig-University Giessen Giessen, Germany
| | | | | |
Collapse
|
6
|
Amiloride-sensitive sodium channels and pulmonary edema. Pulm Med 2010; 2011:830320. [PMID: 21637371 PMCID: PMC3100597 DOI: 10.1155/2011/830320] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 12/01/2010] [Indexed: 01/11/2023] Open
Abstract
The development of pulmonary edema can be considered as a combination of alveolar flooding via increased fluid filtration, impaired alveolar-capillary barrier integrity, and disturbed resolution due to decreased alveolar fluid clearance. An important mechanism regulating alveolar fluid clearance is sodium transport across the alveolar epithelium. Transepithelial sodium transport is largely dependent on the activity of sodium channels in alveolar epithelial cells. This paper describes how sodium channels contribute to alveolar fluid clearance under physiological conditions and how deregulation of sodium channel activity might contribute to the pathogenesis of lung diseases associated with pulmonary edema. Furthermore, sodium channels as putative molecular targets for the treatment of pulmonary edema are discussed.
Collapse
|
7
|
Abstract
Sojourns to high altitude have become common for recreation and adventure purposes. In most individuals, gradual ascent to a high altitude leads to a series of adaptive changes in the body, termed as acclimatization. These include changes in the respiratory, cardiovascular, hematologic systems and cellular adaptations that enhance oxygen delivery to the tissues and augment oxygen uptake. Thus there is an increase in pulmonary ventilation, increase in diffusing capacity in the lung, an increase in the cardiac output and increase in the red blood cell count due to an increase in erythropoietin secretion by the kidney, all of which enhance oxygen delivery to the cells. Cellular changes like increase in the number of mitochondria and augmentation of cytochrome oxidase systems take months or years to develop. Too rapid an ascent or inability to acclimatize leads to high-altitude illnesses. These include acute mountain sickness (AMS), high-altitude cerebral edema (HACE) and high-altitude pulmonary edema (HAPE). Acute mountain sickness is self limiting if recognized early. Both HACE and HAPE are life threatening and need to be treated aggressively. The key to treatment of these illnesses is early recognition; administration of supplemental oxygen; and descent if required. Drugs like acetazolamide, dexamethasone, nifedipine may be administered as recommended.
Collapse
|
8
|
Zhang SXL, Miller JJ, Stolz DB, Serpero LD, Zhao W, Gozal D, Wang Y. Type I epithelial cells are the main target of whole-body hypoxic preconditioning in the lung. Am J Respir Cell Mol Biol 2008; 40:332-9. [PMID: 18776132 DOI: 10.1165/rcmb.2008-0003oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Whole-body hypoxic preconditioning (WHPC) prolongs survival of mice exposed to severe hypoxia by attenuating pulmonary edema and preserving gas exchange. However, the cellular and molecular mechanism(s) of this protection remains unclear. The objective of this study was to identify the cellular target(s) of WHPC in the lung. Conscious mice were exposed to hypoxia (7% O(2)) for 6 hours with or without pretreatment of WHPC ([8% O(2)] x 10 min/[21% O(2)] x 10 min; 6 cycles). Hypoxia caused severe lung injury, as shown by the development of high-permeability-type pulmonary edema and the release of lactate dehydrogenase and creatine kinase into the airspace and the circulation. All these signs of hypoxic lung injury were significantly attenuated by WHPC. Hypoxia also caused a remarkable release of type I cell markers (caveolin-2 and receptor for advanced glycation end products) in lung lavage that was almost completely abolished by WHPC. Conversely, hypoxia-induced release of type II cell markers (surfactant-associated proteins A and D) was only marginal, and was unaffected by WHPC. Electron microscopic analysis demonstrated considerable hypoxic damage in alveolar type I cells and vascular endothelial cells. Notably, WHPC completely eliminated hypoxic damage in the former and alleviated it in the latter. Type II cells appeared normal. Furthermore, WHPC up-regulated protein expression of cytoprotective genes in the lung, such as heat shock proteins and manganese superoxide dismutase. Thus, WHPC attenuates hypoxic lung injury through protection of cells constituting the respiratory membrane, especially hypoxia-vulnerable type I epithelial cells. This beneficial effect may involve up-regulation of cytoprotective genes.
Collapse
Affiliation(s)
- Shelley X L Zhang
- Department of Pediatrics, University of Louisville, 570 S. Preston Street, Ste. 211, Louisville, KY 40202, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Kaestle SM, Reich CA, Yin N, Habazettl H, Weimann J, Kuebler WM. Nitric oxide-dependent inhibition of alveolar fluid clearance in hydrostatic lung edema. Am J Physiol Lung Cell Mol Physiol 2007; 293:L859-69. [PMID: 17616651 DOI: 10.1152/ajplung.00008.2007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Formation of cardiogenic pulmonary edema in acute left heart failure is traditionally attributed to increased fluid filtration from pulmonary capillaries and subsequent alveolar flooding. Here, we demonstrate that hydrostatic edema formation at moderately elevated vascular pressures is predominantly caused by an inhibition of alveolar fluid reabsorption, which is mediated by endothelial-derived nitric oxide (NO). In isolated rat lungs, we quantified fluid fluxes into and out of the alveolar space and endothelial NO production by a two-compartmental double-indicator dilution technique and in situ fluorescence imaging, respectively. Elevation of hydrostatic pressure induced Ca(2+)-dependent endothelial NO production and caused a net fluid shift into the alveolar space, which was predominantly attributable to impaired fluid reabsorption. Inhibition of NO production or soluble guanylate cyclase reconstituted alveolar fluid reabsorption, whereas fluid clearance was blocked by exogenous NO donors or cGMP analogs. In isolated mouse lungs, hydrostatic edema formation was attenuated by NO synthase inhibition. Similarly, edema formation was decreased in isolated mouse lungs of endothelial NO synthase-deficient mice. Chronic heart failure results in endothelial dysfunction and preservation of alveolar fluid reabsorption. These findings identify impaired alveolar fluid clearance as an important mechanism in the pathogenesis of hydrostatic lung edema. This effect is mediated by endothelial-derived NO acting as an intercompartmental signaling molecule at the alveolo-capillary barrier.
Collapse
Affiliation(s)
- Stephanie M Kaestle
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin Arnimallee 22, 14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Morty RE, Eickelberg O, Seeger W. Alveolar fluid clearance in acute lung injury: what have we learned from animal models and clinical studies? Intensive Care Med 2007; 33:1229-1240. [PMID: 17525842 PMCID: PMC7095514 DOI: 10.1007/s00134-007-0662-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2006] [Accepted: 03/05/2007] [Indexed: 01/11/2023]
Abstract
Background Acute lung injury and the acute respiratory distress syndrome continue to be significant causes of morbidity and mortality in the intensive care setting. The failure of patients to resolve the alveolar edema associated with these conditions is a major contributing factor to mortality; hence there is continued interest to understand the mechanisms of alveolar edema fluid clearance. Discussion The accompanying review by Vadász et al. details our current understanding of the signaling mechanisms and cellular processes that facilitate clearance of edema fluid from the alveolar compartment, and how these signaling processes may be exploited in the development of novel therapeutic strategies. To complement that report this review focuses on how intact organ and animal models and clinical studies have facilitated our understanding of alveolar edema fluid clearance in acute lung injury and acute respiratory distress syndrome. Furthermore, it considers how what we have learned from these animal and organ models and clinical studies has suggested novel therapeutic avenues to pursue.
Collapse
Affiliation(s)
- Rory E Morty
- Department of Internal Medicine, University of Giessen Lung Center, Justus Liebig University, Klinikstrasse 36, 35392, Giessen, Germany.
| | - Oliver Eickelberg
- Department of Internal Medicine, University of Giessen Lung Center, Justus Liebig University, Klinikstrasse 36, 35392, Giessen, Germany
| | - Werner Seeger
- Department of Internal Medicine, University of Giessen Lung Center, Justus Liebig University, Klinikstrasse 36, 35392, Giessen, Germany
| |
Collapse
|
11
|
Bärtsch P, Mairbäurl H, Maggiorini M, Swenson ER. Physiological aspects of high-altitude pulmonary edema. J Appl Physiol (1985) 2005; 98:1101-10. [PMID: 15703168 DOI: 10.1152/japplphysiol.01167.2004] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
High-altitude pulmonary edema (HAPE) develops in rapidly ascending nonacclimatized healthy individuals at altitudes above 3,000 m. An excessive rise in pulmonary artery pressure (PAP) preceding edema formation is the crucial pathophysiological factor because drugs that lower PAP prevent HAPE. Measurements of nitric oxide (NO) in exhaled air, of nitrites and nitrates in bronchoalveolar lavage (BAL) fluid, and forearm NO-dependent endothelial function all point to a reduced NO availability in hypoxia as a major cause of the excessive hypoxic PAP rise in HAPE-susceptible individuals. Studies using right heart catheterization or BAL in incipient HAPE have demonstrated that edema is caused by an increased microvascular hydrostatic pressure in the presence of normal left atrial pressure, resulting in leakage of large-molecular-weight proteins and erythrocytes across the alveolarcapillary barrier in the absence of any evidence of inflammation. These studies confirm in humans that high capillary pressure induces a high-permeability-type lung edema in the absence of inflammation, a concept first introduced under the term “stress failure.” Recent studies using microspheres in swine and magnetic resonance imaging in humans strongly support the concept and primacy of nonuniform hypoxic arteriolar vasoconstriction to explain how hypoxic pulmonary vasoconstriction occurring predominantly at the arteriolar level can cause leakage. This compelling but as yet unproven mechanism predicts that edema occurs in areas of high blood flow due to lesser vasoconstriction. The combination of high flow at higher pressure results in pressures, which exceed the structural and dynamic capacity of the alveolar capillary barrier to maintain normal alveolar fluid balance.
Collapse
Affiliation(s)
- Peter Bärtsch
- Department of Internal Medicine VII, Division of Sports Medicine, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|