1
|
Clouser PR, Riggs CL, Romney ALT, Podrabsky JE. Diapause and Anoxia-Induced Quiescence Are Unique States in Embryos of the Annual Killifish, Austrofundulus limnaeus. Biomolecules 2025; 15:515. [PMID: 40305273 PMCID: PMC12024583 DOI: 10.3390/biom15040515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/20/2025] [Accepted: 03/29/2025] [Indexed: 05/02/2025] Open
Abstract
Diapause is a state of developmental and metabolic dormancy that precedes exposure to environmental stresses. Yet, diapausing embryos are typically stress-tolerant. Evidence suggests that diapausing embryos "prepare" for stress as part of a gene expression program as they enter dormancy. Here, we investigate if diapause II embryos of the annual killifish Austrofundulus limnaeus, which can survive for hundreds of days of anoxia, can mount a transcriptomic response to anoxic insult. Bulk RNAseq was used to characterize the transcriptomes of diapause II embryos exposed to normoxia, 4 h and 24 h anoxia, and 2 h and 24 h normoxic recovery from anoxia. Differential expression and gene ontology analyses were used to probe for pathways that may mitigate survival. Transcriptional factor analysis was used to predict potential mediators of this response. Diapausing embryos exhibited a robust transcriptomic response to anoxia and recovery that returns to near baseline conditions after 24 h. Anoxia induced an upregulation of genes involved in the integrated stress response, lipid metabolism, p38mapk kinase signaling, and apoptosis. Developmental and mitochondrial genes decreased. We conclude that diapause II embryos mount a robust transcriptomic stress response when faced with anoxic insult. This response is consistent with mediating expected challenges to cellular homeostasis in anoxia.
Collapse
Affiliation(s)
- Patrick R. Clouser
- Department of Biology, Center for Life in Extreme Environments, Portland State University, P.O. Box 751, Portland, OR 97201, USA;
| | - Claire L. Riggs
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Boston, MA 02115, USA;
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Amie L. T. Romney
- Department of Biology, Center for Life in Extreme Environments, Portland State University, P.O. Box 751, Portland, OR 97201, USA;
| | - Jason E. Podrabsky
- Department of Biology, Center for Life in Extreme Environments, Portland State University, P.O. Box 751, Portland, OR 97201, USA;
| |
Collapse
|
2
|
Riggs CL, Kalyan G, Romney AL, Podrabsky JE. Detection of mitochondrial tDRs in killifish embryos and other non-model organisms. Methods Enzymol 2024; 711:283-311. [PMID: 39952710 DOI: 10.1016/bs.mie.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
In recent years a diversity of small noncoding RNAs have been identified that originate from the mitochondrial genome. These mitosRNAs are often dominated by tRNA-derived small RNAs (mito-tDRs). Differential expression of mito-tDRs is associated with responses to stress. They also appear to be expressed differentially during development and their expression may be enriched in stress-tolerant animals. Very little is currently known about roles or modes of action of these sequences, although they are implicated in a diversity of processes such as cell cycle regulation, mRNA stability, regulation of ROS production, and import of proteins into the mitochondrion. To better understand the various roles these sequences may play, it is critical that we understand their diversity, cellular location, and the context for their expression. This protocol outlines the methodologies used to detect mitosRNAs, including mito-tDRs, in embryos and cells of the annual killifish Austrofundulus limnaeus. We highlight critical steps in the isolation of RNA, creation of sequencing libraries, bioinformatics processing of sequence data, and methods for validation of expression that support a robust discovery pipeline for mitosRNAs even from species with incomplete reference genome sequences.
Collapse
Affiliation(s)
- Claire L Riggs
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Gazal Kalyan
- Department of Biology, Portland State University, Portland, OR, United States
| | - Amie Lt Romney
- Department of Biology, Portland State University, Portland, OR, United States
| | - Jason E Podrabsky
- Department of Biology, Portland State University, Portland, OR, United States
| |
Collapse
|
3
|
Peng G, Zhu C, Sun Q, Li J, Chen Y, Guo Y, Ji H, Yang F, Dong W. Testicular miRNAs and tsRNAs provide insight into gene regulation during overwintering and reproduction of Onychostoma macrolepis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:481-499. [PMID: 35595880 DOI: 10.1007/s10695-022-01078-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
The late overwintering period and breeding period are two important developmental stages of testis in Onychostoma macrolepis. Small non-coding RNAs (sncRNAs) are well-known regulators of biological processes associated with numerous biological processes. This study aimed to elucidate the roles of four sncRNA classes (microRNAs [miRNAs], Piwi-interacting RNAs [piRNAs], tRNA-derived small RNAs [tsRNAs], and rRNA-derived small RNAs [rsRNAs]) across testes in the late overwintering period (in March) and breeding period (in June) by high-throughput sequencing. The testis of O. macrolepis displayed the highest levels of piRNAs and lowest levels of rsRNAs. Compared with miRNAs and tsRNAs in June, tsRNAs in March had a higher abundance, while miRNAs in March had a much lower abundance. Bioinformatics analysis identified 1,362 and 1,340 differentially expressed miRNAs and tsRNAs, respectively. Further analysis showed that miR-200-1, miR-143-1, tRFi-Lys-CTT-1, and tRFi-Glu-CTC-1 could play critical roles during the overwintering and breeding periods. Our findings provided an unprecedented insight to reveal the epigenetic mechanism underlying the overwintering and reproduction process of male O. macrolepis.
Collapse
Affiliation(s)
- Guofan Peng
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Chao Zhu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Qingfang Sun
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Jincan Li
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Yining Chen
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Yingjie Guo
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
- College of Forestry, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Fangxia Yang
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China.
- College of Forestry, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China.
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China.
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China.
| |
Collapse
|
4
|
Peng G, Sun Q, Chen Y, Wu X, Guo Y, Ji H, Yang F, Dong W. A comprehensive overview of ovarian small non-coding RNAs in the late overwintering and breeding periods of Onychostoma macrolepis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100967. [PMID: 35168176 DOI: 10.1016/j.cbd.2022.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The development of the ovary of Onychostoma macrolepis undergoes distinct annual cyclic changes in which small non-coding RNAs (sncRNAs) could play vital roles. In this study, four sncRNA classes in the ovary, including miRNA, piRNAs, tsRNA, and rsRNAs, were systematically profiled by high-throughput sequencing. In adult ovaries of O. macrolepis, 247 miRNAs and 235 tsRNAs were identified as differentially expressing in the late overwintering period (in March) and breeding period (in June). Some up-regulated sncRNAs in March, such as miR-125-1 and tRFi-Lys-CTT-1, could be involved in inhibiting biomolecule metabolism and enhancing stress tolerance during the overwintering period. Compared with the level expression of sncRNAs in March, some sncRNAs were up-regulated in June, such as miR-146-1 and tRFi-Gly-GCC-1, and could be involved in influencing molecular synthesis and metabolism, enhancing oocyte proliferation and maturation, accelerating ovarian development, and increasing fertilization of oocytes by regulating related target mRNAs. The results suggested that sncRNAs in the ovary of Onychostoma macrolepis not only reflect characteristics of the fish's physiology at different developmental periods, but also directly affect ovarian development and oocyte maturation during the breeding period. In conclusion, these results significantly advance our understanding of the roles of sncRNA during overwintering and reproduction periods, and provide a novel perspective for uncovering characteristics of the special overwintering ecology and reproductive physiology of an atypical cavefish.
Collapse
Affiliation(s)
- Guofan Peng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingfang Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yining Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaodong Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingjie Guo
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China; Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China; Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Weitzner EL, Fanter CE, Hindle AG. Pinniped Ontogeny as a Window into the Comparative Physiology and Genomics of Hypoxia Tolerance. Integr Comp Biol 2020; 60:1414-1424. [PMID: 32559283 DOI: 10.1093/icb/icaa083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Diving physiology has received considerable scientific attention as it is a central element of the extreme phenotype of marine mammals. Many scientific discoveries have illuminated physiological mechanisms supporting diving, such as massive, internally bound oxygen stores and dramatic cardiovascular regulation. However, the cellular and molecular mechanisms that support the diving phenotype remain mostly unexplored as logistic and legal restrictions limit the extent of scientific manipulation possible. With next-generation sequencing (NGS) tools becoming more widespread and cost-effective, there are new opportunities to explore the diving phenotype. Genomic investigations come with their own challenges, particularly those including cross-species comparisons. Studying the regulatory pathways that underlie diving mammal ontogeny could provide a window into the comparative physiology of hypoxia tolerance. Specifically, in pinnipeds, which shift from terrestrial pups to elite diving adults, there is potential to characterize the transcriptional, epigenetic, and posttranslational differences between contrasting phenotypes while leveraging a common genome. Here we review the current literature detailing the maturation of the diving phenotype in pinnipeds, which has primarily been explored via biomarkers of metabolic capability including antioxidants, muscle fiber typing, and key aerobic and anaerobic metabolic enzymes. We also discuss how NGS tools have been leveraged to study phenotypic shifts within species through ontogeny, and how this approach may be applied to investigate the biochemical and physiological mechanisms that develop as pups become elite diving adults. We conclude with a specific example of the Antarctic Weddell seal by overlapping protein biomarkers with gene regulatory microRNA datasets.
Collapse
Affiliation(s)
- Emma L Weitzner
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Cornelia E Fanter
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Allyson G Hindle
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| |
Collapse
|
6
|
Zajic DE, Podrabsky JE. GABA metabolism is crucial for long-term survival of anoxia in annual killifish embryos. J Exp Biol 2020; 223:jeb229716. [PMID: 32859669 DOI: 10.1242/jeb.229716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/24/2020] [Indexed: 08/25/2023]
Abstract
In most vertebrates, a lack of oxygen quickly leads to irreparable damages to vital organs, such as the brain and heart. However, there are some vertebrates that have evolved mechanisms to survive periods of no oxygen (anoxia). The annual killifish (Austrofundulus limnaeus) survives in ephemeral ponds in the coastal deserts of Venezuela and their embryos have the remarkable ability to tolerate anoxia for months. When exposed to anoxia, embryos of A. limnaeus respond by producing significant amounts of γ-aminobutyric acid (GABA). This study aims to understand the role of GABA in supporting the metabolic response to anoxia. To explore this, we investigated four developmentally distinct stages of A. limnaeus embryos that vary in their anoxia tolerance. We measured GABA and lactate concentrations across development in response to anoxia and aerobic recovery. We then inhibited enzymes responsible for the production and degradation of GABA and observed GABA and lactate concentrations, as well as embryo mortality. Here, we show for the first time that GABA metabolism affects anoxia tolerance in A. limnaeus embryos. Inhibition of enzymes responsible for GABA production (glutamate decarboxylase) and degradation (GABA-transaminase and succinic acid semialdehyde dehydrogenase) led to increased mortality, supporting a role for GABA as an intermediate product and not a metabolic end-product. We propose multiple roles for GABA during anoxia and aerobic recovery in A. limnaeus embryos, serving as a neurotransmitter, an energy source, and an anti-oxidant.
Collapse
Affiliation(s)
- Daniel E Zajic
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97207, USA
- Health, Human Performance, and Athletics Department, Linfield University, 900 SE Baker, McMinnville, OR 97128, USA
| | - Jason E Podrabsky
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97207, USA
| |
Collapse
|
7
|
Zajic DE, Nicholson JP, Podrabsky JE. No water, no problem: stage-specific metabolic responses to dehydration stress in annual killifish embryos. J Exp Biol 2020; 223:jeb231985. [PMID: 32778566 DOI: 10.1242/jeb.231985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/29/2020] [Indexed: 08/26/2023]
Abstract
Annual killifish survive in temporary ponds by producing drought-tolerant embryos that can enter metabolic dormancy (diapause). Survival of dehydration stress is achieved through severe reduction of evaporative water loss. We assessed dehydration stress tolerance in diapausing and developing Austrofundulus limnaeus embryos. We measured oxygen consumption rates under aquatic and aerial conditions to test the hypothesis that there is a trade-off between water retention and oxygen permeability. Diapausing embryos survive dehydrating conditions for over 1.5 years, and post-diapause stages can survive for over 100 days. Diapausing embryos respond to dehydration stress by increasing oxygen consumption rates while post-diapause embryos exhibit the same or reduced rates compared with aquatic embryos. Thus, water retention does not always limit oxygen diffusion. Aerial incubation coupled with hypoxia causes some embryos to arrest development. The observed stage-specific responses are consistent with an intrinsic bet-hedging strategy in embryos that would increase developmental variation in a potentially adaptive manner.
Collapse
Affiliation(s)
- Daniel E Zajic
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97207, USA
- Health, Human Performance, and Athletics Department, Linfield University, 900 SE Baker, McMinnville, OR 97128, USA
| | - Jonathon P Nicholson
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97207, USA
| | - Jason E Podrabsky
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97207, USA
| |
Collapse
|
8
|
Hadj-Moussa H, Storey KB. The OxymiR response to oxygen limitation: a comparative microRNA perspective. J Exp Biol 2020; 223:223/10/jeb204594. [DOI: 10.1242/jeb.204594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT
From squid at the bottom of the ocean to humans at the top of mountains, animals have adapted to diverse oxygen-limited environments. Surviving these challenging conditions requires global metabolic reorganization that is orchestrated, in part, by microRNAs that can rapidly and reversibly target all biological functions. Herein, we review the involvement of microRNAs in natural models of anoxia and hypoxia tolerance, with a focus on the involvement of oxygen-responsive microRNAs (OxymiRs) in coordinating the metabolic rate depression that allows animals to tolerate reduced oxygen levels. We begin by discussing animals that experience acute or chronic periods of oxygen deprivation at the ocean's oxygen minimum zone and go on to consider more elevated environments, up to mountain plateaus over 3500 m above sea level. We highlight the commonalities and differences between OxymiR responses of over 20 diverse animal species, including invertebrates and vertebrates. This is followed by a discussion of the OxymiR adaptations, and maladaptations, present in hypoxic high-altitude environments where animals, including humans, do not enter hypometabolic states in response to hypoxia. Comparing the OxymiR responses of evolutionarily disparate animals from diverse environments allows us to identify species-specific and convergent microRNA responses, such as miR-210 regulation. However, it also sheds light on the lack of a single unified response to oxygen limitation. Characterizing OxymiRs will help us to understand their protective roles and raises the question of whether they can be exploited to alleviate the pathogenesis of ischemic insults and boost recovery. This Review takes a comparative approach to addressing such possibilities.
Collapse
Affiliation(s)
- Hanane Hadj-Moussa
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada, K1S 5B6
| | - Kenneth B. Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada, K1S 5B6
| |
Collapse
|
9
|
Kültz D. Evolution of cellular stress response mechanisms. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:359-378. [PMID: 31970941 DOI: 10.1002/jez.2347] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
The cellular stress response (CSR) is pervasive to all domains of life. It has shaped the interaction between organisms and their environment since the origin of the first cell. Although the CSR has been subject to a myriad of nuanced modifications in the various branches of life present today, its core features remain preserved. The scientific literature covering the CSR is enormous and the broad scope of this brief overview was challenging. However, it is critical to conceptually understand how cells respond to stress in a holistic sense and to point out how fundamental aspects of the CSR framework are integrated. It was necessary to be extremely selective and not feasible to even mention many interesting and important developments in this expansive field. The purpose of this overview is to sketch out general and emerging CSR concepts with an emphasis on the initial cellular strain resulting from stress (macromolecular damage) and the evolutionarily most highly conserved elements of the CSR. Examples emphasize fish and aquatic invertebrates to highlight what is known in organisms beyond mammals, yeast, and other common models. Nonetheless, select pioneering studies using canonical models are also considered and the concepts discussed are applicable to all cells. More detail on important aspects of the CSR in aquatic animals is provided in the accompanying articles of this special issue.
Collapse
Affiliation(s)
- Dietmar Kültz
- Department of Animal Sciences, University of California Davis, Davis, California
| |
Collapse
|
10
|
MitosRNAs and extreme anoxia tolerance in embryos of the annual killifish Austrofundulus limnaeus. Sci Rep 2019; 9:19812. [PMID: 31874982 PMCID: PMC6930250 DOI: 10.1038/s41598-019-56231-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/03/2019] [Indexed: 12/29/2022] Open
Abstract
Embryos of the annual killifish Austrofundulus limnaeus are the most anoxia-tolerant vertebrate. Annual killifish inhabit ephemeral ponds, producing drought and anoxia-tolerant embryos, which allows the species to persist generation after generation. Anoxia tolerance and physiology vary by developmental stage, creating a unique opportunity for comparative study within the species. A recent study of small ncRNA expression in A. limnaeus embryos in response to anoxia and aerobic recovery revealed small ncRNAs with expression patterns that suggest a role in supporting anoxia tolerance. MitosRNAs, small ncRNAs derived from the mitochondrial genome, emerged as an interesting group of these sequences. MitosRNAs derived from mitochondrial tRNAs were differentially expressed in developing embryos and isolated cells exhibiting extreme anoxia tolerance. In this study we focus on expression of mitosRNAs derived from tRNA-cysteine, and their subcellular and organismal localization in order to consider possible function. These tRNA-cys mitosRNAs appear enriched in the mitochondria, particularly near the nucleus, and also appear to be present in the cytoplasm. We provide evidence that mitosRNAs are generated in the mitochondria in response to anoxia, though the precise mechanism of biosynthesis remains unclear. MitosRNAs derived from tRNA-cys localize to numerous tissues, and increase in the anterior brain during anoxia. We hypothesize that these RNAs may play a role in regulating gene expression that supports extreme anoxia tolerance.
Collapse
|
11
|
Reynolds JA. Noncoding RNA Regulation of Dormant States in Evolutionarily Diverse Animals. THE BIOLOGICAL BULLETIN 2019; 237:192-209. [PMID: 31714856 DOI: 10.1086/705484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dormancy is evolutionarily widespread and can take many forms, including diapause, dauer formation, estivation, and hibernation. Each type of dormancy is characterized by distinct features; but accumulating evidence suggests that each is regulated by some common processes, often referred to as a common "toolkit" of regulatory mechanisms, that likely include noncoding RNAs that regulate gene expression. Noncoding RNAs, especially microRNAs, are well-known regulators of biological processes associated with numerous dormancy-related processes, including cell cycle progression, cell growth and proliferation, developmental timing, metabolism, and environmental stress tolerance. This review provides a summary of our current understanding of noncoding RNAs and their involvement in regulating dormancy.
Collapse
|
12
|
Riggs CL, Le R, Kültz D, Zajic D, Summers A, Alvarez L, Podrabsky JE. Establishment and characterization of an anoxia-tolerant cell line, PSU-AL-WS40NE, derived from an embryo of the annual killifish Austrofundulus limnaeus. Comp Biochem Physiol B Biochem Mol Biol 2019; 232:11-22. [PMID: 30802492 DOI: 10.1016/j.cbpb.2019.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 01/12/2023]
Abstract
Most animal cells rely on aerobic metabolism for survival and are damaged or die within minutes without oxygen. Embryos of the annual killifish Austrofundulus limnaeus, however, survive months without oxygen. Determining how their cells survive without oxygen has the potential to revolutionize our understanding of the cellular mechanisms supporting vertebrate anoxia tolerance and the evolution of such tolerance. Therefore, we aimed to establish and characterize an anoxia-tolerant cell line from A. limnaeus for investigating mechanisms of vertebrate anoxia tolerance. The PSU-AL-WS40NE cell line of neuroepithelial identity was established from embryonic tissue of A. limnaeus using a tissue explant. The cells can survive for at least 49 d without oxygen or replenishment of growth medium, compared to only 3 d of anoxic survival for two mammalian cell lines. PSU-AL-WS40NE cells accumulate lactate during anoxia, indicating use of common metabolic pathways for anaerobic metabolism. Additionally, they express many of the same small noncoding RNAs that are stress-responsive in whole embryos of A. limnaeus and mammalian cells, as well as anoxia-responsive small noncoding RNAs derived from the mitochondrial genome (mitosRNAs). The establishment of the cell line provides a unique tool for investigating cellular mechanisms of vertebrate anoxia tolerance, and has the potential to transform our understanding of the role of oxidative metabolism in cell biology.
Collapse
Affiliation(s)
- Claire L Riggs
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207, United States of America; Department of Biology, Saint Louis University, 1 N. Grand Blvd., St. Louis, MO 63103, United States of America.
| | - Rosey Le
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207, United States of America; School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Pkwy., Las Vegas, NV 89154, United States of America
| | - Dietmar Kültz
- Department of Animal Science, University of California, One Shields Ave., Davis, CA 95616, United States of America
| | - Daniel Zajic
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207, United States of America
| | - Amanda Summers
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207, United States of America; Department of Psychological and Brain Sciences, Villanova University, 800 E. Lancaster Ave., Villanova, PA 19085, United States of America
| | - Luz Alvarez
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207, United States of America
| | - Jason E Podrabsky
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207, United States of America
| |
Collapse
|
13
|
Fanter CE, Lin Z, Keenan SW, Janzen FJ, Mitchell TS, Warren DE. Development-specific transcriptomic profiling suggests new mechanisms for anoxic survival in the ventricle of overwintering turtles. J Exp Biol 2019; 223:jeb.213918. [DOI: 10.1242/jeb.213918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/18/2019] [Indexed: 12/28/2022]
Abstract
Oxygen deprivation swiftly damages tissues in most animals, yet some species show remarkable abilities to tolerate little or even no oxygen. Painted turtles exhibit a development-dependent tolerance that allows adults to survive anoxia ∼4x longer than hatchlings: adults survive ∼170 days and hatchlings survive ∼40 days at 3°C. We hypothesized this difference is related to development-dependent differences in ventricular gene expression. Using a comparative ontogenetic approach, we examined whole transcriptomic changes before, during, and five days after a 20-day bout of anoxic submergence at 3°C. Ontogeny accounted for more gene expression differences than treatment (anoxia or recovery): 1,175 vs. 237 genes, respectively. Of the 237 differences, 93 could confer protection against anoxia and reperfusion injury, 68 could be injurious, and 20 may be constitutively protective. Especially striking during anoxia was the expression pattern of all 76 annotated ribosomal protein (R-protein) mRNAs, which decreased in anoxia-tolerant adults, but increased in anoxia-sensitive hatchlings, suggesting adult-specific regulation of translational suppression. These genes, along with 60 others that decreased their levels in adults and either increased or remained unchanged in hatchlings, implicate antagonistic pleiotropy as a mechanism to resolve the long-standing question about why hatchling painted turtles overwinter in terrestrial nests, rather than emerge and overwinter in water during their first year. In sum, developmental differences in the transcriptome of the turtle ventricle revealed potentially protective mechanisms that contribute to extraordinary adult-specific anoxia tolerance, and provide a unique perspective on differences between the anoxia-induced molecular responses of anoxia-tolerant or anoxia-sensitive phenotypes within a species.
Collapse
Affiliation(s)
- Cornelia E. Fanter
- Saint Louis University, Department of Biology, 3507 Laclede Ave., St. Louis, Missouri, 63103, USA
| | - Zhenguo Lin
- Saint Louis University, Department of Biology, 3507 Laclede Ave., St. Louis, Missouri, 63103, USA
| | - Sarah W. Keenan
- South Dakota School of Mines & Technology, Department of Geology and Geological Engineering, 501 East St. Joseph St., Rapid City, South Dakota, 57701, USA
| | - Fredric J. Janzen
- Iowa State University, Department of Ecology, Evolution and Organismal Biology, 251 Bessey Hall, Ames, Iowa, 50011, USA
| | - Timothy S. Mitchell
- University of Minnesota, Department of Ecology, Evolution and Behavior, 1479 Gortner Ave. Saint Paul, MN, 55108, USA
| | - Daniel E. Warren
- Saint Louis University, Department of Biology, 3507 Laclede Ave., St. Louis, Missouri, 63103, USA
| |
Collapse
|
14
|
Romney ALT, Podrabsky JE. Small noncoding RNA profiles along alternative developmental trajectories in an annual killifish. Sci Rep 2018; 8:13364. [PMID: 30190591 PMCID: PMC6127099 DOI: 10.1038/s41598-018-31466-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/13/2018] [Indexed: 11/24/2022] Open
Abstract
Embryonic development of Austrofundulus limnaeus can occur along two phenotypic trajectories that are physiologically and biochemically distinct. Phenotype appears to be influenced by maternal provisioning based on the observation that young females produce predominately non-diapausing embryos and older females produce mostly diapausing embryos. Embryonic incubation temperature can override this pattern and alter trajectory. We hypothesized that temperature-induced phenotypic plasticity may be regulated by post-transcriptional modification via noncoding RNAs. As a first step to exploring this possibility, RNA-seq was used to generate transcriptomic profiles of small noncoding RNAs in embryos developing along the two alternative trajectories. We find distinct profiles of mature sequences belonging to the miR-10 family expressed in increasing abundance during development and mature sequences of miR-430 that follow the opposite pattern. Furthermore, miR-430 sequences are enriched in escape trajectory embryos. MiR-430 family members are known to target maternally provisioned mRNAs in zebrafish and may operate similarly in A. limnaeus in the context of normal development, and also by targeting trajectory-specific mRNAs. This expression pattern and function for miR-430 presents a potentially novel model for maternal-embryonic conflict in gene regulation that provides the embryo the ability to override maternal programming in the face of altered environmental conditions.
Collapse
Affiliation(s)
- Amie L T Romney
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR, 97207, USA.
- Department of Anatomy, Physiology & Cell Biology, University of California at Davis School of Veterinary Medicine, One Shields Ave, Davis, CA, 95616, USA.
| | - Jason E Podrabsky
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR, 97207, USA.
| |
Collapse
|
15
|
Riggs CL, Summers A, Warren DE, Nilsson GE, Lefevre S, Dowd WW, Milton S, Podrabsky JE. Small Non-coding RNA Expression and Vertebrate Anoxia Tolerance. Front Genet 2018; 9:230. [PMID: 30042786 PMCID: PMC6048248 DOI: 10.3389/fgene.2018.00230] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 06/11/2018] [Indexed: 01/09/2023] Open
Abstract
Background: Extreme anoxia tolerance requires a metabolic depression whose modulation could involve small non-coding RNAs (small ncRNAs), which are specific, rapid, and reversible regulators of gene expression. A previous study of small ncRNA expression in embryos of the annual killifish Austrofundulus limnaeus, the most anoxia-tolerant vertebrate known, revealed a specific expression pattern of small ncRNAs that could play important roles in anoxia tolerance. Here, we conduct a comparative study on the presence and expression of small ncRNAs in the most anoxia-tolerant representatives of several major vertebrate lineages, to investigate the evolution of and mechanisms supporting extreme anoxia tolerance. The epaulette shark (Hemiscyllium ocellatum), crucian carp (Carassius carassius), western painted turtle (Chrysemys picta bellii), and leopard frog (Rana pipiens) were exposed to anoxia and recovery, and small ncRNAs were sequenced from the brain (one of the most anoxia-sensitive tissues) prior to, during, and following exposure to anoxia. Results: Small ncRNA profiles were broadly conserved among species under normoxic conditions, and these expression patterns were largely conserved during exposure to anoxia. In contrast, differentially expressed genes are mostly unique to each species, suggesting that each species may have evolved distinct small ncRNA expression patterns in response to anoxia. Mitochondria-derived small ncRNAs (mitosRNAs) which have a robust response to anoxia in A. limnaeus embryos, were identified in the other anoxia tolerant vertebrates here but did not display a similarly robust response to anoxia. Conclusion: These findings support an overall stabilization of the small ncRNA transcriptome during exposure to anoxic insults, but also suggest that multiple small ncRNA expression pathways may support anoxia tolerance, as no conserved small ncRNA response was identified among the anoxia-tolerant vertebrates studied. This may reflect divergent strategies to achieve the same endpoint: anoxia tolerance. However, it may also indicate that there are multiple cellular pathways that can trigger the same cellular and physiological survival processes, including hypometabolism.
Collapse
Affiliation(s)
- Claire L. Riggs
- Department of Biology, Portland State University, Portland, OR, United States
| | - Amanda Summers
- Department of Psychological and Brain Sciences, Villanova University, Villanova, PA, United States
| | - Daniel E. Warren
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | | | | | - W. W. Dowd
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| | - Sarah Milton
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, United States
| | - Jason E. Podrabsky
- Department of Biology, Portland State University, Portland, OR, United States
| |
Collapse
|
16
|
Wagner JT, Singh PP, Romney AL, Riggs CL, Minx P, Woll SC, Roush J, Warren WC, Brunet A, Podrabsky JE. The genome of Austrofundulus limnaeus offers insights into extreme vertebrate stress tolerance and embryonic development. BMC Genomics 2018; 19:155. [PMID: 29463212 PMCID: PMC5819677 DOI: 10.1186/s12864-018-4539-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 02/12/2018] [Indexed: 11/21/2022] Open
Abstract
Background The annual killifish Austrofundulus limnaeus inhabits ephemeral ponds in northern Venezuela, South America, and is an emerging extremophile model for vertebrate diapause, stress tolerance, and evolution. Embryos of A. limnaeus regularly experience extended periods of desiccation and anoxia as a part of their natural history and have unique metabolic and developmental adaptations. Currently, there are limited genomic resources available for gene expression and evolutionary studies that can take advantage of A. limnaeus as a unique model system. Results We describe the first draft genome sequence of A. limnaeus. The genome was assembled de novo using a merged assembly strategy and was annotated using the NCBI Eukaryotic Annotation Pipeline. We show that the assembled genome has a high degree of completeness in genic regions that is on par with several other teleost genomes. Using RNA-seq and phylogenetic-based approaches, we identify several candidate genes that may be important for embryonic stress tolerance and post-diapause development in A. limnaeus. Several of these genes include heat shock proteins that have unique expression patterns in A. limnaeus embryos and at least one of these may be under positive selection. Conclusion The A. limnaeus genome is the first South American annual killifish genome made publicly available. This genome will be a valuable resource for comparative genomics to determine the genetic and evolutionary mechanisms that support the unique biology of annual killifishes. In a broader context, this genome will be a valuable tool for exploring genome-environment interactions and their impacts on vertebrate physiology and evolution. Electronic supplementary material The online version of this article (10.1186/s12864-018-4539-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Josiah T Wagner
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, Oregon, USA. .,Knight Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, Oregon, USA.
| | - Param Priya Singh
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Amie L Romney
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, Oregon, USA
| | - Claire L Riggs
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, Oregon, USA
| | - Patrick Minx
- McDonnell Genome Institute at Washington University, St Louis, Missouri, USA
| | - Steven C Woll
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, Oregon, USA
| | - Jake Roush
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, Oregon, USA
| | - Wesley C Warren
- McDonnell Genome Institute at Washington University, St Louis, Missouri, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, California, USA.,Glenn Center for the Biology of Aging, Stanford, California, USA
| | - Jason E Podrabsky
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, Oregon, USA
| |
Collapse
|