1
|
Ye W, Zheng Y, Sun Y, Li Q, Zhu H, Xu G. Transcriptome analysis of the response of four immune related organs of tilapia (Oreochromis niloticus) to the addition of resveratrol in feed. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108510. [PMID: 36608812 DOI: 10.1016/j.fsi.2022.108510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Resveratrol (RES) has been found to have immunological enhancement effects on Oreochromis niloticus. In O. nilocticus, the liver, spleen and kidney act as immune target tissues, while intestine works for nutrition sensing organ. In the present study, we determined RES administration on these immune tissues transcriptomic response in genetically improved farmed tilapia (GIFT), and further analyzed the relationship between transcriptomic response and intestinal microbiota. As results, hepatic hemosiderin and intestinal goblet cells significantly increased with RES addition. Kyoto encyclopedia of genes and genomes (KEGG) pathways associated with herpes simplex virus 1 infection, calcium signaling pathway, cell adhesion molecules, apoptosis, and mitogen-activated protein kinase (MAPK)/peroxisome proliferators-activated receptors (PPAR) signaling pathways were enriched. In particular, the differentially enriched genes (DEGs) associated pathways were present in different sampling tissues, times, and comparisons, interestingly, the PPAR signaling pathway was enriched with increasing time of RES addition. The assembled DEGs presented verified expression in the kidney, liver, spleen, and intestine tissues, and fabp6 was highly expressed in the intestine. Serial DEGs of fatty acid-binding proteins (fabp7, fabp7a, fabp10a) decreased in the liver and kidney, and fabp6 significantly increased in the spleen. With time, the pathways of energy metabolism, glycan biosynthesis, and metabolism decreased and increased in the intestinal metagenome. Some Candidatus branches significantly increased (C. cerribacteria and C. harrisonbacteria) and while others decreased (C. glodbacteria, etc.), whereas C. verstraetearchaeota fluctuated with RES addition. slc27a6 and dbi were negatively correlated with bacteria involved in the lipid, energy, and carbohydrate metabolism pathways. The present study suggests that RES supplementation affected lipid metabolism in immune-related organs may be related to the PPAR signaling pathway.
Collapse
Affiliation(s)
- Wei Ye
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center FFRC, Chinese Academy of Fishery Sciences CAFS, Wuxi, Jiangsu, 214081, China
| | - Yao Zheng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center FFRC, Chinese Academy of Fishery Sciences CAFS, Wuxi, Jiangsu, 214081, China
| | - Yi Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center FFRC, Chinese Academy of Fishery Sciences CAFS, Wuxi, Jiangsu, 214081, China
| | - Quanjie Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center FFRC, Chinese Academy of Fishery Sciences CAFS, Wuxi, Jiangsu, 214081, China
| | - Haojun Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center FFRC, Chinese Academy of Fishery Sciences CAFS, Wuxi, Jiangsu, 214081, China
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center FFRC, Chinese Academy of Fishery Sciences CAFS, Wuxi, Jiangsu, 214081, China.
| |
Collapse
|
2
|
Lu L, Hu J, Li G, An T. Low concentration Tetrabromobisphenol A (TBBPA) elevating overall metabolism by inducing activation of the Ras signaling pathway. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125797. [PMID: 33878653 DOI: 10.1016/j.jhazmat.2021.125797] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Tetrabromobisphenol A (TBBPA), one of the most common flame retardants, affects neurodevelopment, disrupts the endocrine system, and increases the possibility of tumorigenesis. This study investigates the cytotoxic effects, genetic effects, and metabolic effects from exposure to low concentration TBBPA. The cell exposure was measured by mimicking the residual TBBPA concentrations in human plasma, specifically in occupational populations. Our results revealed that long-term TBBPA exposure, especially at 1 nM concentration, significantly promoted the proliferation of HepG2 cells. Furthermore, long-term TBBPA exposure can double the levels of reactive oxygen species (ROS) released from mitochondria, thereby increasing Adenosine Monophosphate activated Protein kinase (AMPK) gene expression level to promote cellular proliferation. However, ROS can also mediate the apoptosis process through the mitochondrial membrane potential (MMP). The RNA-seq analysis confirmed that the Ras signaling pathway was activated by the growth factor to mediate cell detoxification mechanism, increasing lipid and vitamin metabolic rate. Our work uncovers a cellular mechanism by which long-term exposure to low concentration TBBPA can induce the activation of the Ras signaling pathway and demonstrates potential metabolic disorder in the human hepatic cells upon plasma TBBPA exposure.
Collapse
Affiliation(s)
- Lirong Lu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Junjie Hu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|