1
|
Fedorka CE, Scoggin KE, Coleman SJ, Hatzel JN, Burleson MD, Troedsson MHT. Unveiling the equine placental transcriptome: A novel study on ICSI-derived pregnancies. Theriogenology 2025; 237:120-128. [PMID: 40009953 DOI: 10.1016/j.theriogenology.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
Alterations during the early stages of embryo development have been associated with long-term effects on the fetus, neonate, and adult, but this has not been investigated in horses. In recent years, intracytoplasmic sperm injection (ICSI) has gained in commercial popularity in the equine population. Research suggests an association between ICSI-produced embryos and placental malformations, but there exists little understanding of the physiology involved. Therefore, we aim to produce a complete transcriptomic analysis of chorioallantois and provide potential pathways that may be impacted following pregnancies associated with in vitro-produced equine embryos. To do so, seventeen warmblood mares were bred either naturally to produce in vivo-produced pregnancies that were carried by self (in vivo; n = 8) or with in vitro-produced pregnancies created via intracytoplasmic sperm injection (ICSI) that were transferred to a recipient (in vitro; n = 9). Mares were monitored throughout gestation to ensure the health of the pregnancy, and impending parturition was monitored for progress. Chorioallantois was collected immediately postpartum and placed in RNALater for future extraction. RNA was isolated using Trizol, and RNASeq was performed by Novogene, with 93.3 % total mapping and 40 million read depth. The false discovery rate (FDR) was set to <0.05. When comparing groups (in vivo vs. in vitro-produced embryos), 1589 genes were differentially expressed. This included an upregulation of 626 genes, alongside a downregulation of 963 genes. Impacted gene ontology included aspects of the central dogma of molecular biology, including ribosome biogenesis, RNA polymerase activity, and spliceosome function. Additional biological processes that were impacted included aspects of the immune system relating to auto-immunity and disordered antigen response, such as the IL-17 signaling pathway, rheumatoid arthritis, and lupus. Additionally, pathways relating to hypoxia and ribosome biogenesis were associated with in vitro-produced pregnancies. Overall, it appears that the in vitro production of pregnancies is associated with placental dysregulation during pregnancy, which may be related to poor fetal and neonatal outcomes that have been associated with ART in other species.
Collapse
Affiliation(s)
- C E Fedorka
- Department of Animal Sciences, Colorado State University, Fort Collins, USA.
| | - K E Scoggin
- Department of Veterinary Sciences, University of Kentucky, Lexington, USA
| | - S J Coleman
- Department of Animal Sciences, Colorado State University, Fort Collins, USA
| | - J N Hatzel
- Department of Clinical Sciences, Colorado State University, Fort Collins, USA
| | | | - M H T Troedsson
- Department of Veterinary Sciences, University of Kentucky, Lexington, USA
| |
Collapse
|
2
|
Lee SCES, Pyo AHA, Koritzinsky M. Longitudinal dynamics of the tumor hypoxia response: From enzyme activity to biological phenotype. SCIENCE ADVANCES 2023; 9:eadj6409. [PMID: 37992163 PMCID: PMC10664991 DOI: 10.1126/sciadv.adj6409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Poor oxygenation (hypoxia) is a common spatially heterogeneous feature of human tumors. Biological responses to tumor hypoxia are orchestrated by the decreased activity of oxygen-dependent enzymes. The affinity of these enzymes for oxygen positions them along a continuum of oxygen sensing that defines their roles in launching reactive and adaptive cellular responses. These responses encompass regulation of all steps in the central dogma, with rapid perturbation of the metabolome and proteome followed by more persistent reprogramming of the transcriptome and epigenome. Core hypoxia response genes and pathways are commonly regulated at multiple inflection points, fine-tuning the dependencies on oxygen concentration and hypoxia duration. Ultimately, shifts in the activity of oxygen-sensing enzymes directly or indirectly endow cells with intrinsic hypoxia tolerance and drive processes that are associated with aggressive phenotypes in cancer including angiogenesis, migration, invasion, immune evasion, epithelial mesenchymal transition, and stemness.
Collapse
Affiliation(s)
- Sandy Che-Eun S. Lee
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Andrea Hye An Pyo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Li L, Xu X, Xiao M, Huang C, Cao J, Zhan S, Guo J, Zhong T, Wang L, Yang L, Zhang H. The Profiles and Functions of RNA Editing Sites Associated with High-Altitude Adaptation in Goats. Int J Mol Sci 2023; 24:3115. [PMID: 36834526 PMCID: PMC9964554 DOI: 10.3390/ijms24043115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/08/2023] Open
Abstract
High-altitude environments dramatically influenced the genetic evolution of vertebrates. However, little is known about the role of RNA editing on high-altitude adaptation in non-model species. Here, we profiled the RNA editing sites (RESs) of heart, lung, kidney, and longissimus dorsi muscle from Tibetan cashmere goats (TBG, 4500 m) and Inner Mongolia cashmere goats (IMG, 1200 m) to reveal RNA editing-related functions of high-altitude adaptation in goats. We identified 84,132 high-quality RESs that were unevenly distributed across the autosomes in TBG and IMG, and more than half of the 10,842 non-redundant editing sites were clustered. The majority (62.61%) were adenosine-to-inosine (A-to-I) sites, followed by cytidine-to-uridine (C-to-U) sites (19.26%), and 32.5% of them had a significant correlation with the expression of catalytic genes. Moreover, A-to-I and C-to-U RNA editing sites had different flanking sequences, amino acid mutations, and alternative splicing activity. TBG had higher editing levels of A-to-I and C-to-U than IMG in the kidney, whereas a lower level was found in the longissimus dorsi muscle. Furthermore, we identified 29 IMG and 41 TBG population-specific editing sites (pSESs) and 53 population-differential editing sites (pDESs) that were functionally involved in altering RNA splicing or recoding protein products. It is worth noting that 73.3% population-differential, 73.2% TBG-specific, and 80% IMG-specific A-to-I sites were nonsynonymous sites. Moreover, the pSESs and pDESs editing-related genes play critical functions in energy metabolisms such as ATP binding molecular function, translation, and adaptive immune response, which may be linked to goat high-altitude adaptation. Our results provide valuable information for understanding the adaptive evolution of goats and studying plateau-related diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Liu Yang
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
McCool MA, Bryant CJ, Huang H, Ogawa LM, Farley-Barnes KI, Sondalle SB, Abriola L, Surovtseva YV, Baserga SJ. Human nucleolar protein 7 (NOL7) is required for early pre-rRNA accumulation and pre-18S rRNA processing. RNA Biol 2023; 20:257-271. [PMID: 37246770 PMCID: PMC10228412 DOI: 10.1080/15476286.2023.2217392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 05/30/2023] Open
Abstract
The main components of the essential cellular process of eukaryotic ribosome biogenesis are highly conserved from yeast to humans. Among these, the U3 Associated Proteins (UTPs) are a small subunit processome subcomplex that coordinate the first two steps of ribosome biogenesis in transcription and pre-18S processing. While we have identified the human counterparts of most of the yeast Utps, the homologs of yeast Utp9 and Bud21 (Utp16) have remained elusive. In this study, we find that NOL7 is the likely ortholog of Bud21. Previously described as a tumour suppressor through regulation of antiangiogenic transcripts, we now show that NOL7 is required for early pre-rRNA accumulation and pre-18S rRNA processing in human cells. These roles lead to decreased protein synthesis and induction of the nucleolar stress response upon NOL7 depletion. Beyond Bud21's nonessential role in yeast, we establish human NOL7 as an essential UTP that is necessary to maintain both early pre-rRNA levels and processing.
Collapse
Affiliation(s)
- Mason A. McCool
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Carson J. Bryant
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Hannah Huang
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Lisa M. Ogawa
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Katherine I. Farley-Barnes
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Samuel B. Sondalle
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, USA
| | | | - Susan J. Baserga
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
5
|
Narayanan V, Sandström AG, Gorwa-Grauslund MF. Re-evaluation of the impact of BUD21 deletion on xylose utilization by Saccharomyces cerevisiae. Metab Eng Commun 2023. [DOI: 10.1016/j.mec.2023.e00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
6
|
Zhang G, Mou Z, Wang H, Liu H. Comprehensive proteomic analysis of the main liver
and attached liver of <i>Glyptosternum maculatum</i> on the basis
of data-independent mass spectrometry acquisition. JOURNAL OF ANIMAL AND FEED SCIENCES 2022. [DOI: 10.22358/jafs/154070/2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Saquib Q, Xia P, Siddiqui MA, Zhang J, Xie Y, Faisal M, Ansari SM, Alwathnani HA, Alatar AA, Al-Khedhairy AA, Zhang X. High-throughput transcriptomics: An insight on the pathways affected in HepG2 cells exposed to nickel oxide nanoparticles. CHEMOSPHERE 2020; 244:125488. [PMID: 31812053 DOI: 10.1016/j.chemosphere.2019.125488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Nickel oxide nanoparticles (NiO-NPs) have been used in several consumer goods, reported to demonstrate the hepatotoxic effects in vitro and in vivo test models. Nonetheless the molecular mechanism of hepatotoxicity is still missing. Hence, a toxicogenomic approach integrating microscopic techniques and high-throughput RNA sequencing (RNA-Seq) was applied to reveal hepatotoxicity in human hepatocellular carcinoma cells (HepG2). NiO-NPs induced a concentration dependent (5-100 μg/ml) cytotoxicity, with a No observed effect level (NOEL) of 5 μg/ml. Hypoxia-inducible transcription factor-1α (HIF-1α) and miR-210 microRNA were upregulated at 25 and 100 μg/ml, while significant alteration on transcriptome at mRNA and pathway level was observed at non-toxic level of NiO-NPs treatment. The treated cells also showed activation of glycolysis, glutathione, lysosomes and autophagy pathways by a pathway-driven analysis. Flow cytometric analysis affirmed the elevation in nitric oxide (NO), Ca++ influx, esterase, and disruption of mitochondrial membrane potential (ΔΨm). Cell cycle dysregulation was affirmed by the appearance of 30.5% subG1 apoptotic peak in NiO-NPs (100 μg/ml) treated cells. The molecular responses were consistent with the microscopic observation that NiO-NPs induced subcellular alterations in HepG2 cells. We conclude that hypoxia stress played a pivotal role in NiO-NPs induced hepatoxicity in HepG2 cells. Concentration dependent effects on transcriptomics specify a powerful tool to evaluate the molecular mechanisms of nanoparticle induced cytotoxicity. Overall our study unequivocally affirmed the transcriptomic alterations in human cells, consequently the prevalent usage of NiO-NPs should be given subtle consideration owing to its effects on biological processes.
Collapse
Affiliation(s)
- Quaiser Saquib
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia; A.R. Al-Jeraisy Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Pu Xia
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Maqsood A Siddiqui
- A.R. Al-Jeraisy Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Junjiang Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Yuwei Xie
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Sciences, King Saud University, P.O Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sabiha M Ansari
- Department of Botany & Microbiology, College of Sciences, King Saud University, P.O Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hend A Alwathnani
- Department of Botany & Microbiology, College of Sciences, King Saud University, P.O Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman A Alatar
- Department of Botany & Microbiology, College of Sciences, King Saud University, P.O Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulaziz A Al-Khedhairy
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
8
|
The Swi3 protein plays a unique role in regulating respiration in eukaryotes. Biosci Rep 2016; 36:BSR20160083. [PMID: 27190130 PMCID: PMC5293592 DOI: 10.1042/bsr20160083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/17/2016] [Indexed: 01/08/2023] Open
Abstract
Recent experimental evidence increasingly shows that the dysregulation of cellular bioenergetics is associated with a wide array of common human diseases, including cancer, neurological diseases and diabetes. Respiration provides a vital source of cellular energy for most eukaryotic cells, particularly high energy demanding cells. However, the understanding of how respiration is globally regulated is very limited. Interestingly, recent evidence suggests that Swi3 is an important regulator of respiration genes in yeast. In this report, we performed an array of biochemical and genetic experiments and computational analysis to directly evaluate the function of Swi3 and its human homologues in regulating respiration. First, we showed, by computational analysis and measurements of oxygen consumption and promoter activities, that Swi3, not Swi2, regulates genes encoding functions involved in respiration and oxygen consumption. Biochemical analysis showed that the levels of mitochondrial respiratory chain complexes were substantially increased in Δswi3 cells, compared with the parent cells. Additionally, our data showed that Swi3 strongly affects haem/oxygen-dependent activation of respiration gene promoters whereas Swi2 affects only the basal, haem-independent activities of these promoters. We found that increased expression of aerobic expression genes is correlated with increased oxygen consumption and growth rates in Δswi3 cells in air. Furthermore, using computational analysis and RNAi knockdown, we showed that the mammalian Swi3 BAF155 and BAF170 regulate respiration in HeLa cells. Together, these experimental and computational data demonstrated that Swi3 and its mammalian homologues are key regulators in regulating respiration.
Collapse
|
9
|
Tang Q, Huang W, Guan J, Jin L, Che T, Fu Y, Hu Y, Tian S, Wang D, Jiang Z, Li X, Li M. Transcriptomic analysis provides insight into high-altitude acclimation in domestic goats. Gene 2015; 567:208-16. [PMID: 25958351 DOI: 10.1016/j.gene.2015.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/27/2015] [Accepted: 05/01/2015] [Indexed: 10/23/2022]
Abstract
Domestic goats are distributed in a wide range of habitats and have acclimated to their local environmental conditions. To investigate the gene expression changes of goats that are induced by high altitude stress, we performed RNA-seq on 27 samples from the three hypoxia-sensitive tissues (heart, lung, and skeletal muscle) in three indigenous populations from distinct altitudes (600 m, 2000 m, and 3000 m). We generated 129Gb of high-quality sequencing data (~4Gb per sample) and catalogued the expression profiles of 12,421 annotated hircine genes in each sample. The analysis showed global similarities and differences of high-altitude transcriptomes among populations and tissues as well as revealed that the heart underwent the most high-altitude induced expression changes. We identified numerous differentially expressed genes that exhibited distinct expression patterns, and nonsynonymous single nucleotide variant-containing genes that were highly differentiated between the high- and low-altitude populations. These genes have known or potential roles in hypoxia response and were enriched in functional gene categories potentially responsible for high-altitude stress. Therefore, they are appealing candidates for further investigation of the gene expression and associated regulatory mechanisms related to high-altitude acclimation.
Collapse
Affiliation(s)
- Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenyao Huang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiuqiang Guan
- Sichuan Academy of Grassland Science, Chengdu 611731, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Tiandong Che
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhua Fu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Lab of Animal Genetics, Breeding and Reproduction of Ministry Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaodong Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shilin Tian
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Dawei Wang
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Zhi Jiang
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Xuewei Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
10
|
Staudacher JJ, Naarmann-de Vries IS, Ujvari SJ, Klinger B, Kasim M, Benko E, Ostareck-Lederer A, Ostareck DH, Bondke Persson A, Lorenzen S, Meier JC, Blüthgen N, Persson PB, Henrion-Caude A, Mrowka R, Fähling M. Hypoxia-induced gene expression results from selective mRNA partitioning to the endoplasmic reticulum. Nucleic Acids Res 2015; 43:3219-36. [PMID: 25753659 PMCID: PMC4381074 DOI: 10.1093/nar/gkv167] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/21/2015] [Indexed: 01/01/2023] Open
Abstract
Protein synthesis is a primary energy-consuming process in the cell. Therefore, under hypoxic conditions, rapid inhibition of global mRNA translation represents a major protective strategy to maintain energy metabolism. How some mRNAs, especially those that encode crucial survival factors, continue to be efficiently translated in hypoxia is not completely understood. By comparing specific transcript levels in ribonucleoprotein complexes, cytoplasmic polysomes and endoplasmic reticulum (ER)-bound ribosomes, we show that the synthesis of proteins encoded by hypoxia marker genes is favoured at the ER in hypoxia. Gene expression profiling revealed that transcripts particularly increased by the HIF-1 transcription factor network show hypoxia-induced enrichment at the ER. We found that mRNAs favourably translated at the ER have higher conservation scores for both the 5'- and 3'-untranslated regions (UTRs) and contain less upstream initiation codons (uAUGs), indicating the significance of these sequence elements for sustained mRNA translation under hypoxic conditions. Furthermore, we found enrichment of specific cis-elements in mRNA 5'- as well as 3'-UTRs that mediate transcript localization to the ER in hypoxia. We conclude that transcriptome partitioning between the cytoplasm and the ER permits selective mRNA translation under conditions of energy shortage.
Collapse
Affiliation(s)
- Jonas J Staudacher
- Charité - Universitätsmedizin Berlin, Institut für Vegetative Physiologie, Charitéplatz 1, D-10117 Berlin, Germany
| | - Isabel S Naarmann-de Vries
- University Hospital Aachen, RWTH Aachen University, Department of Intensive and Intermediate Care, Experimental Research Unit, D-52074 Aachen, Germany
| | - Stefanie J Ujvari
- Charité - Universitätsmedizin Berlin, Institut für Vegetative Physiologie, Charitéplatz 1, D-10117 Berlin, Germany
| | - Bertram Klinger
- Humboldt Universität zu Berlin, Institut für Theoretische Biologie, D-10115 Berlin, Germany Charité - Universitätsmedizin Berlin, Institut für Pathologie, D-10117 Berlin, Germany
| | - Mumtaz Kasim
- Charité - Universitätsmedizin Berlin, Institut für Vegetative Physiologie, Charitéplatz 1, D-10117 Berlin, Germany
| | - Edgar Benko
- Charité - Universitätsmedizin Berlin, Institut für Vegetative Physiologie, Charitéplatz 1, D-10117 Berlin, Germany
| | - Antje Ostareck-Lederer
- University Hospital Aachen, RWTH Aachen University, Department of Intensive and Intermediate Care, Experimental Research Unit, D-52074 Aachen, Germany
| | - Dirk H Ostareck
- University Hospital Aachen, RWTH Aachen University, Department of Intensive and Intermediate Care, Experimental Research Unit, D-52074 Aachen, Germany
| | - Anja Bondke Persson
- Charité - Universitätsmedizin Berlin, Institut für Vegetative Physiologie, Charitéplatz 1, D-10117 Berlin, Germany
| | - Stephan Lorenzen
- Universitätsklinikum Jena, Klinik für Innere Medizin III, AG Experimentelle Nephrologie, D-07743 Jena, Germany
| | - Jochen C Meier
- Max Delbrück Center for Molecular Medicine, RNA Editing and Hyperexcitability Disorders Helmholtz Group, D-13125 Berlin, Germany TU Braunschweig, Zoological Institute, Division of Cell Physiology, D-38106 Braunschweig, Germany
| | - Nils Blüthgen
- Humboldt Universität zu Berlin, Institut für Theoretische Biologie, D-10115 Berlin, Germany Charité - Universitätsmedizin Berlin, Institut für Pathologie, D-10117 Berlin, Germany
| | - Pontus B Persson
- Charité - Universitätsmedizin Berlin, Institut für Vegetative Physiologie, Charitéplatz 1, D-10117 Berlin, Germany
| | - Alexandra Henrion-Caude
- Hôpital Necker-Enfants Malades, Université Paris Descartes, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1163 and Imagine Foundation, 75015 Paris, France
| | - Ralf Mrowka
- Universitätsklinikum Jena, Klinik für Innere Medizin III, AG Experimentelle Nephrologie, D-07743 Jena, Germany
| | - Michael Fähling
- Charité - Universitätsmedizin Berlin, Institut für Vegetative Physiologie, Charitéplatz 1, D-10117 Berlin, Germany
| |
Collapse
|
11
|
Cadinu D, Hooda J, Alam MM, Balamurugan P, Henke RM, Zhang L. Comparative proteomic analysis reveals characteristic molecular changes accompanying the transformation of nonmalignant to cancer lung cells. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Genome-wide identification of the targets for genetic manipulation to improve L-lactate production by Saccharomyces cerevisiae by using a single-gene deletion strain collection. J Biotechnol 2013; 168:185-93. [PMID: 23665193 DOI: 10.1016/j.jbiotec.2013.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/05/2013] [Accepted: 04/26/2013] [Indexed: 11/20/2022]
Abstract
To identify genome-wide targets for gene manipulation for increasing L-lactate production in recombinant Saccharomyces cerevisiae strains, we transformed all available single-gene deletion strains of S. cerevisiae with a plasmid carrying the human L-lactate dehydrogenase gene, and examined L-lactate production in the obtained transformants. The thresholds of increased or decreased L-lactate production were determined based on L-lactate production by the standard strain in repetitive experiments. L-lactate production data for 4802 deletion strains were obtained, and deletion strains with increased or decreased L-lactate production were identified. Functional category analysis of genes whose deletion increased L-lactate production revealed that ribosome biogenesis-related genes were overrepresented. Most deletion strains for genes related to ribosome biogenesis exhibited increased L-lactate production in 200-ml batch cultures. We deleted the genes related to ribosome biogenesis in a recombinant strain of S. cerevisiae with a genetic background different from that of the above deletion strains, and examined the effect of target gene deletion on L-lactate production. We observed that deletion of genes related to ribosome biogenesis leads to increased L-lactate production by recombinant S. cerevisiae strains, and the single-gene deletion strain collection could be utilized in identifying target genes for improving L-lactate production in S. cerevisiae recombinant strains.
Collapse
|