1
|
Sánchez-Hernández R, Benítez-Angeles M, Hernández-Vega AM, Rosenbaum T. Recent advances on the structure and the function relationships of the TRPV4 ion channel. Channels (Austin) 2024; 18:2313323. [PMID: 38354101 PMCID: PMC10868539 DOI: 10.1080/19336950.2024.2313323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
The members of the superfamily of Transient Receptor Potential (TRP) ion channels are physiologically important molecules that have been studied for many years and are still being intensively researched. Among the vanilloid TRP subfamily, the TRPV4 ion channel is an interesting protein due to its involvement in several essential physiological processes and in the development of various diseases. As in other proteins, changes in its function that lead to the development of pathological states, have been closely associated with modification of its regulation by different molecules, but also by the appearance of mutations which affect the structure and gating of the channel. In the last few years, some structures for the TRPV4 channel have been solved. Due to the importance of this protein in physiology, here we discuss the recent progress in determining the structure of the TRPV4 channel, which has been achieved in three species of animals (Xenopus tropicalis, Mus musculus, and Homo sapiens), highlighting conserved features as well as key differences among them and emphasizing the binding sites for some ligands that play crucial roles in its regulation.
Collapse
Affiliation(s)
- Raúl Sánchez-Hernández
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Miguel Benítez-Angeles
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Ana M. Hernández-Vega
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico, Mexico
| |
Collapse
|
2
|
Sullivan JM, Bagnell AM, Alevy J, Avila EM, Mihaljević L, Saavedra-Rivera PC, Kong L, Huh JS, McCray BA, Aisenberg WH, Zuberi AR, Bogdanik L, Lutz CM, Qiu Z, Quinlan KA, Searson PC, Sumner CJ. Gain-of-function mutations of TRPV4 acting in endothelial cells drive blood-CNS barrier breakdown and motor neuron degeneration in mice. Sci Transl Med 2024; 16:eadk1358. [PMID: 38776392 PMCID: PMC11316273 DOI: 10.1126/scitranslmed.adk1358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Blood-CNS barrier disruption is a hallmark of numerous neurological disorders, yet whether barrier breakdown is sufficient to trigger neurodegenerative disease remains unresolved. Therapeutic strategies to mitigate barrier hyperpermeability are also limited. Dominant missense mutations of the cation channel transient receptor potential vanilloid 4 (TRPV4) cause forms of hereditary motor neuron disease. To gain insights into the cellular basis of these disorders, we generated knock-in mouse models of TRPV4 channelopathy by introducing two disease-causing mutations (R269C and R232C) into the endogenous mouse Trpv4 gene. TRPV4 mutant mice exhibited weakness, early lethality, and regional motor neuron loss. Genetic deletion of the mutant Trpv4 allele from endothelial cells (but not neurons, glia, or muscle) rescued these phenotypes. Symptomatic mutant mice exhibited focal disruptions of blood-spinal cord barrier (BSCB) integrity, associated with a gain of function of mutant TRPV4 channel activity in neural vascular endothelial cells (NVECs) and alterations of NVEC tight junction structure. Systemic administration of a TRPV4-specific antagonist abrogated channel-mediated BSCB impairments and provided a marked phenotypic rescue of symptomatic mutant mice. Together, our findings show that mutant TRPV4 channels can drive motor neuron degeneration in a non-cell autonomous manner by precipitating focal breakdown of the BSCB. Further, these data highlight the reversibility of TRPV4-mediated BSCB impairments and identify a potential therapeutic strategy for patients with TRPV4 mutations.
Collapse
Affiliation(s)
- Jeremy M. Sullivan
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Anna M. Bagnell
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Jonathan Alevy
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Elvia Mena Avila
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island; Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island; Kingston, RI 02881, USA
| | - Ljubica Mihaljević
- Department of Physiology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | | | - Lingling Kong
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Jennifer S. Huh
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Brett A. McCray
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - William H. Aisenberg
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | | | | | | | - Zhaozhu Qiu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Katharina A. Quinlan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island; Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island; Kingston, RI 02881, USA
| | - Peter C. Searson
- Institute for Nanobiotechnology, Johns Hopkins University; Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University; Baltimore, MD 21218, USA
| | - Charlotte J. Sumner
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Chaigne S, Barbeau S, Ducret T, Guinamard R, Benoist D. Pathophysiological Roles of the TRPV4 Channel in the Heart. Cells 2023; 12:1654. [PMID: 37371124 DOI: 10.3390/cells12121654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The transient receptor potential vanilloid 4 (TRPV4) channel is a non-selective cation channel that is mostly permeable to calcium (Ca2+), which participates in intracellular Ca2+ handling in cardiac cells. It is widely expressed through the body and is activated by a large spectrum of physicochemical stimuli, conferring it a role in a variety of sensorial and physiological functions. Within the cardiovascular system, TRPV4 expression is reported in cardiomyocytes, endothelial cells (ECs) and smooth muscle cells (SMCs), where it modulates mitochondrial activity, Ca2+ homeostasis, cardiomyocytes electrical activity and contractility, cardiac embryonic development and fibroblast proliferation, as well as vascular permeability, dilatation and constriction. On the other hand, TRPV4 channels participate in several cardiac pathological processes such as the development of cardiac fibrosis, hypertrophy, ischemia-reperfusion injuries, heart failure, myocardial infarction and arrhythmia. In this manuscript, we provide an overview of TRPV4 channel implications in cardiac physiology and discuss the potential of the TRPV4 channel as a therapeutic target against cardiovascular diseases.
Collapse
Affiliation(s)
- Sébastien Chaigne
- IHU LIRYC Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600 Bordeaux, France
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, University of Bordeaux, 33600 Pessac, France
- Electrophysiology and Ablation Unit, Bordeaux University Hospital, 33604 Pessac, France
| | - Solène Barbeau
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, University of Bordeaux, 33600 Pessac, France
| | - Thomas Ducret
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, University of Bordeaux, 33600 Pessac, France
| | - Romain Guinamard
- UR4650, Physiopathologie et Stratégies d'Imagerie du Remodelage Cardiovasculaire, GIP Cyceron, Université de Caen Normandie, 14032 Caen, France
| | - David Benoist
- IHU LIRYC Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600 Bordeaux, France
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, University of Bordeaux, 33600 Pessac, France
| |
Collapse
|
4
|
Tureckova J, Hermanova Z, Marchetti V, Anderova M. Astrocytic TRPV4 Channels and Their Role in Brain Ischemia. Int J Mol Sci 2023; 24:ijms24087101. [PMID: 37108263 PMCID: PMC10138480 DOI: 10.3390/ijms24087101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Transient receptor potential cation channels subfamily V member 4 (TRPV4) are non-selective cation channels expressed in different cell types of the central nervous system. These channels can be activated by diverse physical and chemical stimuli, including heat and mechanical stress. In astrocytes, they are involved in the modulation of neuronal excitability, control of blood flow, and brain edema formation. All these processes are significantly impaired in cerebral ischemia due to insufficient blood supply to the tissue, resulting in energy depletion, ionic disbalance, and excitotoxicity. The polymodal cation channel TRPV4, which mediates Ca2+ influx into the cell because of activation by various stimuli, is one of the potential therapeutic targets in the treatment of cerebral ischemia. However, its expression and function vary significantly between brain cell types, and therefore, the effect of its modulation in healthy tissue and pathology needs to be carefully studied and evaluated. In this review, we provide a summary of available information on TRPV4 channels and their expression in healthy and injured neural cells, with a particular focus on their role in ischemic brain injury.
Collapse
Affiliation(s)
- Jana Tureckova
- Institute of Experimental Medicine, Czech Academy of Sciences, 1083 Videnska, 142 20 Prague, Czech Republic
| | - Zuzana Hermanova
- Institute of Experimental Medicine, Czech Academy of Sciences, 1083 Videnska, 142 20 Prague, Czech Republic
- Second Faculty of Medicine, Charles University, 84 V Uvalu, 150 06 Prague, Czech Republic
| | - Valeria Marchetti
- Institute of Experimental Medicine, Czech Academy of Sciences, 1083 Videnska, 142 20 Prague, Czech Republic
- Second Faculty of Medicine, Charles University, 84 V Uvalu, 150 06 Prague, Czech Republic
| | - Miroslava Anderova
- Institute of Experimental Medicine, Czech Academy of Sciences, 1083 Videnska, 142 20 Prague, Czech Republic
- Second Faculty of Medicine, Charles University, 84 V Uvalu, 150 06 Prague, Czech Republic
| |
Collapse
|
5
|
O'Brien F, Staunton CA, Barrett-Jolley R. Systemic application of the transient receptor potential vanilloid-type 4 antagonist GSK2193874 induces tail vasodilation in a mouse model of thermoregulation. Biol Lett 2022; 18:20220129. [PMID: 35702981 PMCID: PMC9198786 DOI: 10.1098/rsbl.2022.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/25/2022] [Indexed: 11/12/2022] Open
Abstract
In humans, skin is a primary thermoregulatory organ, with vasodilation leading to rapid body cooling, whereas in Rodentia the tail performs an analogous function. Many thermodetection mechanisms are likely to be involved including transient receptor potential vanilloid-type 4 (TRPV4), an ion channel with thermosensitive properties. Previous studies have shown that TRPV4 is a vasodilator by local action in blood vessels, so here, we investigated whether constitutive TRPV4 activity affects Mus muscularis tail vascular tone and thermoregulation. We measured tail blood flow by pressure plethysmography in lightly sedated M. muscularis (CD1 strain) at a range of ambient temperatures, with and without intraperitoneal administration of the blood-brain barrier crossing TRPV4 antagonist GSK2193874. We also measured heart rate (HR) and blood pressure. As expected for a thermoregulatory organ, we found that tail blood flow increased with temperature. However, unexpectedly, we found that GSK2193874 increased tail blood flow at all temperatures, and we observed changes in HR variability. Since local TRPV4 activation causes vasodilation that would increase tail blood flow, these data suggest that increases in tail blood flow resulting from the TRPV4 antagonist may arise from a site other than the blood vessels themselves, perhaps in central cardiovascular control centres.
Collapse
Affiliation(s)
- Fiona O'Brien
- Department of Musculoskeletal Ageing, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Caroline A. Staunton
- Department of Musculoskeletal Ageing, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Richard Barrett-Jolley
- Department of Musculoskeletal Ageing, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
| |
Collapse
|
6
|
Exploring Banana phytosterols (Beta-sitosterol) on tight junction protein (claudin) as anti-urolithiasis contributor in Drosophila: A phyto-lithomic approach. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
7
|
Donau J, Luo H, Virta I, Skupin A, Pushina M, Loeffler J, Haertel FV, Das A, Kurth T, Gerlach M, Lindemann D, Reinach PS, Mergler S, Valtink M. TRPV4 Stimulation Level Regulates Ca2+-Dependent Control of Human Corneal Endothelial Cell Viability and Survival. MEMBRANES 2022; 12:membranes12030281. [PMID: 35323756 PMCID: PMC8952823 DOI: 10.3390/membranes12030281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023]
Abstract
The functional contribution of transient receptor potential vanilloid 4 (TRPV4) expression in maintaining human corneal endothelial cells (HCEC) homeostasis is unclear. Accordingly, we determined the effects of TRPV4 gene and protein overexpression on responses modulating the viability and survival of HCEC. Q-PCR, Western blot, FACS analyses and fluorescence single-cell calcium imaging confirmed TRPV4 gene and protein overexpression in lentivirally transduced 12V4 cells derived from their parent HCEC-12 line. Although TRPV4 overexpression did not alter the baseline transendothelial electrical resistance (TEER), its cellular capacitance (Ccl) was larger than that in its parent. Scanning electron microscopy revealed that only the 12V4 cells developed densely packed villus-like protrusions. Stimulation of TRPV4 activity with GSK1016790A (GSK101, 10 µmol/L) induced larger Ca2+ transients in the 12V4 cells than those in the parental HCEC-12. One to ten nmol/L GSK101 decreased 12V4 viability, increased cell death rates and reduced the TEER, whereas 1 µmol/L GSK101 was required to induce similar effects in the HCEC-12. However, the TRPV4 channel blocker RN1734 (1 to 30 µmol/L) failed to alter HCEC-12 and 12V4 morphology, cell viability and metabolic activity. Taken together, TRPV4 overexpression altered both the HCEC morphology and markedly lowered the GSK101 dosages required to stimulate its channel activity.
Collapse
Affiliation(s)
- Jennifer Donau
- Institute of Anatomy, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; (J.D.); (A.S.); (M.P.); (J.L.)
- Institute of Medical Microbiology and Virology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Huan Luo
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany; (H.L.); (I.V.)
| | - Iiris Virta
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany; (H.L.); (I.V.)
| | - Annett Skupin
- Institute of Anatomy, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; (J.D.); (A.S.); (M.P.); (J.L.)
- Institute of Medical Microbiology and Virology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Margarita Pushina
- Institute of Anatomy, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; (J.D.); (A.S.); (M.P.); (J.L.)
| | - Jana Loeffler
- Institute of Anatomy, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; (J.D.); (A.S.); (M.P.); (J.L.)
| | - Frauke V. Haertel
- Institute of Physiology, Faculty of Medicine, University Giessen, 35392 Giessen, Germany;
- Institute of Physiology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Anupam Das
- Institute of Physiology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, TU Dresden, 01307 Dresden, Germany;
| | - Michael Gerlach
- Core Facility Cellular Imaging, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Dirk Lindemann
- Institute of Medical Microbiology and Virology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Peter S. Reinach
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, China;
| | - Stefan Mergler
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany; (H.L.); (I.V.)
- Correspondence: (S.M.); (M.V.)
| | - Monika Valtink
- Institute of Anatomy, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; (J.D.); (A.S.); (M.P.); (J.L.)
- Equality and Diversity Unit, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
- Correspondence: (S.M.); (M.V.)
| |
Collapse
|
8
|
Liu L, Guo M, Lv X, Wang Z, Yang J, Li Y, Yu F, Wen X, Feng L, Zhou T. Role of Transient Receptor Potential Vanilloid 4 in Vascular Function. Front Mol Biosci 2021; 8:677661. [PMID: 33981725 PMCID: PMC8107436 DOI: 10.3389/fmolb.2021.677661] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Transient receptor potential vanilloid 4 (TRPV4) channels are widely expressed in systemic tissues and can be activated by many stimuli. TRPV4, a Ca2+-permeable cation channel, plays an important role in the vasculature and is implicated in the regulation of cardiovascular homeostasis processes such as blood pressure, vascular remodeling, and pulmonary hypertension and edema. Within the vasculature, TRPV4 channels are expressed in smooth muscle cells, endothelial cells, and perivascular nerves. The activation of endothelial TRPV4 contributes to vasodilation involving nitric oxide, prostacyclin, and endothelial-derived hyperpolarizing factor pathways. TRPV4 activation also can directly cause vascular smooth muscle cell hyperpolarization and vasodilation. In addition, TRPV4 activation can evoke constriction in some specific vascular beds or under some pathological conditions. TRPV4 participates in the control of vascular permeability and vascular damage, particularly in the lung capillary endothelial barrier and lung injury. It also participates in vascular remodeling regulation mainly by controlling vasculogenesis and arteriogenesis. This review examines the role of TRPV4 in vascular function, particularly in vascular dilation and constriction, vascular permeability, vascular remodeling, and vascular damage, along with possible mechanisms, and discusses the possibility of targeting TRPV4 for therapy.
Collapse
Affiliation(s)
- Liangliang Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Mengting Guo
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaowang Lv
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhiwei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jigang Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yanting Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Fan Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xin Wen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Tingting Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Guarino BD, Paruchuri S, Thodeti CK. The role of TRPV4 channels in ocular function and pathologies. Exp Eye Res 2020; 201:108257. [PMID: 32979394 DOI: 10.1016/j.exer.2020.108257] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Transient potential receptor vanilloid 4 (TRPV4) is an ion channel responsible for sensing osmotic and mechanical signals, which in turn regulates calcium signaling across cell membranes. TRPV4 is widely expressed throughout the body, and plays an important role in normal physiological function, as well as different pathologies, however, its role in the eye is not well known. In the eye, TRPV4 is expressed in various tissues, such as the retina, corneal epithelium, ciliary body, and the lens. In this review, we provide an overview on TRPV4 structure, activation, mutations, and summarize the current knowledge of TRPV4 function and signaling mechanisms in various locations throughout the eye, as well as its role in ocular diseases, such as glaucoma and diabetic retinopathy. Based on the available data, we highlight the therapeutic potential of TRPV4 as well as the shortcomings of current research. Finally, we provide future perspectives on the implications of targeting TRPV4 to treat various ocular pathologies.
Collapse
Affiliation(s)
- Brianna D Guarino
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | | | - Charles K Thodeti
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.
| |
Collapse
|
10
|
Lawhorn BG, Brnardic EJ, Behm DJ. Recent advances in TRPV4 agonists and antagonists. Bioorg Med Chem Lett 2020; 30:127022. [PMID: 32063431 DOI: 10.1016/j.bmcl.2020.127022] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/05/2020] [Indexed: 01/03/2023]
Abstract
TRPV4 is a ubiquitously expressed, non-selective cation channel activated by a range of stimuli including hypotonicity, temperature, pH, stretch and endogenous ligands. Agents that modulate TRPV4 are sought as potential therapeutics for the treatment of many diseases including osteoarthritis, respiratory illnesses, gastrointestinal disorders, pain and congestive heart failure. In recent years, significant advances in TRPV4 drug discovery have been realized as at least seven novel TRPV4 agonist or antagonist templates were reported and the first selective TRPV4 antagonist was evaluated in early clinical trials.
Collapse
Affiliation(s)
- Brian G Lawhorn
- Medicinal Chemistry, Medicine Design, and Early Development Leaders, Research, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, United States.
| | - Edward J Brnardic
- Medicinal Chemistry, Medicine Design, and Early Development Leaders, Research, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, United States
| | - David J Behm
- Medicinal Chemistry, Medicine Design, and Early Development Leaders, Research, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, United States
| |
Collapse
|
11
|
Atobe M. Activation of Transient Receptor Potential Vanilloid (TRPV) 4 as a Therapeutic Strategy in Osteoarthritis. Curr Top Med Chem 2019; 19:2254-2267. [DOI: 10.2174/1568026619666191010162850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/21/2019] [Accepted: 09/13/2019] [Indexed: 01/29/2023]
Abstract
Transient receptor potential vanilloid (TRPV) 4 belongs to the TRPV subfamily of TRP ion
channels. TRPV4 channels play a critical role in chondrocytes and thus TRPV4 is an attractive target of
Disease-Modifying Osteoarthritis Drugs (DMOADs). Initial investigations of small molecules by Glaxo
Smith Klein (GSK) as both agonists and antagonists via oral/intravenous administration have led to the
use of existing agonists as lead compounds for biological studies. Our recent results suggest that local
injection of a TRPV4 agonist is a potential treatment for osteoarthritis (OA). This review briefly summarizes
updates regarding TRPV4 agonists based on recent advances in drug discovery, and particularly
the local administration of TRPV4 agonists.
Collapse
Affiliation(s)
- Masakazu Atobe
- Laboratory for Medicinal Chemistry, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| |
Collapse
|
12
|
Pairet N, Mang S, Kiechle T, Laufhäger N, Dietl P, Lamb DJ. Differential modulation of transendothelial electrical resistance by TRPV4 agonists is mediated by apoptosis and/or necrosis. Biochem Biophys Rep 2019; 20:100672. [PMID: 31650038 PMCID: PMC6804647 DOI: 10.1016/j.bbrep.2019.100672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 02/15/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Transient receptor potential vanilloid 4 (TRPV4) has been implicated in many disease conditions also in the lung. Its activation leads to an increase endothelial permeability in an intracellular calcium-influx dependent manner. We investigated its function in vitro on primary human endothelial cells using two TRPV4 agonists, GSK1016790A and 4α-Phorbol 12,13-didecanoate (4α-PDD) and a selective TRPV4 blocker GSK2193874. Both TRPV4 agonists leaded to a reduction in transendothelial electrical resistance (TER) which was mediated however by differential cytotoxic effects. 4α-PDD induced apoptosis that could not be blocked by TRPV4 inhibition in HUVECs, whereas GSK1016790A selectively activated TRPV4 and reduced TER as a consequence of cellular necrosis. TRPV4 mediated cytotoxicity is poorly described and may provide significant context to the role of TRPV4 in barrier-function. TRPV4 agonism is widely associated with barrier-dysfunction. We show TRPV4 mediated increased membrane permeability is caused by cytotoxicity. The TRPV4 agonist GSK1016790A mediates barrier dysfunction via necrosis. The TRPV4 agonist 4α-PDD mediates barrier dysfunction via apoptosis.
Collapse
Affiliation(s)
- N Pairet
- Institute of General Physiology, University of Ulm, Ulm, Germany.,Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, D-88397, Biberach an der Riß, Germany
| | - S Mang
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, D-88397, Biberach an der Riß, Germany.,Institute of Immunology, Hannover Medical School, D-30625, Hannover, Germany
| | - T Kiechle
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, D-88397, Biberach an der Riß, Germany
| | - N Laufhäger
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, D-88397, Biberach an der Riß, Germany
| | - P Dietl
- Institute of General Physiology, University of Ulm, Ulm, Germany
| | - D J Lamb
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, D-88397, Biberach an der Riß, Germany
| |
Collapse
|