1
|
C-Peptide as a Therapy for Type 1 Diabetes Mellitus. Biomedicines 2021; 9:biomedicines9030270. [PMID: 33800470 PMCID: PMC8000702 DOI: 10.3390/biomedicines9030270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM) is a complex metabolic disease affecting one-third of the United States population. It is characterized by hyperglycemia, where the hormone insulin is either not produced sufficiently or where there is a resistance to insulin. Patients with Type 1 DM (T1DM), in which the insulin-producing beta cells are destroyed by autoimmune mechanisms, have a significantly increased risk of developing life-threatening cardiovascular complications, even when exogenous insulin is administered. In fact, due to various factors such as limited blood glucose measurements and timing of insulin administration, only 37% of T1DM adults achieve normoglycemia. Furthermore, T1DM patients do not produce C-peptide, a cleavage product from insulin processing. C-peptide has potential therapeutic effects in vitro and in vivo on many complications of T1DM, such as peripheral neuropathy, atherosclerosis, and inflammation. Thus, delivery of C-peptide in conjunction with insulin through a pump, pancreatic islet transplantation, or genetically engineered Sertoli cells (an immune privileged cell type) may ameliorate many of the cardiovascular and vascular complications afflicting T1DM patients.
Collapse
|
2
|
Poteryaeva ON, Usynin IF. [Molecular mechanisms of action and physiological effects of the proinsulin C-peptide (a systematic review)]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:196-207. [PMID: 32588825 DOI: 10.18097/pbmc20206603196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The C-peptide is a fragment of proinsulin, the cleavage of which forms active insulin. In recent years, new information has appeared on the physiological effects of the C-peptide, indicating its positive effect on many organs and tissues, including the kidneys, nervous system, heart, vascular endothelium and blood microcirculation. Studies on experimental models of diabetes mellitus in animals, as well as clinical trials in patients with diabetes, have shown that the C-peptide has an important regulatory effect on the early stages of functional and structural disorders caused by this disease. The C-peptide exhibits its effects through binding to a specific receptor on the cell membrane and activation of downstream signaling pathways. Intracellular signaling involves G-proteins and Ca2+-dependent pathways, resulting in activation and increased expression of endothelial nitric oxide synthase, Na+/K+-ATPase and important transcription factors involved in apoptosis, anti-inflammatory and other intracellular defense mechanisms. This review gives an idea of the C-peptide as a bioactive endogenous peptide that has its own biological activity and therapeutic potential.
Collapse
Affiliation(s)
- O N Poteryaeva
- Institute of Biochemistry, Federal Research Center of Fundamental and Translation Medicine, Novosibirsk, Russia
| | - I F Usynin
- Institute of Biochemistry, Federal Research Center of Fundamental and Translation Medicine, Novosibirsk, Russia
| |
Collapse
|
3
|
Usarek M, Jagielski AK, Krempa P, Dylewska A, Kiersztan A, Drozak J, Girstun A, Derlacz RA, Bryla J. Proinsulin C-peptide potentiates the inhibitory action of insulin on glucose synthesis in primary cultured rabbit kidney-cortex tubules: Metabolic studies. Biochem Cell Biol 2014; 92:1-8. [DOI: 10.1139/bcb-2013-0074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Effects of equimolar concentrations of proinsulin C-peptide and insulin on glucose synthesis were studied in primary cultures of rabbit kidney-cortex tubules grown in the presence of alanine, glycerol, and octanoate. The rhodamine-labeled C-peptide entered renal tubular cells and localized in nuclei, both in the presence and absence of insulin; preincubations with the unlabeled compound inhibited internalization. C-peptide did not affect glucose formation when added alone but potentiated the inhibitory action of insulin by about 20% due to a decrease in flux through glucose-6-phosphate isomerase (GPI) and (or) glucose-6-phosphatase (G6Pase). GPI inhibition was caused by: (i) increased intracellular contents of fructose-1,6-bisphosphate and fructose-1-phosphate, inhibitors of the enzyme and (ii) reduced level of the phosphorylated GPI, which exhibits higher enzymatic activity in the presence of casein kinase 2. A decrease in flux through G6Pase, due to diminished import of G6P by G6P-transporter from the cytoplasm into endoplasmic reticulum lumen, is also suggested. The data show for the first time that in the presence of insulin and C-peptide, both GPI and G6P-ase may act as regulatory enzymes of renal gluconeogenic pathway.
Collapse
Affiliation(s)
- Michal Usarek
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Adam Konrad Jagielski
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Paulina Krempa
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Anna Dylewska
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Anna Kiersztan
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Jakub Drozak
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Agnieszka Girstun
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Rafal Andrzej Derlacz
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Jadwiga Bryla
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
4
|
Regular consumption of pulses for 8 weeks reduces metabolic syndrome risk factors in overweight and obese adults. Br J Nutr 2012; 108 Suppl 1:S111-22. [DOI: 10.1017/s0007114512000712] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pulses are low in energy density, supporting their inclusion in the diet for the management of risk factors of the metabolic syndrome (MetSyn). The aim of the present study was to describe the effects of frequent consumption (five cups/week over 8 weeks) of pulses (yellow peas, chickpeas, navy beans and lentils), compared with counselling to reduce energy intake by 2093 kJ/d (500 kcal/d), on risk factors of the MetSyn in two groups (nineteen and twenty-one subjects, respectively) of overweight or obese (mean BMI 32·8 kg/m2) adults. Body weight, waist circumference, blood pressure, fasting blood parameters and 24 h food intakes were measured at weeks 1, 4 and 8. Blood glucose, insulin, C-peptide, glucagon-like peptide-1 (GLP-1) and ghrelin were measured after a 75 g oral glucose load at weeks 1 and 8. At week 8, both groups reported reductions in energy intake, waist circumference, systolic blood pressure, glycosylated Hb (HbA1c) and glucose AUC and homeostasis model of insulin resistance (HOMA-IR) following the glucose load (P < 0·05). However, HDL, fasting C-peptide and insulin AUC responses were dependent on diet (P < 0·05). HDL and C-peptide increased by 4·5 and 12·3 %, respectively, in the pulse group, but decreased by 0·8 and 7·6 %, respectively, in the energy-restricted group. Insulin AUC decreased in both females and males on the energy-restricted diet by 24·2 and 4·8 %, respectively, but on the pulse diet it decreased by 13·9 % in females and increased by 27·3 % in males (P < 0·05). In conclusion, frequent consumption of pulses in an ad libitum diet reduced risk factors of the MetSyn and these effects were equivalent, and in some instances stronger, than counselling for dietary energy reduction.
Collapse
|
5
|
He BB, Wei L, Gu YJ, Han JF, Li M, Liu YX, Bao YQ, Jia WP. Factors associated with diabetic retinopathy in chinese patients with type 2 diabetes mellitus. Int J Endocrinol 2012; 2012:157940. [PMID: 22844279 PMCID: PMC3400337 DOI: 10.1155/2012/157940] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/07/2012] [Indexed: 12/11/2022] Open
Abstract
Objective. To investigate the risk factors of DR in Chinese T2DM patients. Methods. 2009 patients with T2DM were included in this cross-sectional study. All patients underwent eye examination, and the DR stage was defined by an ophthalmologist. Correlation analysis was performed to evaluate the relation between DR and clinical variables. Logistic regression models were used to assess risk for those factors associated with DR. Results. A total of 597 T2DM patients (29.7%) had DR, of which 548 (27.3%) were nonproliferative diabetic retinopathy and 49 (2.4%) were proliferative diabetic retinopathy. Positive correlations were found between DR and duration of diabetes, systolic blood pressure (SBP), diastolic blood pressure, glycated hemoglobin, glycated albumin, 24 hurinary albumin excretion, peripheral atherosclerosis (PA), diabetes nephropathy (DN), diabetic peripheral neuropathy, and anemia. Negative correlations were found between DR and C-peptide and glomerular filtration rate. Logistic regression analysis revealed that duration of diabetes, SBP, DN, anemia, PA, and C-peptide were each independent risk factors of DR. Conclusion. The duration of diabetes, SBP, DN, anemia, and PA are positively associated with DR in Chinese T2DM patients, while C-peptide is negatively associated with DR. Monitoring and evaluation of these related factors will likely contribute to the prevention and treatment of DR.
Collapse
Affiliation(s)
- Bin-Bin He
- Shanghai Municipal Key Laboratory on Diabetes, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, and Shanghai Municipal Clinical Center on Diabetes, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Li Wei
- Shanghai Municipal Key Laboratory on Diabetes, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, and Shanghai Municipal Clinical Center on Diabetes, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- *Li Wei:
| | - Yun-Juan Gu
- Shanghai Municipal Key Laboratory on Diabetes, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, and Shanghai Municipal Clinical Center on Diabetes, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jun-Feng Han
- Shanghai Municipal Key Laboratory on Diabetes, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, and Shanghai Municipal Clinical Center on Diabetes, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Ming Li
- Shanghai Municipal Key Laboratory on Diabetes, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, and Shanghai Municipal Clinical Center on Diabetes, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yu-Xiang Liu
- Shanghai Municipal Key Laboratory on Diabetes, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, and Shanghai Municipal Clinical Center on Diabetes, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yu-Qian Bao
- Shanghai Municipal Key Laboratory on Diabetes, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, and Shanghai Municipal Clinical Center on Diabetes, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wei-Ping Jia
- Shanghai Municipal Key Laboratory on Diabetes, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, and Shanghai Municipal Clinical Center on Diabetes, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
6
|
Polakof S, Alvarez R, Soengas JL. Gut glucose metabolism in rainbow trout: implications in glucose homeostasis and glucosensing capacity. Am J Physiol Regul Integr Comp Physiol 2010; 299:R19-32. [PMID: 20357022 DOI: 10.1152/ajpregu.00005.2010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The main objective of the present study was to evaluate the relative contribution of the intestine to glucose homeostasis in rainbow trout. In a first set of in vivo experiments trout were subjected to oral glucose treatments alone or in combination with insulin injections to assess changes in glucose-related enzymes activities, metabolite levels, and mRNA levels. Rainbow trout gut displays an important glucose metabolism that includes the ability to store glucose as glycogen (mostly in the muscle layers) and a large capacity to oxidize glucose. This constitutes a surprising result for a carnivorous fish. In a second set of in vivo experiments, trout received an oral amino acid solution alone or in combination with insulin injection to determine whether other factors besides fasting could regulate gluconeogenesis in intestine. The results confirm the absence of regulation of gluconeogenesis in trout gut, which does not respond to hormones, glucose, lactate, or amino acid changes, either in vivo or in vitro. We also fully characterized gut glucose metabolism in vitro. We observed that a large amount of glucose is oxidized to lactate, supporting the importance of glucose in gut metabolism. Moreover, we corroborated the minor actions of insulin in trout gut, whereas other hormones such as glucagon-like peptide-1 and C-peptide appear to be major hormonal regulators of glucose metabolism in fish gut. Finally, we obtained the first evidence for the existence of a glucosensing mechanism in the midgut of this carnivorous species.
Collapse
Affiliation(s)
- Sergio Polakof
- Laboratorio de Fisioloxía Animal, Facultade de Bioloxía, Edificio de Ciencias Experimentais, Universidade de Vigo, Vigo, Spain.
| | | | | |
Collapse
|