1
|
Aguirre F, Tacchi F, Valero-Breton M, Orozco-Aguilar J, Conejeros-Lillo S, Bonicioli J, Iturriaga-Jofré R, Cabrera D, Soto JA, Castro-Sepúlveda M, Portal-Rodríguez M, Elorza ÁA, Matamoros A, Simon F, Cabello-Verrugio C. CCL5 Induces a Sarcopenic-like Phenotype via the CCR5 Receptor. Antioxidants (Basel) 2025; 14:84. [PMID: 39857418 PMCID: PMC11760477 DOI: 10.3390/antiox14010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Sarcopenia corresponds to a decrease in muscle mass and strength. CCL5 is a new myokine whose expression, along with the CCR5 receptor, is increased in sarcopenic muscle. Therefore, we evaluated whether CCL5 and CCR5 induce a sarcopenic-like effect on skeletal muscle tissue and cultured muscle cells. Electroporation in the tibialis anterior (TA) muscle of mice was used to overexpress CCL5. The TA muscles were analyzed by measuring the fiber diameter, the content of sarcomeric proteins, and the gene expression of E3-ligases. C2C12 myotubes and single-isolated flexor digitorum brevis (FDB) fibers were also treated with recombinant CCL5 (rCCL5). The participation of CCR5 was evaluated using the antagonist maraviroc (MVC). Protein and structural analyses were performed. The results showed that TA overexpression of CCL5 led to sarcopenia by reducing muscle strength and mass, muscle-fiber diameter, and sarcomeric protein content, and by upregulating E3-ligases. The same sarcopenic phenotype was observed in myotubes and FDB fibers. We showed increased reactive oxygen species (ROS) production and carbonylated proteins, denoting oxidative stress induced by CCL5. When the CCR5 was antagonized, the effects produced by rCCL5 were prevented. In conclusion, we report for the first time that CCL5 is a novel myokine that exerts a sarcopenic-like effect through the CCR5 receptor.
Collapse
Affiliation(s)
- Francisco Aguirre
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Franco Tacchi
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Mayalen Valero-Breton
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Josué Orozco-Aguilar
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Sabrina Conejeros-Lillo
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Josefa Bonicioli
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Renata Iturriaga-Jofré
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Daniel Cabrera
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago 7620001, Chile;
- Facultad de Ciencias de la Salud, Escuela de Kinesiología, Universidad Bernardo O Higgins, Santiago 8370993, Chile
| | - Jorge A. Soto
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
- Translational Immunology Laboratory, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
| | - Mauricio Castro-Sepúlveda
- Exercise Physiology and Metabolism Laboratory, School of Kinesiology, Faculty of Medicine, Finis Terrae University, Santiago 7501014, Chile;
| | - Marianny Portal-Rodríguez
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Álvaro A. Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile; (Á.A.E.); (A.M.)
| | - Andrea Matamoros
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile; (Á.A.E.); (A.M.)
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
- Laboratory of Integrative Physiopathology, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| |
Collapse
|
2
|
Zhou L, Liu Z, Zheng Z, Yao D, Zhao Y, Chen X, Zhang Y, Aweya JJ. The CCR1 and CCR5 C-C chemokine receptors in Penaeus vannamei are annexed by bacteria to attenuate shrimp survival. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104561. [PMID: 36183838 DOI: 10.1016/j.dci.2022.104561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/09/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The C-C chemokine receptors (CCRs) family is involved in diverse pathophysiological processes in mammals, such as immune regulation and cancer, but their functions in invertebrates remain enigmatic. Here, two CCR homologs in Penaeus vannamei (designated PvCCR1 and PvCCR5) were characterized and found to share sequence homology with other CCRs and contain the conserved 7TM functional domain. Both PvCCR1 and PvCCR5 were constitutively expressed in healthy shrimp tissues, while their mRNA transcript levels were induced in hepatopancreas and hemocytes by Vibrio parahaemolyticus, Streptococcus iniae, and white spot syndrome virus. Notably, shrimp survival increased after knockdown of PvCCR1 and PvCCR5 followed by V. parahaemolyticus infection, indicating that PvCCR1 and PvCCR5 are annexed by the bacteria for their benefit, the absence of which attenuates the effects of the pathogen on shrimp survival. The present data indicate that PvCCR1 and PvCCR5 play key roles in the antimicrobial immune response and therefore vital for shrimp survival.
Collapse
Affiliation(s)
- Liping Zhou
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Zhouyan Liu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Zhihong Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Yongzhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China
| | - Xiuli Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China
| | - Yueling Zhang
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Jude Juventus Aweya
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, 361021, Fujian, China; Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
| |
Collapse
|
3
|
Morales V, González A, Cabello-Verrugio C. Upregulation of CCL5/RANTES Gene Expression in the Diaphragm of Mice with Cholestatic Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:201-218. [PMID: 37093429 DOI: 10.1007/978-3-031-26163-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Chronic liver diseases are a group of pathologies affecting the liver with high prevalence worldwide. Among them, cholestatic chronic liver diseases (CCLD) are characterized by alterations in liver function and increased plasma bile acids. Secondary to liver disease, under cholestasis, is developed sarcopenia, a skeletal muscle dysfunction with decreased muscle mass, strength, and physical function. CCL5/RANTES is a chemokine involved in the immune and inflammatory response. Indeed, CCL5 is a myokine because it is produced by skeletal muscle. Several studies show that bile acids induce CCL5/RANTES expression in liver cells. However, it is unknown if the expression of CCL5/RANTES is changed in the skeletal muscle of mice with cholestatic liver disease. We used a murine model of cholestasis-induced sarcopenia by intake of hepatotoxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC diet), in which we detected the mRNA levels for ccl5. We determined that mice fed the DDC diet presented high levels of serum bile acids and developed typical features of sarcopenia. Under these conditions, we detected the ccl5 gene expression in diaphragm muscle showing elevated mRNA levels compared to mice fed with a standard diet (chow diet). Our results collectively suggest an increased ccl5 gene expression in the diaphragm muscle concomitantly with elevated serum bile acids and the development of sarcopenia.
Collapse
Affiliation(s)
- Vania Morales
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Andrea González
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile.
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
4
|
Brook B, Harbeson DJ, Shannon CP, Cai B, He D, Ben-Othman R, Francis F, Huang J, Varankovich N, Liu A, Bao W, Bjerregaard-Andersen M, Schaltz-Buchholzer F, Sanca L, Golding CN, Larsen KL, Levy O, Kampmann B, Tan R, Charles A, Wynn JL, Shann F, Aaby P, Benn CS, Tebbutt SJ, Kollmann TR, Amenyogbe N. BCG vaccination-induced emergency granulopoiesis provides rapid protection from neonatal sepsis. Sci Transl Med 2021; 12:12/542/eaax4517. [PMID: 32376769 DOI: 10.1126/scitranslmed.aax4517] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 03/13/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022]
Abstract
Death from sepsis in the neonatal period remains a serious threat for millions. Within 3 days of administration, bacille Calmette-Guérin (BCG) vaccination can reduce mortality from neonatal sepsis in human newborns, but the underlying mechanism for this rapid protection is unknown. We found that BCG was also protective in a mouse model of neonatal polymicrobial sepsis, where it induced granulocyte colony-stimulating factor (G-CSF) within hours of administration. This was necessary and sufficient to drive emergency granulopoiesis (EG), resulting in a marked increase in neutrophils. This increase in neutrophils was directly and quantitatively responsible for protection from sepsis. Rapid induction of EG after BCG administration also occurred in three independent cohorts of human neonates.
Collapse
Affiliation(s)
- Byron Brook
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada
| | - Danny J Harbeson
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada
| | - Casey P Shannon
- PROOF Centre of Excellence, British Columbia, 10th floor, 1190 Hornby Street, Vancouver, BC V6Z 2K5, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Bing Cai
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada
| | - Daniel He
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada.,PROOF Centre of Excellence, British Columbia, 10th floor, 1190 Hornby Street, Vancouver, BC V6Z 2K5, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Rym Ben-Othman
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada
| | - Freddy Francis
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada
| | - Joe Huang
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada
| | - Natallia Varankovich
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada
| | - Aaron Liu
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada
| | - Winnie Bao
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada
| | - Morten Bjerregaard-Andersen
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institut (SSI), Artillerivej 5, 2300 Copenhagen S, Denmark.,Department of Endocrinology, Odense University Hospital, Kløvervænget 6, 5000 Odense C, Denmark
| | - Frederik Schaltz-Buchholzer
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institut (SSI), Artillerivej 5, 2300 Copenhagen S, Denmark.,OPEN, Institute of Clinical Research and Danish Institute for Advanced Science, University of Southern Denmark, and Odense University Hospital, J.B. Winsløws Vej, 5000 Odense C, Denmark
| | - Lilica Sanca
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau
| | - Christian N Golding
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institut (SSI), Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Kristina Lindberg Larsen
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institut (SSI), Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Ofer Levy
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Beate Kampmann
- Vaccines and Immunity Theme, Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, P.O. Box 273, Banjul, The Gambia.,Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | | - Rusung Tan
- Department of Pathology, Sidra Medicine and Weill Cornell Medicine, Doha, Qatar
| | - Adrian Charles
- Department of Pathology, Sidra Medicine and Weill Cornell Medicine, Doha, Qatar
| | - James L Wynn
- Department of Paediatrics and Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, P.O. Box 100296, Gainesville, FL 32610-0296, USA
| | - Frank Shann
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Peter Aaby
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau
| | - Christine S Benn
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institut (SSI), Artillerivej 5, 2300 Copenhagen S, Denmark.,OPEN, Institute of Clinical Research and Danish Institute for Advanced Science, University of Southern Denmark, and Odense University Hospital, J.B. Winsløws Vej, 5000 Odense C, Denmark
| | - Scott J Tebbutt
- PROOF Centre of Excellence, British Columbia, 10th floor, 1190 Hornby Street, Vancouver, BC V6Z 2K5, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada.,Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Tobias R Kollmann
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada. .,Department of Pediatrics, University of British Columbia, and BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada.,Telethon Kids Institute, 100 Roberts Road, Subiaco, Western Australia 6008, Australia
| | - Nelly Amenyogbe
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada. .,Telethon Kids Institute, 100 Roberts Road, Subiaco, Western Australia 6008, Australia
| |
Collapse
|
5
|
Evans D, Shure D, Clark L, Criner GJ, Dres M, de Abreu MG, Laghi F, McDonagh D, Petrof B, Nelson T, Similowski T. Temporary transvenous diaphragm pacing vs. standard of care for weaning from mechanical ventilation: study protocol for a randomized trial. Trials 2019; 20:60. [PMID: 30654837 PMCID: PMC6337771 DOI: 10.1186/s13063-018-3171-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mechanical ventilation (MV) is a life-saving technology that restores or assists breathing. Like any treatment, MV has side effects. In some patients it can cause diaphragmatic atrophy, injury, and dysfunction (ventilator-induced diaphragmatic dysfunction, VIDD). Accumulating evidence suggests that VIDD makes weaning from MV difficult, which involves increased morbidity and mortality. METHODS AND ANALYSIS This paper describes the protocol of a randomized, controlled, open-label, multicenter trial that is designed to investigate the safety and effectiveness of a novel therapy, temporary transvenous diaphragm pacing (TTVDP), to improve weaning from MV in up to 88 mechanically ventilated adult patients who have failed at least two spontaneous breathing trials over at least 7 days. Patients will be randomized (1:1) to TTVDP (treatment) or standard of care (control) groups. The primary efficacy endpoint is time to successful extubation with no reintubation within 48 h. Secondary endpoints include maximal inspiratory pressure and ultrasound-measured changes in diaphragm thickness and diaphragm thickening fraction over time. In addition, observational data will be collected and analyzed, including 30-day mortality and time to discharge from the intensive care unit and from the hospital. The hypothesis to be tested postulates that more TTVDP patients than control patients will be successfully weaned from MV within the 30 days following randomization. DISCUSSION This study is the first large-scale clinical trial of a novel technology (TTVDP) aimed at accelerating difficult weaning from MV. The technology tested provides the first therapy directed specifically at VIDD, an important cause of delayed weaning from MV. Its results will help delineate the place of this therapeutic approach in clinical practice and help design future studies aimed at defining the indications and benefits of TTVDP. TRIAL REGISTRATION ClinicalTrials.gov, NCT03096639 . Registered on 30 March 2017.
Collapse
Affiliation(s)
- Douglas Evans
- Lungpacer Medical Incorporated, Burnaby, BC, Canada.,Lungpacer Medical, 260 Sierra Drive, Exton, PA, 19335, USA
| | | | - Linda Clark
- Lungpacer Medical Incorporated, Burnaby, BC, Canada
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Martin Dres
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique and AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service de Pneumologie et Réanimation Médicale du Département R3S, Paris, France
| | - Marcelo Gama de Abreu
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Franco Laghi
- Division of Pulmonary and Critical Care Medicine, Hines Veterans Affairs Hospital Hines, Loyola University, Maywood, IL, USA
| | - David McDonagh
- Departments of Anesthesiology and Pain Management, Neurological surgery, Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Basil Petrof
- Meakins-Christie Laboratories, and Translational Research in Respiratory Diseases Program, McGill University Health Centre and Research Institute, Montreal, QC, Canada
| | | | - Thomas Similowski
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique and AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service de Pneumologie et Réanimation Médicale du Département R3S, Paris, France.
| |
Collapse
|
6
|
Zhang HX, Du JM, Ding ZN, Zhu XY, Jiang L, Liu YJ. Hydrogen sulfide prevents diaphragm weakness in cecal ligation puncture-induced sepsis by preservation of mitochondrial function. Am J Transl Res 2017; 9:3270-3281. [PMID: 28804545 PMCID: PMC5553877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/17/2017] [Indexed: 06/07/2023]
Abstract
Mitochondrial dysfunction plays an important role in the pathogenesis of diaphragm weakness during sepsis. Recently, hydrogen sulfide (H2S), a gaseous transmitter endogenously generated by cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST), is found to improve mitochondrial function. The present study aimed to examine whether H2S synthases are expressed in the diaphragm, and investigated the effect of H2S donor in sepsis-induced diaphragm weakness and its relationship with mitochondrial function. Immunohistochemical staining of the rat diaphragm revealed that positive immunoreactivity for CBS, CSE as well as 3-MST was predominately localized to muscle cells. Using a cecal ligation and puncture (CLP)-induced sepsis model, it was found that CBS and CSE, but not 3-MST, was significantly down-regulated in the diaphragm at 24 h post-CLP compared with sham group. To determine the effect of H2S on sepsis-induced diaphragm weakness, H2S donor NaHS was intraperitoneally administered 30 min after CLP operation. NaHS at a dose of 50 μmol/kg significantly decreased the mortality in septic rats. CLP markedly reduced diaphragm-specific force generation (force/cross-sectional area and maximal titanic force), which was improved by NaHS treatment. In addition, CLP caused mitochondrial damage in the diaphragm tissues as evidenced by increased mitochondrial superoxide production, decreased mitochondrial membrane potential and ATP production, as well as mitochondrial ultrastructural abnormalities, which was also attenuated by NaHS treatment. These findings indicate that H2S donor may prevent sepsis-induced diaphragm weakness by preservation of mitochondrial function, suggesting that modulation of H2S levels may be considered as a potential therapeutic approach for diaphragm dysfunction during sepsis.
Collapse
Affiliation(s)
- Hai-Xia Zhang
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of SportShanghai 200438, China
- Department of Anesthesiology, Xinhua Hospital Chongming Branch, School of Medicine, Shanghai Jiaotong UniversityShanghai 202150, China
- Department of Anesthesiology, Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine, Shanghai Jiaotong UniversityShanghai 200092, China
| | - Jun-Ming Du
- Department of Anesthesiology, Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine, Shanghai Jiaotong UniversityShanghai 200092, China
| | - Zhong-Nuo Ding
- Department of Anesthesiology, Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine, Shanghai Jiaotong UniversityShanghai 200092, China
| | - Xiao-Yan Zhu
- Department of Physiology, Second Military Medical UniversityShanghai 200433, China
| | - Lai Jiang
- Department of Anesthesiology, Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine, Shanghai Jiaotong UniversityShanghai 200092, China
| | - Yu-Jian Liu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of SportShanghai 200438, China
| |
Collapse
|
7
|
Muscle-Specific Inhibition of the Classical Nuclear Factor-κB Pathway Is Protective Against Diaphragmatic Weakness in Murine Endotoxemia. Crit Care Med 2014; 42:e501-9. [DOI: 10.1097/ccm.0000000000000407] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Griffin CA, Apponi LH, Long KK, Pavlath GK. Chemokine expression and control of muscle cell migration during myogenesis. J Cell Sci 2010; 123:3052-60. [PMID: 20736301 DOI: 10.1242/jcs.066241] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adult regenerative myogenesis is vital for restoring normal tissue structure after muscle injury. Muscle regeneration is dependent on progenitor satellite cells, which proliferate in response to injury, and their progeny differentiate and undergo cell-cell fusion to form regenerating myofibers. Myogenic progenitor cells must be precisely regulated and positioned for proper cell fusion to occur. Chemokines are secreted proteins that share both leukocyte chemoattractant and cytokine-like behavior and affect the physiology of a number of cell types. We investigated the steady-state mRNA levels of 84 chemokines, chemokine receptors and signaling molecules, to obtain a comprehensive view of chemokine expression by muscle cells during myogenesis in vitro. A large number of chemokines and chemokine receptors were expressed by primary mouse muscle cells, especially during times of extensive cell-cell fusion. Furthermore, muscle cells exhibited different migratory behavior throughout myogenesis in vitro. One receptor-ligand pair, CXCR4-SDF-1alpha (CXCL12), regulated migration of both proliferating and terminally differentiated muscle cells, and was necessary for proper fusion of muscle cells. Given the large number of chemokines and chemokine receptors directly expressed by muscle cells, these proteins might have a greater role in myogenesis than previously appreciated.
Collapse
Affiliation(s)
- Christine A Griffin
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|