1
|
Ogata FT, Verma S, Coulson-Thomas VJ, Gesteira TF. TGF-β-Based Therapies for Treating Ocular Surface Disorders. Cells 2024; 13:1105. [PMID: 38994958 PMCID: PMC11240592 DOI: 10.3390/cells13131105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
The cornea is continuously exposed to injuries, ranging from minor scratches to deep traumas. An effective healing mechanism is crucial for the cornea to restore its structure and function following major and minor insults. Transforming Growth Factor-Beta (TGF-β), a versatile signaling molecule that coordinates various cell responses, has a central role in corneal wound healing. Upon corneal injury, TGF-β is rapidly released into the extracellular environment, triggering cell migration and proliferation, the differentiation of keratocytes into myofibroblasts, and the initiation of the repair process. TGF-β-mediated processes are essential for wound closure; however, excessive levels of TGF-β can lead to fibrosis and scarring, causing impaired vision. Three primary isoforms of TGF-β exist-TGF-β1, TGF-β2, and TGF-β3. Although TGF-β isoforms share many structural and functional similarities, they present distinct roles in corneal regeneration, which adds an additional layer of complexity to understand the role of TGF-β in corneal wound healing. Further, aberrant TGF-β activity has been linked to various corneal pathologies, such as scarring and Peter's Anomaly. Thus, understanding the molecular and cellular mechanisms by which TGF-β1-3 regulate corneal wound healing will enable the development of potential therapeutic interventions targeting the key molecule in this process. Herein, we summarize the multifaceted roles of TGF-β in corneal wound healing, dissecting its mechanisms of action and interactions with other molecules, and outline its role in corneal pathogenesis.
Collapse
Affiliation(s)
- Fernando T. Ogata
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA; (F.T.O.); (S.V.); (V.J.C.-T.)
| | - Sudhir Verma
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA; (F.T.O.); (S.V.); (V.J.C.-T.)
- Deen Dayal Upadhyaya College, University of Delhi, Delhi 110078, India
| | - Vivien J. Coulson-Thomas
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA; (F.T.O.); (S.V.); (V.J.C.-T.)
| | - Tarsis F. Gesteira
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA; (F.T.O.); (S.V.); (V.J.C.-T.)
| |
Collapse
|
2
|
Role of Anti-Angiogenic Factors in the Pathogenesis of Breast Cancer: A Review of Therapeutic Potential. Pathol Res Pract 2022; 236:153956. [DOI: 10.1016/j.prp.2022.153956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/06/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022]
|
3
|
Bal Z, Kushioka J, Kodama J, Kaito T, Yoshikawa H, Korkusuz P, Korkusuz F. BMP and TGFβ use and release in bone regeneration. Turk J Med Sci 2020; 50:1707-1722. [PMID: 32336073 PMCID: PMC7672355 DOI: 10.3906/sag-2003-127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
A fracture that does not unite in nine months is defined as nonunion. Nonunion is common in fragmented fractures and large bone defects where vascularization is impaired. The distal third of the tibia, the scaphoid bone or the talus fractures are furthermore prone to nonunion. Open fractures and spinal fusion cases also need special monitoring for healing. Bone tissue regeneration can be attained by autografts, allografts, xenografts and synthetic materials, however their limited availability and the increased surgical time as well as the donor site morbidity of autograft use, and lower probability of success, increased costs and disease transmission and immunological reaction probability of allografts oblige us to find better solutions and new grafts to overcome the cons. A proper biomaterial for regeneration should be osteoinductive, osteoconductive, biocompatible and mechanically suitable. Cytokine therapy, where growth factors are introduced either exogenously or triggered endogenously, is one of the commonly used method in bone tissue engineering. Transforming growth factor β (TGFβ) superfamily, which can be divided structurally into two groups as bone morphogenetic proteins (BMPs), growth differentiation factors (GDFs) and TGFβ, activin, Nodal branch, Mullerian hormone, are known to be produced by osteoblasts and other bone cells and present already in bone matrix abundantly, to take roles in bone homeostasis. BMP family, as the biggest subfamily of TGFβ superfamily, is also reported to be the most effective growth factors in bone and development, which makes them one of the most popular cytokines used in bone regeneration. Complications depending on the excess use of growth factors, and pleiotropic functions of BMPs are however the main reasons of why they should be approached with care. In this review, the Smad dependent signaling pathways of TGFβ and BMP families and their relations and the applications in preclinical and clinical studies will be briefly summarized.
Collapse
Affiliation(s)
- Zeynep Bal
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Junichi Kushioka
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Joe Kodama
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Petek Korkusuz
- Department of Histology and Embryology, Medical Faculty, Hacettepe University, Ankara, Turkey
| | - Feza Korkusuz
- Department of Sports Medicine, Medical Faculty, Hacettepe University, Ankara, Turkey
| |
Collapse
|
4
|
Volatier TLA, Figueiredo FC, Connon CJ. Keratoconus at a Molecular Level: A Review. Anat Rec (Hoboken) 2019; 303:1680-1688. [DOI: 10.1002/ar.24090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/19/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Che J. Connon
- Institute of Genetic MedicineNewcastle University Newcastle upon Tyne UK
| |
Collapse
|
5
|
Le BT, Raguraman P, Kosbar TR, Fletcher S, Wilton SD, Veedu RN. Antisense Oligonucleotides Targeting Angiogenic Factors as Potential Cancer Therapeutics. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 14:142-157. [PMID: 30594893 PMCID: PMC6307321 DOI: 10.1016/j.omtn.2018.11.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
Abstract
Cancer is one of the leading causes of death worldwide, and conventional cancer therapies such as surgery, chemotherapy, and radiotherapy do not address the underlying molecular pathologies, leading to inadequate treatment and tumor recurrence. Angiogenic factors, such as EGF, PDGF, bFGF, TGF-β, TGF-α, VEGF, endoglin, and angiopoietins, play important roles in regulating tumor development and metastasis, and they serve as potential targets for developing cancer therapeutics. Nucleic acid-based therapeutic strategies have received significant attention in the last two decades, and antisense oligonucleotide-mediated intervention is a prominent therapeutic approach for targeted manipulation of gene expression. Clinical benefits of antisense oligonucleotides have been recognized by the U.S. Food and Drug Administration, with full or conditional approval of Vitravene, Kynamro, Exondys51, and Spinraza. Herein we review the scope of antisense oligonucleotides that target angiogenic factors toward tackling solid cancers.
Collapse
Affiliation(s)
- Bao T Le
- Centre for Comparative Genomics, Murdoch University, Murdoch, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Prithi Raguraman
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Tamer R Kosbar
- Centre for Comparative Genomics, Murdoch University, Murdoch, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Susan Fletcher
- Centre for Comparative Genomics, Murdoch University, Murdoch, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Steve D Wilton
- Centre for Comparative Genomics, Murdoch University, Murdoch, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Rakesh N Veedu
- Centre for Comparative Genomics, Murdoch University, Murdoch, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia.
| |
Collapse
|
6
|
Behrmann L, Wellbrock J, Fiedler W. Acute Myeloid Leukemia and the Bone Marrow Niche-Take a Closer Look. Front Oncol 2018; 8:444. [PMID: 30370251 PMCID: PMC6195156 DOI: 10.3389/fonc.2018.00444] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
The bone marrow is the home of hematopoiesis and is therefore a hotspot for the development of hematopoietic diseases. Complex interactions between the bone marrow microenvironment and hematopoietic stem cells must find a balance between proliferation, differentiation and homeostasis of the stem cell compartment. Changes in this tightly regulated network can provoke malignant transformation, leading to hematopoietic diseases. Here we focus on acute myeloid leukemia (AML), since this is the most frequent acute leukemia in adulthood with very poor overall survival rates and where relapse after chemotherapy continues to be a major challenge, driving demand for new therapeutic strategies. Current research is focusing on the identification of specific interactions between leukemic blasts and their niche components, which may be exploited as novel treatment targets along with induction chemotherapy. Significant progress has been gained over the last few years in the field of high-resolution imaging. Confocal ex vivo and intravital microscopy have revealed a detailed map of bone marrow structures and components; as well as identifying numerous alterations in the stem cell niche that correspond to disease progression. However, the underlying mechanisms are still not completely understood and due to the complexity, their elucidation remains a challenging. This review discusses the constitution of the AML niche in the bone marrow, the improvement in visualization of the complex three-dimensional niche structures and points out new therapeutic strategies to increase the overall survival of AML patients.
Collapse
Affiliation(s)
- Lena Behrmann
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Wilson RB. Hypoxia, cytokines and stromal recruitment: parallels between pathophysiology of encapsulating peritoneal sclerosis, endometriosis and peritoneal metastasis. Pleura Peritoneum 2018; 3:20180103. [PMID: 30911653 PMCID: PMC6405013 DOI: 10.1515/pp-2018-0103] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/01/2018] [Indexed: 02/06/2023] Open
Abstract
Peritoneal response to various kinds of injury involves loss of peritoneal mesothelial cells (PMC), danger signalling, epithelial-mesenchymal transition and mesothelial-mesenchymal transition (MMT). Encapsulating peritoneal sclerosis (EPS), endometriosis (EM) and peritoneal metastasis (PM) are all characterized by hypoxia and formation of a vascularized connective tissue stroma mediated by vascular endothelial growth factor (VEGF). Transforming growth factor-β1 (TGF-β1) is constitutively expressed by the PMC and plays a major role in the maintenance of a transformed, inflammatory micro-environment in PM, but also in EPS and EM. Persistently high levels of TGF-β1 or stimulation by inflammatory cytokines (interleukin-6 (IL-6)) induce peritoneal MMT, adhesion formation and fibrosis. TGF-β1 enhances hypoxia inducible factor-1α expression, which drives cell growth, extracellular matrix production and cell migration. Disruption of the peritoneal glycocalyx and exposure of the basement membrane release low molecular weight hyaluronan, which initiates a cascade of pro-inflammatory mediators, including peritoneal cytokines (TNF-α, IL-1, IL-6, prostaglandins), growth factors (TGF-α, TGF-β, platelet-derived growth factor, VEGF, epidermal growth factor) and the fibrin/coagulation cascade (thrombin, Tissue factor, plasminogen activator inhibitor [PAI]-1/2). Chronic inflammation and cellular transformation are mediated by damage-associated molecular patterns, pattern recognition receptors, AGE-RAGE, extracellular lactate, pro-inflammatory cytokines, reactive oxygen species, increased glycolysis, metabolomic reprogramming and cancer-associated fibroblasts. The pathogenesis of EPS, EM and PM shows similarities to the cellular transformation and stromal recruitment of wound healing.
Collapse
Affiliation(s)
- Robert Beaumont Wilson
- Upper GI Surgery Department, Liverpool Hospital, Elizabeth St, Liverpool, 2170, NSW, Australia
| |
Collapse
|
8
|
Engineering TGF-β superfamily ligands for clinical applications. Trends Pharmacol Sci 2014; 35:648-57. [PMID: 25458539 DOI: 10.1016/j.tips.2014.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 12/11/2022]
Abstract
TGF-β superfamily ligands govern normal tissue development and homeostasis, and their dysfunction is a hallmark of many diseases. These ligands are also well defined both structurally and functionally. This review focuses on TGF-β superfamily ligand engineering for therapeutic purposes, in particular for regenerative medicine and musculoskeletal disorders. We describe the key discovery that structure-guided mutation of receptor-binding epitopes, especially swapping of these epitopes between ligands, results in new ligands with unique functional properties that can be harnessed clinically. Given the promising results with prototypical engineered TGF-β superfamily ligands, and the vast number of such molecules that remain to be produced and tested, this strategy is likely to hold great promise for the development of new biologics.
Collapse
|
9
|
Wellbrock J, Sheikhzadeh S, Oliveira-Ferrer L, Stamm H, Hillebrand M, Keyser B, Klokow M, Vohwinkel G, Bonk V, Otto B, Streichert T, Balabanov S, Hagel C, Rybczynski M, Bentzien F, Bokemeyer C, von Kodolitsch Y, Fiedler W. Overexpression of Gremlin-1 in patients with Loeys-Dietz syndrome: implications on pathophysiology and early disease detection. PLoS One 2014; 9:e104742. [PMID: 25116393 PMCID: PMC4130545 DOI: 10.1371/journal.pone.0104742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 07/14/2014] [Indexed: 11/23/2022] Open
Abstract
Backgrounds The Loeys-Dietz syndrome (LDS) is an inherited connective tissue disorder caused by mutations in the transforming growth factor β (TGF-β) receptors TGFBR1 or TGFBR2. Most patients with LDS develop severe aortic aneurysms resulting in early need of surgical intervention. In order to gain further insight into the pathophysiology of the disorder, we investigated circulating outgrowth endothelial cells (OEC) from the peripheral blood of LDS patients from a cohort of 23 patients including 6 patients with novel TGF-β receptor mutations. Methods and Results We performed gene expression profiling of OECs using microarray analysis followed by quantitative PCR for verification of gene expression. Compared to OECs of age- and sex-matched healthy controls, OECs isolated from three LDS patients displayed altered expression of several genes belonging to the TGF-β pathway, especially those affecting bone morphogenic protein (BMP) signalling including BMP2, BMP4 and BMPR1A. Gene expression of BMP antagonist Gremlin-1 (GREM1) showed the most prominent up-regulation. This increase was confirmed at the protein level by immunoblotting of LDS-OECs. In immunohistochemistry, abundant Gremlin-1 protein expression could be verified in endothelial cells as well as smooth muscle cells within the arterial media. Furthermore, Gremlin-1 plasma levels of LDS patients were significantly elevated compared to healthy control subjects. Conclusions These findings open new avenues in the understanding of the pathogenesis of Loeys-Dietz syndrome and the development of new diagnostic serological methods for early disease detection.
Collapse
Affiliation(s)
- Jasmin Wellbrock
- Hubertus Wald University Cancer Centre, Department of Oncology, Hematology and Bone Marrow Transplantation with section Pneumology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| | - Sara Sheikhzadeh
- Center of Cardiology and Cardiovascular Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Leticia Oliveira-Ferrer
- Hubertus Wald University Cancer Centre, Department of Oncology, Hematology and Bone Marrow Transplantation with section Pneumology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Hauke Stamm
- Hubertus Wald University Cancer Centre, Department of Oncology, Hematology and Bone Marrow Transplantation with section Pneumology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Mathias Hillebrand
- Center of Cardiology and Cardiovascular Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Britta Keyser
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Marianne Klokow
- Hubertus Wald University Cancer Centre, Department of Oncology, Hematology and Bone Marrow Transplantation with section Pneumology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Gabi Vohwinkel
- Hubertus Wald University Cancer Centre, Department of Oncology, Hematology and Bone Marrow Transplantation with section Pneumology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Veronika Bonk
- Hubertus Wald University Cancer Centre, Department of Oncology, Hematology and Bone Marrow Transplantation with section Pneumology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Otto
- Department of Clinical Chemistry/Central Laboratories, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Streichert
- Department of Clinical Chemistry/Central Laboratories, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Balabanov
- Hubertus Wald University Cancer Centre, Department of Oncology, Hematology and Bone Marrow Transplantation with section Pneumology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Christian Hagel
- Institute for Neuropathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Meike Rybczynski
- Center of Cardiology and Cardiovascular Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Bentzien
- Department of Transfusion Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Hubertus Wald University Cancer Centre, Department of Oncology, Hematology and Bone Marrow Transplantation with section Pneumology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Yskert von Kodolitsch
- Center of Cardiology and Cardiovascular Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Walter Fiedler
- Hubertus Wald University Cancer Centre, Department of Oncology, Hematology and Bone Marrow Transplantation with section Pneumology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Krstic J, Santibanez JF. Transforming growth factor-beta and matrix metalloproteinases: functional interactions in tumor stroma-infiltrating myeloid cells. ScientificWorldJournal 2014; 2014:521754. [PMID: 24578639 PMCID: PMC3918721 DOI: 10.1155/2014/521754] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/28/2013] [Indexed: 01/05/2023] Open
Abstract
Transforming growth factor-beta (TGF-β) is a pleiotropic factor with several different roles in health and disease. In tumorigenesis, it may act as a protumorigenic factor and have a profound impact on the regulation of the immune system response. Matrix metalloproteinases (MMPs) are a family that comprises more than 25 members, which have recently been proposed as important regulators acting in tumor stroma by regulating the response of noncellular and cellular microenvironment. Tumor stroma consists of several types of resident cells and infiltrating cells derived from bone marrow, which together play crucial roles in the promotion of tumor growth and metastasis. In cancer cells, TGF-β regulates MMPs expression, while MMPs, produced by either cancer cells or residents' stroma cells, activate latent TGF-β in the extracellular matrix, together facilitating the enhancement of tumor progression. In this review we will focus on the compartment of myeloid stroma cells, such as tumor-associated macrophages, neutrophils, and dendritic and mast cells, which are potently regulated by TGF-β and produce large amounts of MMPs. Their interplay and mutual implications in the generation of pro-tumorigenic cancer microenvironment will be analyzed.
Collapse
Affiliation(s)
- Jelena Krstic
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Dr Subotića 4, 11129 Belgrade, Serbia
| | - Juan F. Santibanez
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Dr Subotića 4, 11129 Belgrade, Serbia
| |
Collapse
|
11
|
Patschan D, Hildebrandt A, Rinneburger J, Wessels JT, Patschan S, Becker JU, Henze E, Krüger A, Müller GA. The hormone melatonin stimulates renoprotective effects of "early outgrowth" endothelial progenitor cells in acute ischemic kidney injury. Am J Physiol Renal Physiol 2012; 302:F1305-12. [PMID: 22357919 DOI: 10.1152/ajprenal.00445.2011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Endothelial progenitor cells (EPCs) protect the kidney from acute ischemic injury. The aim of this study was to analyze whether pretreatment of murine "early outgrowth" EPCs (eEPCs) with the hormone melatonin increases the cells' renoprotective effects in the setting of murine acute ischemic renal failure. Male (8-12 wk old) C57Bl/6N mice were subjected to unilateral ischemia-reperfusion injury postuninephrectomy (40 min). Postischemic animals were injected with either 0.5×10(6) untreated syngeneic murine eEPCs or with cells, pretreated with melatonin for 1 h. Injections were performed shortly after reperfusion of the kidney. While animals injected with untreated cells developed acute renal failure, eEPC pretreatment with melatonin dramatically improved renoprotective actions of the cells. These effects were completely reversed after cell pretreatment with melatonin and the MT-1/-2 antagonist luzindole. In vitro analysis revealed that melatonin reduced the amount of tumor growth factor-β-induced eEPC apoptosis/necrosis. Secretion of vascular endothelial growth factor by the cells was markedly stimulated by the hormone. In addition, migratory activity of eEPCs was enhanced by melatonin and supernatant from melatonin-treated eEPCs stimulated migration of cultured mature endothelial cells. In summary, melatonin was identified as a new agonist of eEPCs in acute ischemic kidney injury.
Collapse
Affiliation(s)
- D Patschan
- Abteilung für Nephrologie und Rheumatologie, Universitätsklinikum Göttingen, Robert-Koch-Strasse 40, 37077 Göttingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
TGF-β/TGF-β receptor system and its role in physiological and pathological conditions. Clin Sci (Lond) 2011; 121:233-51. [PMID: 21615335 DOI: 10.1042/cs20110086] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The TGF-β (transforming growth factor-β) system signals via protein kinase receptors and Smad mediators to regulate a plethora of biological processes, including morphogenesis, embryonic development, adult stem cell differentiation, immune regulation, wound healing and inflammation. In addition, alterations of specific components of the TGF-β signalling pathway may contribute to a broad range of pathologies such as cancer, cardiovascular pathology, fibrosis and congenital diseases. The knowledge about the mechanisms involved in TGF-β signal transduction has allowed a better understanding of the disease pathogenicity as well as the identification of several molecular targets with great potential in therapeutic interventions.
Collapse
|
13
|
Otten J, Schmitz L, Vettorazzi E, Schultze A, Marx AH, Simon R, Krauter J, Loges S, Sauter G, Bokemeyer C, Fiedler W. Expression of TGF-β receptor ALK-5 has a negative impact on outcome of patients with acute myeloid leukemia. Leukemia 2010; 25:375-9. [PMID: 21304536 DOI: 10.1038/leu.2010.273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|