1
|
Vairaktari E, Schramm A, Vairaktari G, Derka S, Wilde F, Sakkas A, Yapijakis C, Kouri M, Balakas A, Lazaris A, Ebeling M, Vassiliou S. AKT and PERP Show Higher Expression in Precancerous than in Malignant Skin Neoplasms: Profiling in an Animal Model of Sequential Skin Carcinogenesis. J Pers Med 2024; 14:790. [PMID: 39201982 PMCID: PMC11355399 DOI: 10.3390/jpm14080790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
The primary aim of this study was to evaluate the activation of the PERP and Akt oncogenes in the induction of skin cancer in FVB/N mice by a stepwise chemical process. Forty four-week-old female FVB/N mice were randomly divided into a control group (n = 8) and two experimental groups (group A: n = 16, group B: n = 16). In the study, the groups were subjected to a two-stage carcinogenesis procedure. This consisted of an initial application of 97.4 nmol DMBA to shaved skin on the back, followed by applications of 32.4 nmol TPA after thirteen weeks for group A and after twenty weeks for group B. The control group received no treatment. Skin conditions were monitored weekly for tumor development. At the end of the experiment, the animals were euthanized for further tissue sampling. Examination of the skin lesions in the experimental groups showed a correlation with tumor progression, ranging from dysplasia to carcinoma. Tumor samples were examined both histologically and immunohistochemically. Notably, and PERP expression was higher in precancerous than in malignant tumors. The differences in expression between precancerous and benign tumors provide further evidence of a role for PERP and Akt in the transition from benign to malignant states. Our findings underscore the critical roles of PERP and Akt in the pathogenesis of skin cancer and suggest their potential as biomarkers for early detection and targets for therapeutic intervention.
Collapse
Affiliation(s)
- Efstathia Vairaktari
- Department of Oral and Maxillofacial Surgery, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Alexander Schramm
- Department of Oral and Maxillofacial Surgery, University Hospital Ulm, Albert-Einstein-Allee 10, 89081 Ulm, Germany
- Department of Oral and Plastic Maxillofacial Surgery, Military Hospital Ulm, Academic Hospital of the University of Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Georgia Vairaktari
- Department of Oral and Maxillofacial Surgery, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Spyridoula Derka
- Department of Oral and Maxillofacial Surgery, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Frank Wilde
- Department of Oral and Maxillofacial Surgery, University Hospital Ulm, Albert-Einstein-Allee 10, 89081 Ulm, Germany
- Department of Oral and Plastic Maxillofacial Surgery, Military Hospital Ulm, Academic Hospital of the University of Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Andreas Sakkas
- Department of Oral and Maxillofacial Surgery, University Hospital Ulm, Albert-Einstein-Allee 10, 89081 Ulm, Germany
- Department of Oral and Plastic Maxillofacial Surgery, Military Hospital Ulm, Academic Hospital of the University of Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Christos Yapijakis
- Unit of Orofacial Genetics, University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Kouri
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios Balakas
- Department of Oral and Maxillofacial Surgery, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Andreas Lazaris
- Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Marcel Ebeling
- Department of Oral and Maxillofacial Surgery, University Hospital Ulm, Albert-Einstein-Allee 10, 89081 Ulm, Germany
- Department of Oral and Plastic Maxillofacial Surgery, Military Hospital Ulm, Academic Hospital of the University of Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Stavros Vassiliou
- Department of Oral and Maxillofacial Surgery, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
2
|
Vu R, Dragan M, Sun P, Werner S, Dai X. Epithelial-Mesenchymal Plasticity and Endothelial-Mesenchymal Transition in Cutaneous Wound Healing. Cold Spring Harb Perspect Biol 2023; 15:a041237. [PMID: 36617638 PMCID: PMC10411868 DOI: 10.1101/cshperspect.a041237] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epithelial and endothelial cells possess the inherent plasticity to undergo morphological, cellular, and molecular changes leading to their resemblance of mesenchymal cells. A prevailing notion has been that cutaneous wound reepithelialization involves partial epithelial-to-mesenchymal transition (EMT) of wound-edge epidermal cells to enable their transition from a stationary state to a migratory state. In this review, we reflect on past findings that led to this notion and discuss recent studies that suggest a refined view, focusing predominantly on in vivo results using mammalian excisional wound models. We highlight the concept of epithelial-mesenchymal plasticity (EMP), which emphasizes a reversible conversion of epithelial cells across multiple intermediate states within the epithelial-mesenchymal spectrum, and discuss the critical importance of restricting EMT for effective wound reepithelialization. We also outline the current state of knowledge on EMP in pathological wound healing, and on endothelial-to-mesenchymal transition (EndMT), a process similar to EMT, as a possible mechanism contributing to wound fibrosis and scar formation. Harnessing epithelial/endothelial-mesenchymal plasticity may unravel opportunities for developing new therapeutics to treat human wound healing pathologies.
Collapse
Affiliation(s)
- Remy Vu
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California 92697-1700, USA
| | - Morgan Dragan
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California 92697-1700, USA
| | - Peng Sun
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, 8093 ETH Zurich, Switzerland
| | - Xing Dai
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California 92697-1700, USA
| |
Collapse
|
3
|
Zhou X, Ding S, Wang D, Chen L, Feng K, Huang T, Li Z, Cai Y. Identification of Cell Markers and Their Expression Patterns in Skin Based on Single-Cell RNA-Sequencing Profiles. Life (Basel) 2022; 12:life12040550. [PMID: 35455041 PMCID: PMC9025372 DOI: 10.3390/life12040550] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/27/2022] [Accepted: 04/04/2022] [Indexed: 12/19/2022] Open
Abstract
Atopic dermatitis and psoriasis are members of a family of inflammatory skin disorders. Cellular immune responses in skin tissues contribute to the development of these diseases. However, their underlying immune mechanisms remain to be fully elucidated. We developed a computational pipeline for analyzing the single-cell RNA-sequencing profiles of the Human Cell Atlas skin dataset to investigate the pathological mechanisms of skin diseases. First, we applied the maximum relevance criterion and the Boruta feature selection method to exclude irrelevant gene features from the single-cell gene expression profiles of inflammatory skin disease samples and healthy controls. The retained gene features were ranked by using the Monte Carlo feature selection method on the basis of their importance, and a feature list was compiled. This list was then introduced into the incremental feature selection method that combined the decision tree and random forest algorithms to extract important cell markers and thus build excellent classifiers and decision rules. These cell markers and their expression patterns have been analyzed and validated in recent studies and are potential therapeutic and diagnostic targets for skin diseases because their expression affects the pathogenesis of inflammatory skin diseases.
Collapse
Affiliation(s)
- Xianchao Zhou
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (X.Z.); (S.D.)
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shijian Ding
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (X.Z.); (S.D.)
| | - Deling Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Imaging, Sun Yat-sen University Cancer Center, Guangzhou 510060, China;
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China;
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou 510507, China;
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Correspondence: (T.H.); (Z.L.); (Y.C.); Tel.: +86-21-54923269 (T.H.); +86-21-66136132 (Y.C.)
| | - Zhandong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun 130052, China
- Correspondence: (T.H.); (Z.L.); (Y.C.); Tel.: +86-21-54923269 (T.H.); +86-21-66136132 (Y.C.)
| | - Yudong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (X.Z.); (S.D.)
- Correspondence: (T.H.); (Z.L.); (Y.C.); Tel.: +86-21-54923269 (T.H.); +86-21-66136132 (Y.C.)
| |
Collapse
|
4
|
Roberts O, Paraoan L. PERP-ing into diverse mechanisms of cancer pathogenesis: Regulation and role of the p53/p63 effector PERP. Biochim Biophys Acta Rev Cancer 2020; 1874:188393. [PMID: 32679166 DOI: 10.1016/j.bbcan.2020.188393] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 12/20/2022]
Abstract
The tetraspan plasma membrane protein PERP (p53 apoptosis effector related to PMP22) is a lesser-known transcriptional target of p53 and p63. A member of the PMP22/GAS3/EMP membrane protein family, PERP was originally identified as a p53 target specifically trans-activated during apoptosis, but not during cell-cycle arrest. Several studies have since shown downregulation of PERP expression in numerous cancers, suggesting that PERP is a tumour suppressor protein. This review focusses on the important advances made in elucidating the mechanisms regulating PERP expression and its function as a tumour suppressor in diverse human cancers, including breast cancer and squamous cell carcinoma. Investigating PERP's role in clinically-aggressive uveal melanoma has revealed that PERP engages a positive-feedback loop with p53 to regulate its own expression, and that p63 is required beside p53 to achieve pro-apoptotic levels of PERP in this cancer. Furthermore, the recent discovery of the apoptosis-mediating interaction of PERP with SERCA2b at the plasma membrane-endoplasmic reticulum interface demonstrates a novel mechanism of PERP stabilisation, and how PERP can mediate Ca2+ signalling to facilitate apoptosis. The multi-faceted role of PERP in cancer, involving well-documented functions in mediating apoptosis and cell-cell adhesion is discussed, alongside PERP's emerging roles in epithelial-mesenchymal transition, and PERP crosstalk with inflammation signalling pathways, and other signalling pathways. The potential for restoring PERP expression as a means of cancer therapy is also considered.
Collapse
Affiliation(s)
- Owain Roberts
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Luminita Paraoan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
5
|
Rehorek SJ, Stimmelmayr R, George JC, Suydam R, McBurney DL, Thewissen JGM. The role of desmosomes in the ear plug formation in the bowhead whale (Balaena mysticetus). Anat Rec (Hoboken) 2019; 303:3035-3043. [PMID: 31854140 DOI: 10.1002/ar.24338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/18/2019] [Accepted: 10/27/2019] [Indexed: 12/12/2022]
Abstract
The external acoustic meatus (EAM) of most baleen whales accumulates cellular debris annually in the lumen as whales age, forming a lamellated ear plug. The bowhead whale ear plug is formed from annually molting lining of the EAM as the entire epithelium releases at the level of the stratum basale during the spring migration. Epithelial regeneration is mostly completed by the fall migration, remaining intact for 6-7 months before being torn off the following spring. Desmosomes are integral to cell-cell adhesion with connecting desmosomal cadherins desmoglein (dsg) and desmocollin (dsc). Paraffin sections of the oral cavity and EAM lining of spring and fall adult bowhead whales, as well as the EAM of spring-caught juvenile, were immunohistochemically examined for the presence of these cadherins. In all fall specimens, both cadherins occurred in all layers except the superficial keratinous layer of the oral cavity. In spring, three different conditions existed: (a) oral cavity of spring-caught adults had reduced cadherins, with superficial fissuring in its keratinized layer and vacuolation in the upper stratum spinosum; (b) EAM of juvenile spring-caught whales displayed fissuring with accompanying reduction of both cadherins in its superficial lining; and (c) EAM lining of spring-caught adults displayed deep fissures, reduced cadherins, and absence of dsc1 in the fissuring zone. These results suggest that shedding of skin layers in mammals, whether normal molting, pathological, or the result of injury and wound repair all revolve around desmosome function. The specific role, structure, and location of these two cadherins need to be further addressed.
Collapse
Affiliation(s)
- Susan J Rehorek
- Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania
| | - Raphaela Stimmelmayr
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska.,Department of Wildlife Management, North Slope Borough, Alaska
| | | | - Robert Suydam
- Department of Wildlife Management, North Slope Borough, Alaska
| | - Denise L McBurney
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio
| | - J G M Thewissen
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|
6
|
Elimination of KLK5 inhibits early skin tumorigenesis by reducing epidermal proteolysis and reinforcing epidermal microstructure. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165520. [DOI: 10.1016/j.bbadis.2019.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/13/2019] [Accepted: 07/27/2019] [Indexed: 01/10/2023]
|
7
|
Herter EK, Li D, Toma MA, Vij M, Li X, Visscher D, Wang A, Chu T, Sommar P, Blomqvist L, Berglund D, Ståhle M, Wikstrom JD, Xu Landén N. WAKMAR2, a Long Noncoding RNA Downregulated in Human Chronic Wounds, Modulates Keratinocyte Motility and Production of Inflammatory Chemokines. J Invest Dermatol 2018; 139:1373-1384. [PMID: 30594489 DOI: 10.1016/j.jid.2018.11.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/29/2018] [Accepted: 11/10/2018] [Indexed: 01/08/2023]
Abstract
Chronic wounds represent a major and growing health and economic burden worldwide. A better understanding of molecular mechanisms of normal as well as impaired wound healing is needed to develop effective treatment. Herein we studied the potential role of long noncoding RNA LOC100130476 in skin wound repair. LOC100130476 is an RNA polymerase II-encoded polyadenylated transcript present in both cytoplasm and nucleus. We found that its expression was lower in wound-edge keratinocytes of human chronic wounds compared to normal wounds of healthy donors and intact skin. In cultured keratinocytes, LOC100130476 expression was induced by TGF-β signaling. By reducing LOC100130476 expression with antisense oligos or activating its transcription with CRISPR/Cas9 Synergistic Activation Mediator system, we showed that LOC100130476 restricted the production of inflammatory chemokines by keratinocytes, while enhancing cell migration. In line with this, knockdown of LOC100130476 impaired re-epithelization of human ex vivo wounds. Based on these results, we named LOC100130476 wound and keratinocyte migration-associated long noncoding RNA 2 (WAKMAR2). Moreover, we identified a molecular network that may mediate the biological function of WAKMAR2 in keratinocytes using microarray. In summary, our data suggest that WAKMAR2 is an important regulator of skin wound healing and its deficiency may contribute to the pathogenesis of chronic wounds.
Collapse
Affiliation(s)
- Eva K Herter
- Dermatology and Venereology Section, Department of Medicine (Solna), Karolinska Institute, Stockholm, Sweden
| | - Dongqing Li
- Dermatology and Venereology Section, Department of Medicine (Solna), Karolinska Institute, Stockholm, Sweden
| | - Maria A Toma
- Dermatology and Venereology Section, Department of Medicine (Solna), Karolinska Institute, Stockholm, Sweden
| | - Manika Vij
- Dermatology and Venereology Section, Department of Medicine (Solna), Karolinska Institute, Stockholm, Sweden
| | - Xi Li
- Dermatology and Venereology Section, Department of Medicine (Solna), Karolinska Institute, Stockholm, Sweden
| | - Dani Visscher
- Dermatology and Venereology Section, Department of Medicine (Solna), Karolinska Institute, Stockholm, Sweden
| | - Aoxue Wang
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Tongbin Chu
- Department of Wound Regeneration, The Second Hospital of Dalian Medical University, Dalian, China
| | - Pehr Sommar
- Department of Molecular Medicine and Surgery, Section of Plastic Surgery, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Lennart Blomqvist
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - David Berglund
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Sweden
| | - Mona Ståhle
- Dermatology and Venereology Section, Department of Medicine (Solna), Karolinska Institute, Stockholm, Sweden; Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Jakob D Wikstrom
- Dermatology and Venereology Section, Department of Medicine (Solna), Karolinska Institute, Stockholm, Sweden; Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Ning Xu Landén
- Dermatology and Venereology Section, Department of Medicine (Solna), Karolinska Institute, Stockholm, Sweden; Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
8
|
Wang F, Chen S, Liu HB, Parent CA, Coulombe PA. Keratin 6 regulates collective keratinocyte migration by altering cell-cell and cell-matrix adhesion. J Cell Biol 2018; 217:4314-4330. [PMID: 30389720 PMCID: PMC6279382 DOI: 10.1083/jcb.201712130] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 09/18/2018] [Accepted: 10/16/2018] [Indexed: 01/21/2023] Open
Abstract
Keratin 6 (K6) isoforms are induced in wound-proximal keratinocytes after injury to skin. Paradoxically, absence of K6 isoforms leads to faster directional cell migration. Wang et al. report that K6 promotes collective keratinocyte migration by interacting with desmoplakin and myosin IIA and stabilizing cell adhesion. The a and b isoforms of keratin 6 (K6), a type II intermediate filament (IF) protein, are robustly induced upon injury to interfollicular epidermis. We previously showed that complete loss of K6a/K6b stimulates keratinocyte migration, correlating with enhanced Src activity. In this study, we demonstrate that this property is cell autonomous, depends on the ECM, and results from elevated speed, enhanced directionality, and an increased rate of focal adhesion disassembly. We show that myosin IIA interacts with K6a/K6b, that its levels are markedly reduced in Krt6a/Krt6b-null keratinocytes, and that inhibiting myosin ATPase activity normalizes the enhanced migration potential of Krt6a/Krt6b-null cells. Desmoplakin, which mediates attachment of IFs to desmosomes, is also expressed at reduced levels and is mislocalized to the nucleus in Krt6a/Krt6b-null cells, correlating with defects in cell adhesion. These findings reveal that K6a/K6b modulate keratinocyte migration by regulating cell–matrix and cell–cell adhesion and highlight a role for keratins in collective cell migration.
Collapse
Affiliation(s)
- Fengrong Wang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI.,Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Song Chen
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Hans B Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Carole A Parent
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI.,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Pierre A Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI .,Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD.,Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
9
|
Torres P, Castro M, Reyes M, Torres VA. Histatins, wound healing, and cell migration. Oral Dis 2018; 24:1150-1160. [PMID: 29230909 DOI: 10.1111/odi.12816] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/20/2022]
Abstract
Wounds in the oral mucosa heal faster and more efficiently than those in the skin, although the mechanisms underlying these differences are not completely clear. In the last 10 years, a group of salivary peptides, the histatins, has gained attention on behalf of their ability to improve several phases of the wound-healing process. In addition to their roles as anti-microbial agents and in enamel maintenance, histatins elicit other biological effects, namely by promoting the migration of different cell types contained in the oral mucosa and in non-oral tissues. Histatins, and specifically histatin-1, promote cell adhesion and migration in oral keratinocytes, gingival and dermal fibroblasts, non-oral epithelial cells, and endothelial cells. This is particularly relevant, as histatin-1 promotes the re-epithelialization phase and the angiogenic responses by increasing epithelial and endothelial cell migration. Although the molecular mechanisms associated with histatin-dependent cell migration remain poorly understood, recent studies have pointed to the control of signaling endosomes and the balance of small GTPases. This review aimed to update the literature on the effects of histatins in cell migration, with a focus on wound healing. We will also discuss the consequences that this increasing field will have in disease and therapy design.
Collapse
Affiliation(s)
- P Torres
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| | - M Castro
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| | - M Reyes
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| | - V A Torres
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
10
|
Dedeić Z, Sutendra G, Hu Y, Chung K, Slee EA, White MJ, Zhou FY, Goldin RD, Ferguson DJP, McAndrew D, Schneider JE, Lu X. Cell autonomous role of iASPP deficiency in causing cardiocutaneous disorders. Cell Death Differ 2018; 25:1289-1303. [PMID: 29352264 DOI: 10.1038/s41418-017-0039-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022] Open
Abstract
Desmosome components are frequently mutated in cardiac and cutaneous disorders in animals and humans and enhanced inflammation is a common feature of these diseases. Previous studies showed that inhibitor of Apoptosis Stimulating p53 Protein (iASPP) regulates desmosome integrity at cell-cell junctions and transcription in the nucleus, and its deficiency causes cardiocutaneous disorder in mice, cattle, and humans. As iASPP is a ubiquitously expressed shuttling protein with multiple functions, a key question is whether the observed cardiocutaneous phenotypes are caused by loss of a cell autonomous role of iASPP in cardiomyocytes and keratinocytes specifically or by a loss of iASPP in other cell types such as immune cells. To address this, we developed cardiomyocyte-specific and keratinocyte-specific iASPP-deficient mouse models and show that the cell-type specific loss of iASPP in cardiomyocytes or keratinocytes is sufficient to induce cardiac or cutaneous disorders, respectively. Additionally, keratinocyte-specific iASPP-deficient mice have delayed eyelid development and wound healing. In keratinocytes, junctional iASPP is critical for stabilizing desmosomes and iASPP deficiency results in increased and disorganized cell migration, as well as impaired cell adhesion, consistent with delayed wound healing. The identification of a cell autonomous role of iASPP deficiency in causing cardiocutaneous syndrome, impaired eyelid development and wound healing suggests that variants in the iASPP gene also may contribute to polygenic heart and skin diseases.
Collapse
Affiliation(s)
- Zinaida Dedeić
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Gopinath Sutendra
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK.,Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2B7, Canada
| | - Ying Hu
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK.,The School of Life Science and Technology, Harbin Institute of Technology, Harbin, 1500080, China
| | - Kathryn Chung
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Elizabeth A Slee
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Michael J White
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Felix Y Zhou
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Robert D Goldin
- Centre for Pathology, St. Mary's Hospital, Imperial College, London, W2 1NY, UK
| | - David J P Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, Oxford, OX3 9DU, UK
| | - Debra McAndrew
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Jurgen E Schneider
- Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
11
|
Haensel D, Dai X. Epithelial-to-mesenchymal transition in cutaneous wound healing: Where we are and where we are heading. Dev Dyn 2017; 247:473-480. [PMID: 28795450 DOI: 10.1002/dvdy.24561] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/15/2017] [Accepted: 07/31/2017] [Indexed: 12/26/2022] Open
Abstract
Cutaneous wound healing occurs in distinct yet overlapping steps with the end goal of reforming a stratified epithelium to restore epidermal barrier function. A key component of this process is re-epithelialization, which involves the proliferation and migration of epidermal keratinocytes surrounding the wound. This spatiotemporally controlled process resembles aspects of the epithelial-to-mesenchymal transition (EMT) process and is thus proposed to involve a partial EMT. Here, we review current literature on the cellular and molecular changes that occur during, and the known or potential regulatory factors of cutaneous wound re-epithelialization and EMT to highlight their similarities and differences. We also discuss possible future directions toward a better understanding of the underlying regulatory mechanisms with implications for developing new therapeutics to improve wound repair in humans. Developmental Dynamics 247:473-480, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daniel Haensel
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California
| |
Collapse
|
12
|
Abstract
Desmosomes represent adhesive, spot-like intercellular junctions that in association with intermediate filaments mechanically link neighboring cells and stabilize tissue architecture. In addition to this structural function, desmosomes also act as signaling platforms involved in the regulation of cell proliferation, differentiation, migration, morphogenesis, and apoptosis. Thus, deregulation of desmosomal proteins has to be considered to contribute to tumorigenesis. Proteolytic fragmentation and downregulation of desmosomal cadherins and plaque proteins by transcriptional or epigenetic mechanisms were observed in different cancer entities suggesting a tumor-suppressive role. However, discrepant data in the literature indicate that context-dependent differences based on alternative intracellular, signal transduction lead to altered outcome. Here, modulation of Wnt/β-catenin signaling by plakoglobin or desmoplakin and of epidermal growth factor receptor signaling appears to be of special relevance. This review summarizes current evidence on how desmosomal proteins participate in carcinogenesis, and depicts the molecular mechanisms involved.
Collapse
Affiliation(s)
- Otmar Huber
- a Institute of Biochemistry II, Jena University Hospital, Friedrich-Schiller-University Jena , Nonnenplan 2-4, 07743 Jena , Germany.,b Center for Sepsis Control and Care, Jena University Hospital , Erlanger Allee 101, 07747 Jena , Germany
| | - Iver Petersen
- c Institute of Pathology, Jena University Hospital, Friedrich-Schiller-University Jena , Ziegelmühlenweg 1, 07743 Jena , Germany
| |
Collapse
|
13
|
Bigliardi PL, Neumann C, Teo YL, Pant A, Bigliardi-Qi M. Activation of the δ-opioid receptor promotes cutaneous wound healing by affecting keratinocyte intercellular adhesion and migration. Br J Pharmacol 2014; 172:501-14. [PMID: 24628261 PMCID: PMC4292964 DOI: 10.1111/bph.12687] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 02/28/2014] [Accepted: 03/06/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE In addition to its analgesic functions, the peripheral opioid receptor system affects skin homeostasis by influencing cell differentiation, migration and adhesion; also, wound healing is altered in δ-opioid receptor knockout mice (DOPr–/–). Hence, we investigated δ-opioid receptor effects on the expression of several proteins of the desmosomal junction complex and on the migratory behaviour of keratinocytes. EXPERIMENTAL APPROACH Expression levels of desmosomal cadherins in wild-type and DOPr–/– mice, and the morphology of intercellular adhesion in human keratinocytes were analysed by immunofluorescence. To investigate the δ-opioid receptor activation pathway, protein expression was studied using Western blot and its effect on cellular migration determined by in vitro live cell migration recordings from human keratinocytes. KEY RESULTS Expression of the desmosomal cadherins, desmogleins 1 and 4, was up-regulated in skin from DOPr–/– mice, and down-regulated in δ-opioid receptor-overexpressing human keratinocytes. The localization of desmoplakin expression was rearranged from linear arrays emanating from cell borders to puncta in cell periphery, resulting in less stable intercellular adhesion. Migration and wound recovery were enhanced in human keratinocyte monolayers overexpressing δ-opioid receptors in vitro. These δ-opioid receptor effects were antagonized by specific PKCα/β inhibition indicating they were mediated through the PKC signalling pathway. Finally, cells overexpressing δ-opioid receptors developed characteristically long but undirected protrusions containing filamentous actin and δ-opioid receptors, indicating an enhanced migratory phenotype. CONCLUSION AND IMPLICATIONS Opioid receptors affect intercellular adhesion and wound healing mechanisms, underlining the importance of a cutaneous neuroendocrine system in wound healing and skin homeostasis. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2
Collapse
Affiliation(s)
- P L Bigliardi
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore; Division of Rheumatology, National University Hospital, University Medicine Cluster, Singapore
| | | | | | | | | |
Collapse
|
14
|
Neupane S, Sohn WJ, Rijal G, Lee YJ, Lee S, Yamamoto H, An CH, Cho SW, Lee Y, Shin HI, Kwon TY, Kim JY. Developmental regulations of Perp in mice molar morphogenesis. Cell Tissue Res 2014; 358:109-21. [DOI: 10.1007/s00441-014-1908-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/30/2014] [Indexed: 12/17/2022]
|
15
|
Brücher BL, Jamall IS. Epistemology of the origin of cancer: a new paradigm. BMC Cancer 2014; 14:331. [PMID: 24885752 PMCID: PMC4026115 DOI: 10.1186/1471-2407-14-331] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/06/2014] [Indexed: 02/06/2023] Open
Abstract
Background Carcinogenesis is widely thought to originate from somatic mutations and an inhibition of growth suppressors, followed by cell proliferation, tissue invasion, and risk of metastasis. Fewer than 10% of all cancers are hereditary; the ratio in gastric (1%), colorectal (3-5%) and breast (8%) cancers is even less. Cancers caused by infection are thought to constitute some 15% of the non-hereditary cancers. Those remaining, 70 to 80%, are called “sporadic,” because they are essentially of unknown etiology. We propose a new paradigm for the origin of the majority of cancers. Presentation of hypothesis Our paradigm postulates that cancer originates following a sequence of events that include (1) a pathogenic stimulus (biological or chemical) followed by (2) chronic inflammation, from which develops (3) fibrosis with associated changes in the cellular microenvironment. From these changes a (4) pre-cancerous niche develops, which triggers the deployment of (5) a chronic stress escape strategy, and when this fails to resolve, (6) a transition of a normal cell to a cancer cell occurs. If we are correct, this paradigm would suggest that the majority of the findings in cancer genetics so far reported are either late events or are epiphenomena that occur after the appearance of the pre-cancerous niche. Testing the hypothesis If, based on experimental and clinical findings presented here, this hypothesis is plausible, then the majority of findings in the genetics of cancer so far reported in the literature are late events or epiphenomena that could have occurred after the development of a PCN. Our model would make clear the need to establish preventive measures long before a cancer becomes clinically apparent. Future research should focus on the intermediate steps of our proposed sequence of events, which will enhance our understanding of the nature of carcinogenesis. Findings on inflammation and fibrosis would be given their warranted importance, with research in anticancer therapies focusing on suppressing the PCN state with very early intervention to detect and quantify any subclinical inflammatory change and to treat all levels of chronic inflammation and prevent fibrotic changes, and so avoid the transition from a normal cell to a cancer cell. Implication of the hypothesis The paradigm proposed here, if proven, spells out a sequence of steps, one or more of which could be interdicted or modulated early in carcinogenesis to prevent or, at a minimum, slow down the progression of many cancers.
Collapse
|
16
|
Mahfuz I, Darling T, Wilkins S, White S, Cheng W. New insights into the pathogenesis of bladder exstrophy-epispadias complex. J Pediatr Urol 2013; 9:996-1005. [PMID: 23743131 DOI: 10.1016/j.jpurol.2013.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 05/01/2013] [Indexed: 02/02/2023]
Abstract
Bladder exstrophy-epispadias complex (BEEC) is a complex and debilitating congenital disease. Familial and twin studies suggest a possible genetic component in BEEC pathogenesis. Bladder mesenchyme (detrusor) development requires induction by a signal from bladder urothelium, and we and others have shown the Shh-Gli-Bmp4 signalling pathway is likely to be involved. P63 is a master regulator in epithelial stratification and is expressed in urothelium. We have shown that p63 knock-out mice undergo excessive urothelial apoptosis. Failure of mesenchymal induction by epithelium leads to BEEC. We further demonstrated that insertion/deletion (in/del) polymorphisms (1 base pair (bp) ins and 4 bp ins., and 12 bp del) in the ΔNP63 promoter reduce transcriptional efficiency, and are associated with a statistically significant increase in the risk of BEEC in humans. Furthermore, a Genome-Wide Expression Profiling (GWEP) study suggests possible involvement of PERP in human BEEC. Intriguingly, PERP is a direct target of p63 during development, and is also involved in epithelial stratification. PERP co-localizes with desmosome, and both PERP and desmosome are essential for maintaining tissue integrity by cellular adhesion and epithelial stratification. A recent study showed that PERP and desmosome expression levels are abnormal in human BEEC patients. This review describes the role of the P63 > PERP > desmosome pathway in the development of human bladder during embryogenesis. We hypothesize that disruption of this pathway may increase the risk of BEEC.
Collapse
Affiliation(s)
- Istiak Mahfuz
- Monash Institute of Medical Research, Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia
| | | | | | | | | |
Collapse
|
17
|
Rusu M, Pop F, Mănoiu V, Lupuşoru M, Didilescu A. Zipper-like series of desmosomes supported by subplasmalemmal actin belts in thymic epithelial reticular cells in the rat. Ann Anat 2013; 195:359-364. [DOI: 10.1016/j.aanat.2013.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 02/06/2013] [Accepted: 02/12/2013] [Indexed: 11/26/2022]
|
18
|
Transmembrane protein PERP is a component of tessellate junctions and of other junctional and non-junctional plasma membrane regions in diverse epithelial and epithelium-derived cells. Cell Tissue Res 2013; 353:99-115. [PMID: 23689684 PMCID: PMC3691483 DOI: 10.1007/s00441-013-1645-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/22/2013] [Indexed: 12/16/2022]
Abstract
Protein PERP (p53 apoptosis effector related to PMP-22) is a small (21.4 kDa) transmembrane polypeptide with an amino acid sequence indicative of a tetraspanin character. It is enriched in the plasma membrane and apparently contributes to cell-cell contacts. Hitherto, it has been reported to be exclusively a component of desmosomes of some stratified epithelia. However, by using a series of newly generated mono- and polyclonal antibodies, we show that protein PERP is not only present in all kinds of stratified epithelia but also occurs in simple, columnar, complex and transitional epithelia, in various types of squamous metaplasia and epithelium-derived tumors, in diverse epithelium-derived cell cultures and in myocardial tissue. Immunofluorescence and immunoelectron microscopy allow us to localize PERP predominantly in small intradesmosomal locations and in variously sized, junction-like peri- and interdesmosomal regions ("tessellate junctions"), mostly in mosaic or amalgamated combinations with other molecules believed, to date, to be exclusive components of tight and adherens junctions. In the heart, PERP is a major component of the composite junctions of the intercalated disks connecting cardiomyocytes. Finally, protein PERP is a cobblestone-like general component of special plasma membrane regions such as the bile canaliculi of liver and subapical-to-lateral zones of diverse columnar epithelia and upper urothelial cell layers. We discuss possible organizational and architectonic functions of protein PERP and its potential value as an immunohistochemical diagnostic marker.
Collapse
|
19
|
Delineating Molecular Mechanisms of Squamous Tissue Homeostasis and Neoplasia: Focus on p63. J Skin Cancer 2013; 2013:632028. [PMID: 23710361 PMCID: PMC3655637 DOI: 10.1155/2013/632028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/14/2013] [Indexed: 11/18/2022] Open
Abstract
Mouse models have informed us that p63 is critical for normal epidermal development and homeostasis. The p53/p63/p73 family is expressed as multiple protein isoforms due to a combination of alternative promoter usage and C-terminal alternative splicing. These isoforms can mimic or interfere with one another, and their balance ultimately determines biological outcome in a context-dependent manner. While not frequently mutated, p63, and in particular the ΔNp63 subclass, is commonly overexpressed in human squamous cell cancers. In vitro keratinocytes and murine transgenic and transplantation models have been invaluable in elucidating the contribution of altered p63 levels to cancer development, and studies have identified the roles for ΔNp63 isoforms in keratinocyte survival and malignant progression, likely due in part to their transcriptional regulatory function. These findings can be extended to human cancers; for example, the novel recognition of NFκB/c-Rel as a downstream effector of p63 has identified a role for NFκB/c-Rel in human squamous cell cancers. These models will be critical in enhancing the understanding of the specific molecular mechanisms of cancer development and progression.
Collapse
|
20
|
|
21
|
Haubner F, Ohmann E, Pohl F, Strutz J, Gassner HG. Wound healing after radiation therapy: review of the literature. Radiat Oncol 2012; 7:162. [PMID: 23006548 PMCID: PMC3504517 DOI: 10.1186/1748-717x-7-162] [Citation(s) in RCA: 300] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/20/2012] [Indexed: 12/19/2022] Open
Abstract
Radiation therapy is an established modality in the treatment of head and neck cancer patients. Compromised wound healing in irradiated tissues is a common and challenging clinical problem. The pathophysiology and underlying cellular mechanisms including the complex interaction of cytokines and growth factors are still not understood completely. In this review, the current state of research regarding the pathomechanisms of compromised wound healing in irradiated tissues is presented. Current and possible future treatment strategies are critically reviewed.
Collapse
Affiliation(s)
- Frank Haubner
- Department of Otorhinolaryngology, Division of Facial Plastic Surgery, University of Regensburg, Regensburg, Germany.
| | | | | | | | | |
Collapse
|