1
|
Michorowska S, Giebułtowicz J, Wolinowska R, Konopka A, Wilkaniec A, Krajewski P, Bulska E, Wroczyński P. Detection of ALDH3B2 in Human Placenta. Int J Mol Sci 2019; 20:E6292. [PMID: 31847104 PMCID: PMC6941052 DOI: 10.3390/ijms20246292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 01/28/2023] Open
Abstract
Aldehyde dehydrogenase 3B2 (ALDH3B2) gene contains a premature termination codon, which can be skipped or suppressed resulting in full-length protein expression. Alternatively, the longest putative open reading frame starting with the second in-frame start codon would encode short isoform. No unequivocal evidence of ALDH3B2 expression in healthy human tissues is available. The aim of this study was to confirm its expression in human placenta characterized by the highest ALDH3B2 mRNA abundance. ALDH3B2 DNA and mRNA were sequenced. The expression was investigated using western blot. The identity of the protein was confirmed using mass spectrometry (MS). The predicted tertiary and quaternary structures, subcellular localization, and phosphorylation sites were assessed using bioinformatic analyses. All DNA and mRNA isolates contained the premature stop codon. In western blot analyses, bands corresponding to the mass of full-length protein were detected. MS analysis led to the identification of two unique peptides, one of which is encoded by the nucleotide sequence located upstream the second start codon. Bioinformatic analyses suggest cytoplasmic localization and several phosphorylation sites. Despite premature stop codon in DNA and mRNA sequences, full-length ALDH3B2 was found. It can be formed as a result of premature stop codon readthrough, complex phenomenon enabling stop codon circumvention.
Collapse
Affiliation(s)
- Sylwia Michorowska
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.G.); (P.W.)
| | - Joanna Giebułtowicz
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.G.); (P.W.)
| | - Renata Wolinowska
- Department of Pharmaceutical Microbiology, Centre for Preclinical Research and Technology (CePT), Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Anna Konopka
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-097 Warsaw, Poland; (A.K.); (E.B.)
| | - Anna Wilkaniec
- Department of Cellular Signaling, Mossakowski Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Paweł Krajewski
- Forensic Medicine Department, First Faculty of Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Ewa Bulska
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-097 Warsaw, Poland; (A.K.); (E.B.)
| | - Piotr Wroczyński
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.G.); (P.W.)
| |
Collapse
|
2
|
High Aldehyde Dehydrogenase Levels Are Detectable in the Serum of Patients with Lung Cancer and May Be Exploited as Screening Biomarkers. JOURNAL OF ONCOLOGY 2019; 2019:8970645. [PMID: 31534455 PMCID: PMC6724438 DOI: 10.1155/2019/8970645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/20/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022]
Abstract
Objectives Since early detection improves overall survival in lung cancer, identification of screening biomarkers for patients at risk represents an area of intense investigation. Tumor liberated protein (TLP) has been previously described as a tumor-associated antigen (complex) present in the sera from lung cancer patients. Here, we set out to identify the nature of TLP to develop this as a potential biomarker for lung cancer screening. Materials and Methods Beginning from the peptide epitope RTNKEASI previously identified from the TLP complex, we produced a rabbit anti-RTNKEASI serum and evaluated it in the lung cancer cell line A549 by means of immunoblot and peptide completion assay (PCA). The TLP sequence identification was conducted by mass spectrometry. The detected protein was, then, analyzed in patients with non-small cell lung cancer (NSCLC) and benign lung pathologies and healthy donors, by ELISA. Results The anti-RTNKEASI antiserum detected and immunoprecipitated a 55 kDa protein band in the lysate of A549 cells identified as aldehyde dehydrogenase isoform 1A1, revealing the molecular nature of at least one component of the previously described TLP complex. Next, we screened blood samples from a non-tumor cohort of 26 patients and 45 NSCLC patients with different disease stages for the presence of ALDH1A1 and global ALDH. This analysis indicated that serum positivity was highly restricted to patients with NSCLC (ALDH p < 0.001; ALDH1A1 p=0.028). Interestingly, the global ALDH test resulted positive in more NSCLC samples compared to the ALDH1A1 test, suggesting that other ALDH isoforms might add to the sensitivity of the assay. Conclusion Our data indicate that ALDH levels are elevated in the sera of NSCLC patients, even with early stage disease, and may thus be evaluated as part of a marker panel for non-invasive detection of NSCLC.
Collapse
|
3
|
Identification of cancer-type specific expression patterns for active aldehyde dehydrogenase (ALDH) isoforms in ALDEFLUOR assay. Cell Biol Toxicol 2018; 35:161-177. [PMID: 30220009 PMCID: PMC6424948 DOI: 10.1007/s10565-018-9444-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 08/16/2018] [Indexed: 12/26/2022]
Abstract
Aldehyde dehydrogenases (ALDHs) defend intracellular homeostasis by catalyzing the conversion of toxic aldehydes into non-toxic carboxylic acids, which is of particular importance to the self-renewal of stem cells and cancer stem cells. The widely used ALDEFLUOR assay was initially designed to indicate the activity of ALDH1A1 in leukemia and has been demonstrated to detect the enzyme activity of several other ALDH isoforms in various cancer types in recent years. However, it is still elusive which isoforms, among the 19 ALDH isoforms in human genome, are the potential contributors in catalyzing ALDEFLUOR assay in different cancers. In the current study, we performed a screening via overexpressing each ALDH isoform to assess their ability of catalyzing ALDEFLUOR assay. Our results demonstrate that nine isoforms are active in ALDEFLUOR assay, whose overexpression significantly increases ALDH-positive (ALDH+) population. Further analysis of the expression of these active isoforms in various cancers reveals cancer-type specific expression patterns, suggesting that different cancer types may exhibit ALDEFLUOR activity through expression of specific active ALDH isoforms. This study strongly indicates that a detailed elucidation of the functions for each active ALDH isoform in CSCs is necessary and important for a profound understanding of the underlying mechanisms of ALDH-associated stemness.
Collapse
|
4
|
Yin J, Tang W, Long T, Pan H, Liu J, Lv L, Liu C, Shi Y, Zhu J, Sun Y, Shao A, Zhou Q, Ren Z, Ding G, Chen S, Liu Y, Yao J, Ding H, Yan Y, Gu H, Qian C, Wang L, Wang Q, Tan L. Association of ALDH3B2 gene polymorphism and risk factors with susceptibility of esophageal squamous cell carcinoma in a Chinese population: a case-control study involving 2,358 subjects. Oncotarget 2017; 8:110153-110165. [PMID: 29299137 PMCID: PMC5746372 DOI: 10.18632/oncotarget.22656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022] Open
Abstract
Background Esophageal cancer (EC) is the sixth leading cause of cancer-associated death worldwide. The interaction of environmental risk factors and genetic factors might contribute to the carcinogenesis of EC synergistically. Results All seven single locus polymorphisms of ALDH3B2 were not associated with risk of ESCC as evaluated by allelic, dominant, co-dominant, recessive and Cochran-Armitage trend tests. Stratified analyses showed these SNPs were not correlated with the susceptibility of ESCC according to different age, gender, cigarette smoking and alcohol drinking status. None of the major haplotypes were related with ESCC susceptibility. Materials and Methods We conducted a hospital-based case-control study to evaluate the combined effects of environmental risk factors and the single nucleotide polymorphisms (SNPs) of ALDH3B2 gene on the development of esophageal squamous carcinoma (ESCC). A total of 1043 ESCC cases and 1315 controls were recruited for this study. Seven ALDH3B2 SNPs and four environmental factors were selected as independent variables. ALDH3B2 SNPs were determined by ligation detection reaction method. Conclusions Our study suggested that ALDH3B2 rs34589365, rs3741172, rs4646823, rs78402723, rs7947978, rs866907 and rs9787887 polymorphisms were not implicated with altered susceptibility of ESCC according to different age, gender, cigarette smoking and alcohol drinking status. Yet this conclusion needs to be verified in larger studies among different ethnic populations with validation design, the biological function of these SNPs in carcinogenesis are subject to further investigation.
Collapse
Affiliation(s)
- Jun Yin
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China.,Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
| | - Weifeng Tang
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Tao Long
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Huiwen Pan
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Jianchao Liu
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Lu Lv
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Chao Liu
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Yijun Shi
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Jingfeng Zhu
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Yangyong Sun
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Aizhong Shao
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Qiang Zhou
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Zhengbing Ren
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Guowen Ding
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Suocheng Chen
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Yan Liu
- Genesky Biotechnologies Inc., Shanghai, 201315, China
| | - Jun Yao
- Department of Gastroenterology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Hao Ding
- Department of Respirology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Yulan Yan
- Department of Respirology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Haiyong Gu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, 200030, China
| | - Cheng Qian
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
| | - Liming Wang
- Cancer Institute, Department of Chemotherapy, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
| |
Collapse
|
5
|
Novikova SE, Kurbatov LK, Zavialova MG, Zgoda VG, Archakov AI. [Omics technologies in diagnostics of lung adenocarcinoma]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 63:181-210. [PMID: 28781253 DOI: 10.18097/pbmc20176303181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To date lung adenocarcinoma (LAC) is the most common type of lung cancer. Numerous studies on LAC biology resulted in identification of crucial mutations in protooncogenes and activating neoplastic transformation pathways. Therapeutic approaches that significantly increase the survival rate of patients with LAC of different etiology have been developed and introduced into clinical practice. However, the main problem in the treatment of LAC is early diagnosis, taking into account both factors and mechanisms responsible in tumor initiation and progression. Identification of a wide biomarker repertoire with high specificity and reliability of detection appears to be a solution to this problem. In this context, proteins with differential expression in normal and pathological condition, suitable for detection in biological fluids are the most promising biomarkers. In this review we have analyzed literature data on studies aimed at search of LAC biomarkers. The major attention has been paid to protein biomarkers as the most promising and convenient subject of clinical diagnosis. The review also summarizes existing knowledge on posttranslational modifications, splice variants, isoforms, as well as model systems and transcriptome changes in LAC.
Collapse
Affiliation(s)
- S E Novikova
- Institute of Biomedical Chemistry, Moscow, Russia
| | - L K Kurbatov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
6
|
Wang J, Wang L, Ho CT, Zhang K, Liu Q, Zhao H. Garcinol from Garcinia indica Downregulates Cancer Stem-like Cell Biomarker ALDH1A1 in Nonsmall Cell Lung Cancer A549 Cells through DDIT3 Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3675-3683. [PMID: 28420235 DOI: 10.1021/acs.jafc.7b00346] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nonsmall cell lung cancer (NSCLC) is the predominant type of lung cancer. Patients with NSCLC show high mortality rates because of failure to clean up cancer stem cells (CSCs). The anticancer activity of phytochemical garcinol has been identified in various cancer cell models. However, the effect of garcinol on NSCLC cell lines is still lacking. Of the NSCLC cell lines we tested, A549 cells were the most sensitive to garcinol. Interestingly, Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1) was preferentially expressed in A549 cells and downregulated by the addition of garcinol. We also found that garcinol enriched DNA damage-inducible transcript 3 (DDIT3) and then altered DDIT3-CCAAT-enhancer-binding proteins beta (C/EBPβ) interaction resulting in a decreased binding of C/EBPβ to the endogenous ALDH1A1 promoter. Furthermore, garcinol's inhibition of ALDH1A1 was identified in a xenograft mice model. Garcinol repressed ALDH1A1 transcription in A549 cells through alterations in the interaction between DDIT3 and C/EBPβ. Garcinol could be a potential dietary phytochemical candidate for NSCLCs patients whose tumors harbored high ALDH1A1 expression.
Collapse
Affiliation(s)
- Jinhan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce , Tianjin 300134, China
| | - Liwen Wang
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce , Tianjin 300134, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Kunsheng Zhang
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce , Tianjin 300134, China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce , Tianjin 300134, China
| |
Collapse
|
7
|
Wnt signaling regulation of stem-like properties in human lung adenocarcinoma cell lines. Med Oncol 2015; 32:157. [PMID: 25840791 DOI: 10.1007/s12032-015-0596-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/18/2015] [Indexed: 12/28/2022]
Abstract
The refractory pulmonary adenocarcinoma is characterized by its metastasis and resistance to cytotoxic agents. While the underlying molecular mechanism is unclear, the property of chemoresistance may mainly lie in the presence of highly resistant cancer stem cells. We examined the function of Wnt/β-catenin signaling in maintaining cancer stem cells (CSCs) in lung adenocarcinoma. Lentivirus-mediated knockdown of β-catenin expression accelerated cell cycle. Subsequently, β-catenin knockdown PC9 cells improve the sensitivity to chemotherapy. Further focusing on Wnt signal by administrating PP and EGFR-TKIs as Wnt antagonists can decrease metastasis and induce apoptosis. Collectively, these results indicate that Wnt signaling pathway plays an essential role in maintaining highly resistant CSCs, regulation of cell cycle, metastasis and apoptosis in lung adenocarcinoma.
Collapse
|
8
|
Singh S, Arcaroli J, Thompson DC, Messersmith W, Vasiliou V. Acetaldehyde and retinaldehyde-metabolizing enzymes in colon and pancreatic cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 815:281-94. [PMID: 25427913 DOI: 10.1007/978-3-319-09614-8_16] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) and pancreatic cancer are two very significant contributors to cancer-related deaths. Chronic alcohol consumption is an important risk factor for these cancers. Ethanol is oxidized primarily by alcohol dehydrogenases to acetaldehyde, an agent capable of initiating tumors by forming adducts with proteins and DNA. Acetaldehyde is metabolized by ALDH2, ALDH1B1, and ALDH1A1 to acetate. Retinoic acid (RA) is required for cellular differentiation and is known to arrest tumor development. RA is synthesized from retinaldehyde by the retinaldehyde dehydrogenases, specifically ALDH1A1, ALDH1A2, ALDH1A3, and ALDH8A1. By eliminating acetaldehyde and generating RA, ALDHs can play a crucial regulatory role in the initiation and progression of cancers. ALDH1 catalytic activity has been used as a biomarker to identify and isolate normal and cancer stem cells; its presence in a tumor is associated with poor prognosis in colon and pancreatic cancer. In summary, these ALDHs are not only biomarkers for CRC and pancreatic cancer but also play important mechanistic role in cancer initiation, progression, and eventual prognosis.
Collapse
Affiliation(s)
- S Singh
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Mail Stop C238-P20, 12850 E Montview Blvd, Aurora, CO, 80045, USA
| | | | | | | | | |
Collapse
|
9
|
Tang X, Kuhlenschmidt TB, Li Q, Ali S, Lezmi S, Chen H, Pires-Alves M, Laegreid WW, Saif TA, Kuhlenschmidt MS. A mechanically-induced colon cancer cell population shows increased metastatic potential. Mol Cancer 2014; 13:131. [PMID: 24884630 PMCID: PMC4072622 DOI: 10.1186/1476-4598-13-131] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 04/02/2014] [Indexed: 12/13/2022] Open
Abstract
Background Metastasis accounts for the majority of deaths from cancer. Although tumor microenvironment has been shown to have a significant impact on the initiation and/or promotion of metastasis, the mechanism remains elusive. We previously reported that HCT-8 colon cancer cells underwent a phenotypic transition from an adhesive epithelial type (E-cell) to a rounded dissociated type (R-cell) via soft substrate culture, which resembled the initiation of metastasis. The objective of current study was to investigate the molecular and metabolic mechanisms of the E-R transition. Methods Global gene expressions of HCT-8 E and R cells were measured by RNA Sequencing (RNA-seq); and the results were further confirmed by real-time PCR. Reactive oxygen species (ROS), anoikis resistance, enzyme activity of aldehyde dehydrogenase 3 family, member A1 (ALDH3A1), and in vitro invasion assay were tested on both E and R cells. The deformability of HCT-8 E and R cells was measured by atomic force microscopy (AFM). To study the in vivo invasiveness of two cell types, athymic nude mice were intra-splenically injected with HCT-8 E or R cells and sacrificed after 9 weeks. Incidences of tumor development and metastasis were histologically evaluated and analyzed with Fisher’s exact test. Results Besides HCT-8, E-R transition on soft substrates was also seen in three other cancer cell lines (HCT116, SW480 colon and DU145 prostate cancer). The expression of some genes, such as ALDH3A1, TNS4, CLDN2, and AKR1B10, which are known to play important roles in cancer cell migration, invasion, proliferation and apoptosis, were increased in HCT-8 R cells. R cells also showed higher ALDH3A1 enzyme activity, higher ROS, higher anoikis resistance, and higher softness than E cells. More importantly, in vitro assay and in vivo animal models revealed that HCT-8 R cells were more invasive than E cells. Conclusions Our comprehensive comparison of HCT-8 E and R cells revealed differences of molecular, phenotypical, and mechanical signatures between the two cell types. To our knowledge, this is the first study that explores the molecular mechanism of E-R transition, which may greatly increase our understanding of the mechanisms of cancer mechanical microenvironment and initiation of cancer metastasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Taher A Saif
- Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana-Champaign, 206 W, Green St, Urbana 61802, Illinois, USA.
| | | |
Collapse
|
10
|
Saw YT, Yang J, Ng SK, Liu S, Singh S, Singh M, Welch WR, Tsuda H, Fong WP, Thompson D, Vasiliou V, Berkowitz RS, Ng SW. Characterization of aldehyde dehydrogenase isozymes in ovarian cancer tissues and sphere cultures. BMC Cancer 2012; 12:329. [PMID: 22852552 PMCID: PMC3458927 DOI: 10.1186/1471-2407-12-329] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 07/18/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Aldehyde dehydrogenases belong to a superfamily of detoxifying enzymes that protect cells from carcinogenic aldehydes. Of the superfamily, ALDH1A1 has gained most attention because current studies have shown that its expression is associated with human cancer stem cells. However, ALDH1A1 is only one of the 19 human ALDH subfamilies currently known. The purpose of the present study was to determine if the expression and activities of other major ALDH isozymes are associated with human ovarian cancer and ovarian cancer sphere cultures. METHODS Immunohistochemistry was used to delineate ALDH isozyme localization in clinical ovarian tissues. Western Blot analyses were performed on lysates prepared from cancer cell lines and ovarian cancer spheres to confirm the immunohistochemistry findings. Quantitative reverse transcription-polymerase chain reactions were used to measure the mRNA expression levels. The Aldefluor® assay was used to measure ALDH activity in cancer cells from the four tumor subtypes. RESULTS Immunohistochemical staining showed significant overexpression of ALDH1A3, ALDH3A2, and ALDH7A1 isozymes in ovarian tumors relative to normal ovarian tissues. The expression and activity of ALDH1A1 is tumor type-dependent, as seen from immunohistochemisty, Western blot analysis, and the Aldefluor® assay. The expression was elevated in the mucinous and endometrioid ovarian epithelial tumors than in serous and clear cell tumors. In some serous and most clear cell tumors, ALDH1A1 expression was found in the stromal fibroblasts. RNA expression of all studied ALDH isozymes also showed higher expression in endometrioid and mucinous tumors than in the serous and clear cell subtypes. The expression of ALDH enzymes showed tumor type-dependent induction in ovarian cancer cells growing as sphere suspensions in serum-free medium. CONCLUSIONS The results of our study indicate that ALDH enzyme expression and activity may be associated with specific cell types in ovarian tumor tissues and vary according to cell states. Elucidating the function of the ALDH isozymes in lineage differentiation and pathogenesis may have significant implications for ovarian cancer pathophysiology.
Collapse
Affiliation(s)
- Yu-Ting Saw
- Department of Obstetrics/Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Li X, Wan L, Geng J, Wu CL, Bai X. Aldehyde Dehydrogenase 1A1 Possesses Stem-Like Properties and Predicts Lung Cancer Patient Outcome. J Thorac Oncol 2012; 7:1235-45. [DOI: 10.1097/jto.0b013e318257cc6d] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|