1
|
Lee GM, Boyle K, Batchvarova M, Delahunty M, Suggs MA, Arepally GM, Telen MJ. Red cell exchange modulates neutrophil degranulation responses in sickle cell disease. Transfusion 2024; 64:1752-1761. [PMID: 38979976 DOI: 10.1111/trf.17947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Neutrophils in sickle cell disease (SCD) are activated, contributing to disease. Red cell exchange (RCE), with the goal of lowering hemoglobin S (HbS), is an important part of therapy for many SCD patients. Whether RCE impacts neutrophil reactivity is unknown. STUDY DESIGN AND METHODS To determine the effect of RCE on neutrophil activation, SCD patients undergoing RCE in steady-state were enrolled. Neutrophil degranulation responses were examined before/after RCE. Kinetic studies were completed to determine the duration of the effect of RCE on neutrophil function. Degranulation results were examined in relation to white blood cell count, neutrophil count, and HbS levels. The effect of RCE on RBC phosphatidylserine (PS) exposure was examined as a possible contributor to modulation of neutrophil function by RCE. RESULTS Twenty-two patients with SCD, genotype SS, who underwent RCE (average pre-RCE HbS 33 ± 14%) were included for the study. RCE significantly decreased neutrophil degranulation responses. The effect of RCE on neutrophil activation was unrelated to cell count and instead directly correlated with HbS. The effect of RCE on neutrophil activation was sustained over several days post-apheresis. Furthermore, while increased RBC PS exposure results in increased neutrophil degranulation, RCE decreases RBC PS exposure. DISCUSSION To our knowledge, this is the first study demonstrating that RCE significantly decreases neutrophil activation in a sustained HbS-dependent manner. Modulation of PS exposure by RCE may be a contributing mechanism by which RCE modulates neutrophil activation. These studies raise the possibility that modulation of neutrophil activation contributes significantly to the therapeutic effect of RCE.
Collapse
Affiliation(s)
- Grace M Lee
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kimberly Boyle
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Milena Batchvarova
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Martha Delahunty
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Mark A Suggs
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Gowthami M Arepally
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Marilyn J Telen
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Comprehensive Sickle Cell Center, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
2
|
van Dijk MJ, van Oirschot BA, Harrison AN, Recktenwald SM, Qiao M, Stommen A, Cloos AS, Vanderroost J, Terrasi R, Dey K, Bos J, Rab MAE, Bogdanova A, Minetti G, Muccioli GG, Tyteca D, Egée S, Kaestner L, Molday RS, van Beers EJ, van Wijk R. A novel missense variant in ATP11C is associated with reduced red blood cell phosphatidylserine flippase activity and mild hereditary hemolytic anemia. Am J Hematol 2023; 98:1877-1887. [PMID: 37671681 DOI: 10.1002/ajh.27088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/07/2023]
Abstract
Adenosine Triphosphatase (ATPase) Phospholipid Transporting 11C gene (ATP11C) encodes the major phosphatidylserine (PS) flippase in human red blood cells (RBCs). Flippases actively transport phospholipids (e.g., PS) from the outer to the inner leaflet to establish and maintain phospholipid asymmetry of the lipid bilayer of cell membranes. This asymmetry is crucial for survival since externalized PS triggers phagocytosis by splenic macrophages. Here we report on pathophysiological consequences of decreased flippase activity, prompted by a patient with hemolytic anemia and hemizygosity for a novel c.2365C > T p.(Leu789Phe) missense variant in ATP11C. ATP11C protein expression was strongly reduced by 58% in patient-derived RBC ghosts. Furthermore, functional characterization showed only 26% PS flippase activity. These results were confirmed by recombinant mutant ATP11C protein expression in HEK293T cells, which was decreased to 27% compared to wild type, whereas PS-stimulated ATPase activity was decreased by 57%. Patient RBCs showed a mild increase in PS surface exposure when compared to control RBCs, which further increased in the most dense RBCs after RBC storage stress. The increase in PS was not due to higher global membrane content of PS or other phospholipids. In contrast, membrane lipid lateral distribution showed increased abundance of cholesterol-enriched domains in RBC low curvature areas. Finally, more dense RBCs and subtle changes in RBC morphology under flow hint toward alterations in flow behavior of ATP11C-deficient RBCs. Altogether, ATP11C deficiency is the likely cause of hemolytic anemia in our patient, thereby underlining the physiological role and relevance of this flippase in human RBCs.
Collapse
Affiliation(s)
- Myrthe J van Dijk
- Central Diagnostic Laboratory-Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Center for Benign Hematology, Thrombosis and Hemostasis-Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Brigitte A van Oirschot
- Central Diagnostic Laboratory-Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Alexander N Harrison
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | | - Min Qiao
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | - Amaury Stommen
- CELL Unit and PICT Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Anne-Sophie Cloos
- CELL Unit and PICT Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | | | - Romano Terrasi
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Kuntal Dey
- Red Blood Cell Group, Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Jennifer Bos
- Central Diagnostic Laboratory-Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Minke A E Rab
- Central Diagnostic Laboratory-Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Hematology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Anna Bogdanova
- Red Blood Cell Group, Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Giampaolo Minetti
- Department of Biology and Biotechnology "L. Spallanzani", Laboratories of Biochemistry, University of Pavia, Pavia, Italy
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Donatienne Tyteca
- CELL Unit and PICT Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Stéphane Egée
- UMR 8227 CNRS-Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Lars Kaestner
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Eduard J van Beers
- Center for Benign Hematology, Thrombosis and Hemostasis-Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Richard van Wijk
- Central Diagnostic Laboratory-Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
3
|
Silva M, Faustino P. From Stress to Sick(le) and Back Again-Oxidative/Antioxidant Mechanisms, Genetic Modulation, and Cerebrovascular Disease in Children with Sickle Cell Anemia. Antioxidants (Basel) 2023; 12:1977. [PMID: 38001830 PMCID: PMC10669666 DOI: 10.3390/antiox12111977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Sickle cell anemia (SCA) is a genetic disease caused by the homozygosity of the HBB:c.20A>T mutation, which results in the production of hemoglobin S (HbS). In hypoxic conditions, HbS suffers autoxidation and polymerizes inside red blood cells, altering their morphology into a sickle shape, with increased rigidity and fragility. This triggers complex pathophysiological mechanisms, including inflammation, cell adhesion, oxidative stress, and vaso-occlusion, along with metabolic alterations and endocrine complications. SCA is phenotypically heterogeneous due to the modulation of both environmental and genetic factors. Pediatric cerebrovascular disease (CVD), namely ischemic stroke and silent cerebral infarctions, is one of the most impactful manifestations. In this review, we highlight the role of oxidative stress in the pathophysiology of pediatric CVD. Since oxidative stress is an interdependent mechanism in vasculopathy, occurring alongside (or as result of) endothelial dysfunction, cell adhesion, inflammation, chronic hemolysis, ischemia-reperfusion injury, and vaso-occlusion, a brief overview of the main mechanisms involved is included. Moreover, the genetic modulation of CVD in SCA is discussed. The knowledge of the intricate network of altered mechanisms in SCA, and how it is affected by different genetic factors, is fundamental for the identification of potential therapeutic targets, drug development, and patient-specific treatment alternatives.
Collapse
Affiliation(s)
- Marisa Silva
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisboa, Portugal;
| | - Paula Faustino
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisboa, Portugal;
- Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
4
|
Nader E, Conran N, Leonardo FC, Hatem A, Boisson C, Carin R, Renoux C, Costa FF, Joly P, Brito PL, Esperti S, Bernard J, Gauthier A, Poutrel S, Bertrand Y, Garcia C, Saad STO, Egée S, Connes P. Piezo1 activation augments sickling propensity and the adhesive properties of sickle red blood cells in a calcium-dependent manner. Br J Haematol 2023. [PMID: 37011913 DOI: 10.1111/bjh.18799] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/07/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Haemoglobin S polymerization in the red blood cells (RBCs) of individuals with sickle cell anaemia (SCA) can cause RBC sickling and cellular alterations. Piezo1 is a mechanosensitive protein that modulates intracellular calcium (Ca2+ ) influx, and its activation has been associated with increased RBC surface membrane phosphatidylserine (PS) exposure. Hypothesizing that Piezo1 activation, and ensuing Gárdos channel activity, alter sickle RBC properties, RBCs from patients with SCA were incubated with the Piezo1 agonist, Yoda1 (0.1-10 μM). Oxygen-gradient ektacytometry and membrane potential measurement showed that Piezo1 activation significantly decreased sickle RBC deformability, augmented sickling propensity, and triggered pronounced membrane hyperpolarization, in association with Gárdos channel activation and Ca2+ influx. Yoda1 induced Ca2+ -dependent adhesion of sickle RBCs to laminin, in microfluidic assays, mediated by increased BCAM binding affinity. Furthermore, RBCs from SCA patients that were homo-/heterozygous for the rs59446030 gain-of-function Piezo1 variant demonstrated enhanced sickling under deoxygenation and increased PS exposure. Thus, Piezo1 stimulation decreases sickle RBC deformability, and increases the propensities of these cells to sickle upon deoxygenation and adhere to laminin. Results support a role of Piezo1 in some of the RBC properties that contribute to SCA vaso-occlusion, indicating that Piezo1 may represent a potential therapeutic target molecule for this disease.
Collapse
Affiliation(s)
- Elie Nader
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
| | - Nicola Conran
- Hematology and Transfusion Center, University of Campinas, Campinas, Brazil
| | - Flavia C Leonardo
- Hematology and Transfusion Center, University of Campinas, Campinas, Brazil
| | - Aline Hatem
- Sorbonne Université, CNRS, UMR 8227 LBI2M, Station Biologique de Roscoff SBR, Roscoff, France
| | - Camille Boisson
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale Multi-site, Hospices Civils de Lyon, Lyon, France
| | - Romain Carin
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
| | - Céline Renoux
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale Multi-site, Hospices Civils de Lyon, Lyon, France
| | - Fernando F Costa
- Hematology and Transfusion Center, University of Campinas, Campinas, Brazil
| | - Philippe Joly
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale Multi-site, Hospices Civils de Lyon, Lyon, France
| | - Pamela L Brito
- Hematology and Transfusion Center, University of Campinas, Campinas, Brazil
| | - Sofia Esperti
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
- Erytech Pharma, Lyon, France
| | - Joelle Bernard
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale Multi-site, Hospices Civils de Lyon, Lyon, France
| | - Alexandra Gauthier
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
- Institut d'Hématologique et d'Oncologique Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | - Solene Poutrel
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
- Service de Médecine Interne, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Yves Bertrand
- Institut d'Hématologique et d'Oncologique Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | - Caroline Garcia
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale Multi-site, Hospices Civils de Lyon, Lyon, France
| | - Sara T O Saad
- Hematology and Transfusion Center, University of Campinas, Campinas, Brazil
| | - Stéphane Egée
- Sorbonne Université, CNRS, UMR 8227 LBI2M, Station Biologique de Roscoff SBR, Roscoff, France
| | - Philippe Connes
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
| |
Collapse
|
5
|
Sims JN, Yun EJ, Chu J, Siddiqui MA, Desai SA. A robust fluorescence-based assay for human erythrocyte Ca ++ efflux suitable for high-throughput inhibitor screens. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:101-110. [PMID: 36512028 PMCID: PMC11019861 DOI: 10.1007/s00249-022-01623-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/20/2022] [Accepted: 11/27/2022] [Indexed: 12/14/2022]
Abstract
Intracellular calcium is maintained at very low concentrations through the action of PMCA Ca++ extrusion pumps. Although much of our knowledge about these Ca++ extrusion pumps derives from studies with human erythrocytes, kinetic studies of Ca++ transport for these cells are limited to radioisotope flux measurements. Here, we developed a robust, microplate-based assay for erythrocyte Ca++ efflux using extracellular fluorescent Ca++ indicators. We optimized Ca++ loading with the A23187 ionophore, established conditions for removal of the ionophore, and adjusted fluorescent dye sensitivity by addition of extracellular EGTA to allow continuous tracking of Ca++ efflux. Efflux kinetics were accelerated by glucose and inhibited in a dose-dependent manner by the nonspecific inhibitor vanadate, revealing that Ca++ pump activity can be tracked in a 384-well microplate format. These studies enable radioisotope-free kinetic measurements of the Ca++ pump and should facilitate screens for specific inhibitors of this essential transport activity.
Collapse
Affiliation(s)
- Jeremiah N Sims
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Institute of Protein Design, Medical Scientist Training Program, Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - EJun Yun
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jonathan Chu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Mansoor A Siddiqui
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Sanjay A Desai
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
6
|
Kim EH, Choi S, Kim D, Park HJ, Bian Y, Choi SH, Chung HY, Bae ON. Amine-modified nanoplastics promote the procoagulant activation of isolated human red blood cells and thrombus formation in rats. Part Fibre Toxicol 2022; 19:60. [PMID: 36104730 PMCID: PMC9472436 DOI: 10.1186/s12989-022-00500-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
Background Microplastics (MPs) and nanoplastics (NPs) formed from decomposed plastic are increasing environmental threats. Although MPs and NPs exposed through various routes enter the systemic circulation, the potential toxicity of those is largely unknown. We investigated whether polystyrene NPs (PS-NPs) promote the coagulation activity of red blood cells (RBCs). Results We tested several types of PS-NPs using human RBCs and found that amine-modified 100 nm PS-NPs were the most potent. We measured the uptake of PS-NPs using flow cytometry and confocal microscopy. Electron microscopy revealed morphological changes of RBCs by PS-NPs. PS-NPs induced the externalization of phosphatidylserine, generation of microvesicles in RBCs, and perturbations in the intracellular microenvironment. PS-NPs increased the activity of scramblases responsible for phospholipid translocation in RBCs. PS-NPs modulated the functional interaction to adjacent tissues and coagulation cascade, enhancing RBC adhesion and thrombin generation. Our observations in human RBCs were consistent with those in isolated rat RBCs, showing no inter-species differences. In rat venous thrombosis models, the intravenous administration of PS-NPs enhanced thrombus formation.
Conclusion Amine-modified PS-NPs induce the prothrombotic activation of RBCs causing thrombus formation. We believe that our study will contribute to understanding the potential toxicity of amine-modified polystyrene particles in blood cells and cardiovascular systems. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00500-y.
Collapse
|
7
|
Wang Q, Zennadi R. The Role of RBC Oxidative Stress in Sickle Cell Disease: From the Molecular Basis to Pathologic Implications. Antioxidants (Basel) 2021; 10:antiox10101608. [PMID: 34679742 PMCID: PMC8533084 DOI: 10.3390/antiox10101608] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/14/2023] Open
Abstract
Sickle cell disease (SCD) is an inherited monogenic disorder and the most common severe hemoglobinopathy in the world. SCD is characterized by a point mutation in the β-globin gene, which results in hemoglobin (Hb) S production, leading to a variety of mechanistic and phenotypic changes within the sickle red blood cell (RBC). In SCD, the sickle RBCs are the root cause of the disease and they are a primary source of oxidative stress since sickle RBC redox state is compromised due to an imbalance between prooxidants and antioxidants. This imbalance in redox state is a result of a continuous production of reactive oxygen species (ROS) within the sickle RBC caused by the constant endogenous Hb autoxidation and NADPH oxidase activation, as well as by a deficiency in the antioxidant defense system. Accumulation of non-neutralized ROS within the sickle RBCs affects RBC membrane structure and function, leading to membrane integrity deficiency, low deformability, phosphatidylserine exposure, and release of micro-vesicles. These oxidative stress-associated RBC phenotypic modifications consequently evoke a myriad of physiological changes involved in multi-system manifestations. Thus, RBC oxidative stress in SCD can ultimately instigate major processes involved in organ damage. The critical role of the sickle RBC ROS production and its regulation in SCD pathophysiology are discussed here.
Collapse
|
8
|
Tutwiler V, Litvinov RI, Protopopova A, Nagaswami C, Villa C, Woods E, Abdulmalik O, Siegel DL, Russell JE, Muzykantov VR, Lam WA, Myers DR, Weisel JW. Pathologically stiff erythrocytes impede contraction of blood clots. J Thromb Haemost 2021; 19:1990-2001. [PMID: 34233380 PMCID: PMC10066851 DOI: 10.1111/jth.15407] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Blood clot contraction, volume shrinkage of the clot, is driven by platelet contraction and accompanied by compaction of the erythrocytes and their gradual shape change from biconcave to polyhedral, with the resulting cells named polyhedrocytes. OBJECTIVES Here, we examined the role of erythrocyte rigidity on clot contraction and erythrocyte shape transformation. METHODS We used an optical tracking methodology that allowed us to quantify changes in contracting clot size over time. RESULTS AND CONCLUSIONS Erythrocyte rigidity has been shown to be increased in sickle cell disease (SCD), and in our experiments erythrocytes from SCD patients were 4-fold stiffer than those from healthy subjects. On average, the final extent of clot contraction was reduced by 53% in the clots from the blood of patients with SCD compared to healthy individuals, and there was significantly less polyhedrocyte formation. To test if this reduction in clot contraction was due to the increase in erythrocyte rigidity, we used stiffening of erythrocytes via chemical cross-linking (glutaraldehyde), rigidifying Wrightb antibodies (Wrb ), and naturally more rigid llama ovalocytes. Results revealed that stiffening erythrocytes result in impaired clot contraction and fewer polyhedrocytes. These results demonstrate the role of erythrocyte rigidity in the contraction of blood clots and suggest that the impaired clot contraction/shrinkage in SCD is due to the reduced erythrocyte deformability, which may be an underappreciated mechanism that aggravates obstructiveness of erythrocyte-rich (micro)thrombi in SCD.
Collapse
Affiliation(s)
- Valerie Tutwiler
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Rustem I. Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Anna Protopopova
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Chandrasekaran Nagaswami
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Carlos Villa
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Eric Woods
- Max-Planck-Institut für Eisenforschung GmbH Düsseldorf, Düsseldorf, Germany
| | | | - Don L. Siegel
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - J. Eric Russell
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Vladimir R. Muzykantov
- Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Wilbur A. Lam
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, USA
| | - David R. Myers
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, USA
| | - John W. Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Kundu R, Chandra A, Datta A. Fluorescent Chemical Tools for Tracking Anionic Phospholipids. Isr J Chem 2021. [DOI: 10.1002/ijch.202100003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rajasree Kundu
- Department of Chemical Sciences Tata Institute of Fundamental Research 1 Homi Bhabha Road, Colaba Mumbai 400005 India
| | - Amitava Chandra
- Department of Chemical Sciences Tata Institute of Fundamental Research 1 Homi Bhabha Road, Colaba Mumbai 400005 India
| | - Ankona Datta
- Department of Chemical Sciences Tata Institute of Fundamental Research 1 Homi Bhabha Road, Colaba Mumbai 400005 India
| |
Collapse
|
10
|
Wang J, Hertz L, Ruppenthal S, El Nemer W, Connes P, Goede JS, Bogdanova A, Birnbaumer L, Kaestner L. Lysophosphatidic Acid-Activated Calcium Signaling Is Elevated in Red Cells from Sickle Cell Disease Patients. Cells 2021; 10:456. [PMID: 33672679 PMCID: PMC7924404 DOI: 10.3390/cells10020456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
(1) Background: It is known that sickle cells contain a higher amount of Ca2+ compared to healthy red blood cells (RBCs). The increased Ca2+ is associated with the most severe symptom of sickle cell disease (SCD), the vaso-occlusive crisis (VOC). The Ca2+ entry pathway received the name of Psickle but its molecular identity remains only partly resolved. We aimed to map the involved Ca2+ signaling to provide putative pharmacological targets for treatment. (2) Methods: The main technique applied was Ca2+ imaging of RBCs from healthy donors, SCD patients and a number of transgenic mouse models in comparison to wild-type mice. Life-cell Ca2+ imaging was applied to monitor responses to pharmacological targeting of the elements of signaling cascades. Infection as a trigger of VOC was imitated by stimulation of RBCs with lysophosphatidic acid (LPA). These measurements were complemented with biochemical assays. (3) Results: Ca2+ entry into SCD RBCs in response to LPA stimulation exceeded that of healthy donors. LPA receptor 4 levels were increased in SCD RBCs. Their activation was followed by the activation of Gi protein, which in turn triggered opening of TRPC6 and CaV2.1 channels via a protein kinase Cα and a MAP kinase pathway, respectively. (4) Conclusions: We found a new Ca2+ signaling cascade that is increased in SCD patients and identified new pharmacological targets that might be promising in addressing the most severe symptom of SCD, the VOC.
Collapse
Affiliation(s)
- Jue Wang
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA;
| | - Laura Hertz
- Theoretical Medicine and Biosciences, Saarland University, 66421 Homburg, Germany;
- Experimental Physics, Dynamics of Fluids, Saarland University, 66123 Saarbrücken, Germany;
| | - Sandra Ruppenthal
- Experimental Physics, Dynamics of Fluids, Saarland University, 66123 Saarbrücken, Germany;
- Gynaecology, Obstetrics and Reproductive Medicine, Saarland University Hospital, 66421 Homburg, Germany
| | - Wassim El Nemer
- Etablissement Français du Sang PACA-Corse, Aix Marseille Université, EFS, CNRS, ADES, 13005 Marseille, France;
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France;
| | - Philippe Connes
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France;
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Teal, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Jeroen S. Goede
- Division of Oncology and Hematology, Kantonsspital Winterthur, CH-8401 Winterthur, Switzerland;
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, University of Zürich, CH-8057 Zürich, Switzerland;
| | - Lutz Birnbaumer
- Institute of Biomedical Research (BIOMED), Catholic University of Argentina, C1107AFF Buenos Aires, Argentina;
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, 66421 Homburg, Germany;
- Experimental Physics, Dynamics of Fluids, Saarland University, 66123 Saarbrücken, Germany;
| |
Collapse
|
11
|
Nader E, Romana M, Guillot N, Fort R, Stauffer E, Lemonne N, Garnier Y, Skinner SC, Etienne-Julan M, Robert M, Gauthier A, Cannas G, Antoine-Jonville S, Tressières B, Hardy-Dessources MD, Bertrand Y, Martin C, Renoux C, Joly P, Grau M, Connes P. Association Between Nitric Oxide, Oxidative Stress, Eryptosis, Red Blood Cell Microparticles, and Vascular Function in Sickle Cell Anemia. Front Immunol 2020; 11:551441. [PMID: 33250889 PMCID: PMC7672038 DOI: 10.3389/fimmu.2020.551441] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/14/2020] [Indexed: 12/24/2022] Open
Abstract
Chronic hemolysis, enhanced oxidative stress, and decreased nitric oxide (NO) bioavailability promote vasculopathy in sickle cell anemia (SCA). Oxidative stress and NO are known to modulate eryptosis in healthy red blood cells (RBCs); however, their role in SCA eryptosis and their impact on the genesis of RBC-derived microparticles (RBC-MPs) remains poorly described. RBC-MPs could play a role in vascular dysfunction in SCA. The aims of this study were to evaluate the roles of oxidative stress and NO in eryptosis and RBC-MPs release, and to determine whether RBC-MPs could be involved in vascular dysfunction in SCA. Markers of eryptosis and oxidative stress, plasma RBC-MPs concentration and arterial stiffness were compared between SCA and healthy (AA) individuals. In-vitro experiments were performed to test: 1) the effects of oxidative stress (antioxidant: n-acetylcysteine (NAC); pro-oxidant: cumene hydroperoxide) and NO (NO donor: sodium nitroprusside (SNP); NO-synthase inhibitor (L-NIO)) on eryptosis, RBC deformability and RBC-MP genesis; 2) the effects of SCA/AA-RBC-MPs on human aortic endothelial cell (HAEC) inflammatory phenotype and TLR4 pathway. Eryptosis, RBC-MPs, oxidative stress and arterial stiffness were increased in SCA. NAC increased RBC deformability and decreased eryptosis and RBC-MPs release, while cumene did the opposite. SNP increased RBC deformability and limited eryptosis, but had no effect on RBC-MPs. L-NIO did not affect these parameters. Arterial stiffness was correlated with RBC-MPs concentration in SCA. RBC-MPs isolated directly from SCA blood increased adhesion molecules expression and the production of cytokines by HAEC compared to those isolated from AA blood. TLR4 inhibition alleviated these effects. Our data show that oxidative stress could promote eryptosis and the release of RBC-MPs that are potentially involved in macrovascular dysfunction in SCA.
Collapse
Affiliation(s)
- Elie Nader
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Marc Romana
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Université des Antilles, Pointe-à-Pitre, France.,Université de Paris, Paris, France
| | - Nicolas Guillot
- Laboratoire Carmen Inserm, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, France
| | - Romain Fort
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Département de Médecine Interne, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Emeric Stauffer
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Centre de Médecine du Sommeil et des Maladies Respiratoires, Hospices Civils de Lyon, Hôpital de la Croix Rousse, Lyon, France
| | - Nathalie Lemonne
- Unité Transversale de la Drépanocytose, Hôpital de Pointe-á-Pitre, Hôpital Ricou, Guadeloupe, France
| | - Yohann Garnier
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Université des Antilles, Pointe-à-Pitre, France.,Université de Paris, Paris, France
| | - Sarah Chambers Skinner
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Maryse Etienne-Julan
- Unité Transversale de la Drépanocytose, Hôpital de Pointe-á-Pitre, Hôpital Ricou, Guadeloupe, France
| | | | - Alexandra Gauthier
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Institut d'Hématologie et d'Oncologie Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | - Giovanna Cannas
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Département de Médecine Interne, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | | | - Benoît Tressières
- Centre Investigation Clinique Antilles Guyane, 1424 Inserm, Academic Hospital of Pointe-á-Pitre, Pointe-á-Pitre, Guadeloupe, France
| | - Marie-Dominique Hardy-Dessources
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Université des Antilles, Pointe-à-Pitre, France.,Université de Paris, Paris, France
| | - Yves Bertrand
- Institut d'Hématologie et d'Oncologie Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | - Cyril Martin
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Céline Renoux
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Laboratoire de Biochimie et de Biologie Moléculaire, UF de Biochimie des Pathologies érythrocytaires, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Philippe Joly
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Laboratoire de Biochimie et de Biologie Moléculaire, UF de Biochimie des Pathologies érythrocytaires, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Marijke Grau
- Molecular and Cellular Sport Medicine, Deutsche Sporthochschule Köln, Köln, Germany
| | - Philippe Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
12
|
Oxidative Stress and Thrombosis during Aging: The Roles of Oxidative Stress in RBCs in Venous Thrombosis. Int J Mol Sci 2020; 21:ijms21124259. [PMID: 32549393 PMCID: PMC7352981 DOI: 10.3390/ijms21124259] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/17/2023] Open
Abstract
Mid-life stage adults are at higher risk of developing venous thrombosis (VT)/thromboembolism (VT/E). Aging is characterized by an overproduction of reactive oxygen species (ROS), which could evoke a series of physiological changes involved in thrombosis. Here, we focus on the critical role of ROS within the red blood cell (RBC) in initiating venous thrombosis during aging. Growing evidence has shifted our interest in the role of unjustifiably unvalued RBCs in blood coagulation. RBCs can be a major source of oxidative stress during aging, since RBC redox homeostasis is generally compromised due to the discrepancy between prooxidants and antioxidants. As a result, ROS accumulate within the RBC due to the constant endogenous hemoglobin (Hb) autoxidation and NADPH oxidase activation, and the uptake of extracellular ROS released by other cells in the circulation. The elevated RBC ROS level affects the RBC membrane structure and function, causing loss of membrane integrity, and decreased deformability. These changes impair RBC function in hemostasis and thrombosis, favoring a hypercoagulable state through enhanced RBC aggregation, RBC binding to endothelial cells affecting nitric oxide availability, RBC-induced platelet activation consequently modulating their activity, RBC interaction with and activation of coagulation factors, increased RBC phosphatidylserine exposure and release of microvesicles, accelerated aging and hemolysis. Thus, RBC oxidative stress during aging typifies an ultimate mechanism in system failure, which can affect major processes involved in the development of venous thrombosis in a variety of ways. The reevaluated concept of the critical role of RBC ROS in the activation of thrombotic events during aging will help identify potential targets for novel strategies to prevent/reduce the risk for VT/E or VT/E recurrences in mid-life stage adults.
Collapse
|
13
|
Pretini V, Koenen MH, Kaestner L, Fens MHAM, Schiffelers RM, Bartels M, Van Wijk R. Red Blood Cells: Chasing Interactions. Front Physiol 2019; 10:945. [PMID: 31417415 PMCID: PMC6684843 DOI: 10.3389/fphys.2019.00945] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Human red blood cells (RBC) are highly differentiated cells that have lost all organelles and most intracellular machineries during their maturation process. RBC are fundamental for the nearly all basic physiologic dynamics and they are key cells in the body's respiratory system by being responsible for the oxygen transport to all cells and tissues, and delivery of carbon dioxide to the lungs. With their flexible structure RBC are capable to deform in order to travel through all blood vessels including very small capillaries. Throughout their in average 120 days lifespan, human RBC travel in the bloodstream and come in contact with a broad range of different cell types. In fact, RBC are able to interact and communicate with endothelial cells (ECs), platelets, macrophages, and bacteria. Additionally, they are involved in the maintenance of thrombosis and hemostasis and play an important role in the immune response against pathogens. To clarify the mechanisms of interaction of RBC and these other cells both in health and disease as well as to highlight the role of important key players, we focused our interest on RBC membrane components such as ion channels, proteins, and phospholipids.
Collapse
Affiliation(s)
- Virginia Pretini
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | - Mischa H. Koenen
- Department of Laboratory of Translational Immunology and Department of Pediatric Immunology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Marcel H. A. M. Fens
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Raymond M. Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marije Bartels
- Paediatric Haematology Department, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Richard Van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
14
|
Silver nanoparticles promote procoagulant activity of red blood cells: a potential risk of thrombosis in susceptible population. Part Fibre Toxicol 2019; 16:9. [PMID: 30764834 PMCID: PMC6376700 DOI: 10.1186/s12989-019-0292-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 02/01/2019] [Indexed: 11/15/2022] Open
Abstract
Background Silver nanoparticles (AgNP) are widely used in medical practices owing to their distinct antibacterial, antiviral and anticancer activities. However, with increasing use of AgNP, concerns over its potential toxicity are also escalating. Here, we demonstrated the potential thrombotic effect of AgNP which was mediated by the procoagulant activity of red blood cells (RBCs). Results In freshly isolated human RBCs, AgNP, but not silver microparticles (AgMP), elicited morphological changes, phosphatidylserine (PS) exposure and microvesicles (MV) generation, the key indicators of procoagulant activity in RBCs at concentration ranges (≤ 100 μg/mL) that were free of significant hemolysis. In line with this, AgNP potentiated thrombin generation and adherence of RBCs to endothelial cells, while AgMP did not. Oxidative stress, intracellular calcium increase and ATP depletion were found to underlie the procoagulant effects of AgNP, which led to altered activity of membrane aminophospholipid translocases. These in vitro findings were well reproduced in rat in vivo, where intravenously exposure to AgNP promoted venous thrombosis significantly. Of note, RBCs isolated from cancer patients, who inherently convey the risk of thrombogenesis, were more sensitive to the procoagulant effects of AgNP. In addition, AgNP significantly potentiated the procoagulant effects of a chemotherapeutic drug, paclitaxel. Conclusion Collectively, these results suggest that AgNP may have prothrombotic risks by promoting procoagulant activity of RBCs and caution shall be taken for its use in the population sensitive to thrombosis like cancer patients. Electronic supplementary material The online version of this article (10.1186/s12989-019-0292-6) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Gao C, Yang X, Li J, Wang W, Hou J, Li H, Tan X, Shi J, Fu Y, Zhou J. Role of erythrocytes and platelets in the hypercoagulable status in polycythemia vera through phosphatidylserine exposure and microparticle generation. Thromb Haemost 2017; 109:1025-32. [DOI: 10.1160/th12-11-0811] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/24/2013] [Indexed: 02/02/2023]
Abstract
SummaryThe development of thrombosis in polycythaemia vera (PV) involves multifactorial processes including pathological activation of blood cells. Release of microparticles (MPs) by activated cells in diseases is associated with thrombotic risk, but relatively few data are available in PV. The aim of the present study was to investigate the increase in MP release and exposure of phosphatidylserine (PS) on the outer membrane of MP-origin cells in patients with PV, and to analyse their procoagulant activity (PCA). PS-positive MPs and cells were detected by flow cytometry, while PCA was assessed with clotting time and purified coagulation complex assays. We found that PV patients had elevated circulating lactadherin+ MPs, which mostly originating from erythrocytes, platelets, granulocytes, and endothelial cells, as well as increased PS exposing erythrocytes/platelets as compared to secondary polycythaemia patients or healthy controls. These PS-bearing MPs and cells were highly procoagulant. Moreover, lactadherin competed factor V and VIII to PS and inhibited about 90% of the detected PCA in a dose-response manner while anti-TF antibody did no significant inhibition. Treatment with hydroxyurea is associated with a decrease in PS exposure and lactadherin+ MP release of erythrocytes/platelets. Our data demonstrate that PV patients are characterised by increased circulating procoagulant MPs and PS exposing erythrocytes/platelets, which could contribute to the hypercoagulable state in these patients.
Collapse
|
16
|
Sarkar A, Sengupta D, Mandal S, Sen G, Dutta Chowdhury K, Chandra Sadhukhan G. Treatment with garlic restores membrane thiol content and ameliorates lead induced early death of erythrocytes in mice. ENVIRONMENTAL TOXICOLOGY 2015; 30:396-410. [PMID: 23997012 DOI: 10.1002/tox.21901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 06/02/2023]
Abstract
Sequelae of chronic lead (Pb(2+) ) toxicity includes anemia that is partially due to early death of erythrocytes characterized by excess accumulation of ROS and downregulation of antioxidant system causing oxidative stress and externalization of phosphatidylserine. In this study, pathophysiological based therapeutic application of garlic was evaluated against erythrocyte death. Results suggest that garlic administration prevents oxidative stress, restored the antioxidant balance in erythrocytes of Pb(2+) exposed mice. Moreover, in vitro studies revealed that activity of both scramblase and aminophospholipid translocase could be changed by modifying the critical sulfhydryl groups in presence of dithiothreitol during Pb(2+) exposure. Data also indicated that garlic treatment in Pb(2+) exposed mice exhibited sharp decline in PS exposure and increase in erythrocyte membrane thiol group followed by increase in aminophospholipid translocase activity and decline in scramblase activity. Findings indicated that garlic has the ability to restore the lifespan of erythrocytes during Pb(2+) exposure.
Collapse
Affiliation(s)
- Avik Sarkar
- Genetics and Molecular Biology Laboratory, Vidyasagar College, 39 Sankar Ghosh Lane, Kolkata, 700006, India
| | | | | | | | | | | |
Collapse
|
17
|
Mohanty JG, Nagababu E, Rifkind JM. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front Physiol 2014; 5:84. [PMID: 24616707 PMCID: PMC3937982 DOI: 10.3389/fphys.2014.00084] [Citation(s) in RCA: 370] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/12/2014] [Indexed: 01/17/2023] Open
Abstract
Red Blood Cells (RBCs) need to deform and squeeze through narrow capillaries. Decreased deformability of RBCs is, therefore, one of the factors that can contribute to the elimination of aged or damaged RBCs from the circulation. This process can also cause impaired oxygen delivery, which contributes to the pathology of a number of diseases. Studies from our laboratory have shown that oxidative stress plays a significant role in damaging the RBC membrane and impairing its deformability. RBCs are continuously exposed to both endogenous and exogenous sources of reactive oxygen species (ROS) like superoxide and hydrogen peroxide (H2O2). The bulk of the ROS are neutralized by the RBC antioxidant system consisting of both non-enzymatic and enzymatic antioxidants including catalase, glutathione peroxidase and peroxiredoxin-2. However, the autoxidation of hemoglobin (Hb) bound to the membrane is relatively inaccessible to the predominantly cytosolic RBC antioxidant system. This inaccessibility becomes more pronounced under hypoxic conditions when Hb is partially oxygenated, resulting in an increased rate of autoxidation and increased affinity for the RBC membrane. We have shown that a fraction of peroxyredoxin-2 present on the RBC membrane may play a major role in neutralizing these ROS. H2O2 that is not neutralized by the RBC antioxidant system can react with the heme producing fluorescent heme degradation products (HDPs). We have used the level of these HDP as a measure of RBC oxidative Stress. Increased levels of HDP are detected during cellular aging and various diseases. The negative correlation (p < 0.0001) between the level of HDP and RBC deformability establishes a contribution of RBC oxidative stress to impaired deformability and cellular stiffness. While decreased deformability contributes to the removal of RBCs from the circulation, oxidative stress also contributes to the uptake of RBCs by macrophages, which plays a major role in the removal of RBCs from circulation. The contribution of oxidative stress to the removal of RBCs by macrophages involves caspase-3 activation, which requires oxidative stress. RBC oxidative stress, therefore, plays a significant role in inducing RBC aging.
Collapse
Affiliation(s)
- Joy G Mohanty
- Molecular Dynamics Section, Laboratory of Molecular Gerontology, National Institute on Aging Baltimore, MD, USA
| | - Enika Nagababu
- Molecular Dynamics Section, Laboratory of Molecular Gerontology, National Institute on Aging Baltimore, MD, USA
| | - Joseph M Rifkind
- Molecular Dynamics Section, Laboratory of Molecular Gerontology, National Institute on Aging Baltimore, MD, USA
| |
Collapse
|
18
|
Alaarg A, Schiffelers RM, van Solinge WW, van Wijk R. Red blood cell vesiculation in hereditary hemolytic anemia. Front Physiol 2013; 4:365. [PMID: 24379786 PMCID: PMC3862113 DOI: 10.3389/fphys.2013.00365] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/25/2013] [Indexed: 12/14/2022] Open
Abstract
Hereditary hemolytic anemia encompasses a heterogeneous group of anemias characterized by decreased red blood cell survival because of inherited membrane, enzyme, or hemoglobin disorders. Affected red blood cells are more fragile, less deformable, and more susceptible to shear stress and oxidative damage, and show increased vesiculation. Red blood cells, as essentially all cells, constitutively release phospholipid extracellular vesicles in vivo and in vitro in a process known as vesiculation. These extracellular vesicles comprise a heterogeneous group of vesicles of different sizes and intracellular origins. They are described in literature as exosomes if they originate from multi-vesicular bodies, or as microvesicles when formed by a one-step budding process directly from the plasma membrane. Extracellular vesicles contain a multitude of bioactive molecules that are implicated in intercellular communication and in different biological and pathophysiological processes. Mature red blood cells release in principle only microvesicles. In hereditary hemolytic anemias, the underlying molecular defect affects and determines red blood cell vesiculation, resulting in shedding microvesicles of different compositions and concentrations. Despite extensive research into red blood cell biochemistry and physiology, little is known about red cell deformability and vesiculation in hereditary hemolytic anemias, and the associated pathophysiological role is incompletely assessed. In this review, we discuss recent progress in understanding extracellular vesicles biology, with focus on red blood cell vesiculation. Also, we review recent scientific findings on the molecular defects of hereditary hemolytic anemias, and their correlation with red blood cell deformability and vesiculation. Integrating bio-analytical findings on abnormalities of red blood cells and their microvesicles will be critical for a better understanding of the pathophysiology of hereditary hemolytic anemias.
Collapse
Affiliation(s)
- Amr Alaarg
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht Utrecht, Netherlands ; Department of Pharmaceutical Sciences, Utrecht University Utrecht, Netherlands
| | - Raymond M Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht Utrecht, Netherlands ; Department of Pharmaceutical Sciences, Utrecht University Utrecht, Netherlands
| | - Wouter W van Solinge
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht Utrecht, Netherlands
| | - Richard van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
19
|
Wang J, Wagner-Britz L, Bogdanova A, Ruppenthal S, Wiesen K, Kaiser E, Tian Q, Krause E, Bernhardt I, Lipp P, Philipp SE, Kaestner L. Morphologically homogeneous red blood cells present a heterogeneous response to hormonal stimulation. PLoS One 2013; 8:e67697. [PMID: 23840765 PMCID: PMC3695909 DOI: 10.1371/journal.pone.0067697] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 05/22/2013] [Indexed: 11/19/2022] Open
Abstract
Red blood cells (RBCs) are among the most intensively studied cells in natural history, elucidating numerous principles and ground-breaking knowledge in cell biology. Morphologically, RBCs are largely homogeneous, and most of the functional studies have been performed on large populations of cells, masking putative cellular variations. We studied human and mouse RBCs by live-cell video imaging, which allowed single cells to be followed over time. In particular we analysed functional responses to hormonal stimulation with lysophosphatidic acid (LPA), a signalling molecule occurring in blood plasma, with the Ca2+ sensor Fluo-4. Additionally, we developed an approach for analysing the Ca2+ responses of RBCs that allowed the quantitative characterization of single-cell signals. In RBCs, the LPA-induced Ca2+ influx showed substantial diversity in both kinetics and amplitude. Also the age-classification was determined for each particular RBC and consecutively analysed. While reticulocytes lack a Ca2+ response to LPA stimulation, old RBCs approaching clearance generated robust LPA-induced signals, which still displayed broad heterogeneity. Observing phospatidylserine exposure as an effector mechanism of intracellular Ca2+ revealed an even increased heterogeneity of RBC responses. The functional diversity of RBCs needs to be taken into account in future studies, which will increasingly require single-cell analysis approaches. The identified heterogeneity in RBC responses is important for the basic understanding of RBC signalling and their contribution to numerous diseases, especially with respect to Ca2+ influx and the associated pro-thrombotic activity.
Collapse
Affiliation(s)
- Jue Wang
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar, Germany
| | | | - Anna Bogdanova
- Institute of Veterinary Physiology, Vetsuisse Faculty and the Zürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Sandra Ruppenthal
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar, Germany
| | - Kathrina Wiesen
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar, Germany
| | - Elisabeth Kaiser
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar, Germany
| | - Qinghai Tian
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar, Germany
| | - Elmar Krause
- Physiology, Saarland University, Homburg/Saar, Germany
| | - Ingolf Bernhardt
- Biophysics Laboratory, Saarland University, Saarbrücken, Germany
| | - Peter Lipp
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar, Germany
| | - Stephan E. Philipp
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg/Saar, Germany
| | - Lars Kaestner
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar, Germany
- * E-mail:
| |
Collapse
|
20
|
Abstract
SIGNIFICANCE The physiological mechanism(s) for recognition and removal of red blood cells (RBCs) from circulation after 120 days of its lifespan is not fully understood. Many of the processes thought to be associated with the removal of RBCs involve oxidative stress. We have focused on hemoglobin (Hb) redox reactions, which is the major source of RBC oxidative stress. RECENT ADVANCES The importance of Hb redox reactions have been shown to originate in large parts from the continuous slow autoxidation of Hb producing superoxide and its dramatic increase under hypoxic conditions. In addition, oxidative stress has been shown to be associated with redox reactions that originate from Hb reactions with nitrite and nitric oxide (NO) and the resultant formation of highly toxic peroxynitrite when NO reacts with superoxide released during Hb autoxidation. CRITICAL ISSUES The interaction of Hb, particularly under hypoxic conditions with band 3 of the RBC membrane is critical for the generating the RBC membrane changes that trigger the removal of cells from circulation. These changes include exposure of antigenic sites, increased calcium leakage into the RBC, and the resultant leakage of potassium out of the RBC causing cell shrinkage and impaired deformability. FUTURE DIRECTIONS The need to understand the oxidative damage to specific membrane proteins that result from redox reactions occurring when Hb is bound to the membrane. Proteomic studies that can pinpoint the specific proteins damaged under different conditions will help elucidate the cellular aging processes that result in cells being removed from circulation.
Collapse
Affiliation(s)
- Joseph M Rifkind
- Molecular Dynamics Section, National Institute on Aging, Baltimore, MD 21224, USA.
| | | |
Collapse
|
21
|
Pandey S, Sharma A, Dahia S, Shah V, Sharma V, Mishra RM, Pandey S, Saxena R. Biochemical indicator of sickle cell disease: preliminary report from India. Indian J Clin Biochem 2012; 27:191-5. [PMID: 23542695 PMCID: PMC3358379 DOI: 10.1007/s12291-011-0162-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 09/03/2011] [Indexed: 10/17/2022]
Abstract
Blood biochemistry has significant effect on pathophysiology of human body. Recently few studies found the association of biochemical abnormalities in sickle cell patients. Sickle cell disease showed clinical variability where African ancestors have severe phenotype than Indian sicklers. Our aim was to evaluate the biochemicals in sickle cell patients and their effect on severity. Here we present the comparative biochemical levels in sickle cell patients as well as controls. Sickle cell patients diagnosed by HPLC and biochemical analysis done by Beckman-auto analyzer. T test applied for statistical analysis. Result showed the renal abnormality lesser in patients and related biochemical within the normal range and statistically not significant. Electrolytes, hepatic enzymes, alkaline phosphatase and glucose were elevated and statistically significant (P value <0.05). Observation of the study concludes the biochemical abnormality play a significant role in sickle cell patient's physiopathology and can be used to management of the disease.
Collapse
Affiliation(s)
- S. Pandey
- Department of Hematology, All India Institute of Medical Sciences (AIIMS), I.R.C.H. Building (1st Floor), Ansari Nagar, New Delhi, 110 029 India
| | - A. Sharma
- Department of Hematology, All India Institute of Medical Sciences (AIIMS), I.R.C.H. Building (1st Floor), Ansari Nagar, New Delhi, 110 029 India
| | - S. Dahia
- Department of Hematology, All India Institute of Medical Sciences (AIIMS), I.R.C.H. Building (1st Floor), Ansari Nagar, New Delhi, 110 029 India
| | - V. Shah
- Department of Cardiac Biochemistry, AIIMS, New Delhi, India
| | - V. Sharma
- Department of Hematology, All India Institute of Medical Sciences (AIIMS), I.R.C.H. Building (1st Floor), Ansari Nagar, New Delhi, 110 029 India
| | - R. M. Mishra
- Department of Environmental Biology, APS University, Rewa, India
| | - Sw. Pandey
- Department of Hematology, All India Institute of Medical Sciences (AIIMS), I.R.C.H. Building (1st Floor), Ansari Nagar, New Delhi, 110 029 India
| | - R. Saxena
- Department of Hematology, All India Institute of Medical Sciences (AIIMS), I.R.C.H. Building (1st Floor), Ansari Nagar, New Delhi, 110 029 India
| |
Collapse
|
22
|
Mandal S, Mukherjee S, Chowdhury KD, Sarkar A, Basu K, Paul S, Karmakar D, Chatterjee M, Biswas T, Sadhukhan GC, Sen G. S-allyl cysteine in combination with clotrimazole downregulates Fas induced apoptotic events in erythrocytes of mice exposed to lead. Biochim Biophys Acta Gen Subj 2012; 1820:9-23. [DOI: 10.1016/j.bbagen.2011.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/28/2011] [Accepted: 09/30/2011] [Indexed: 01/04/2023]
|