1
|
Liu J, Tan H, Wang J, Lin C, Xiao H, Liu J, Xu Z, Huang C, Bian Z. Understanding of Polydopamine Formulation for Oral Therapeutic Delivery in Ulcerative Colitis Treatment. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION 2024. [DOI: 10.1002/ppsc.202400186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Indexed: 01/03/2025]
Abstract
AbstractOral therapeutic delivery remains challenged by gastrointestinal tract (GI) barriers, which hinders the successful transition of therapeutic candidates into clinical treatments. Polydopamine (PDA), with its versatile ability to overcome GI barriers, offers a promising drug formulation technology to address the challenge. Nevertheless, many critical questions remain unanswered regarding the practicality of PDA‐based formulations. Building on the previous research, which tackled multiple physicochemical aspects, the current study aims to address another three outstanding issues, including the quantification of residual dopamine (DA) in PDA‐based formulations, the examination of these formulations stimulatory effects on colon tissue, and the potential anti‐inflammatory properties. To facilitate this investigation, a curcumin‐containing nanomedicine (CP@CCS) is prepared as a representative PDA‐based formulation. The results reveal a marked decrease of residual DA within the formulation. In the treatment of ulcerative colitis (UC), the formulation do not provoke the substantial contractions in colon tissue typically induced by DA. Furthermore, in vivo evaluation verified the supplementary anti‐UC benefits of PDA. These outcomes add evidence for the practicality of PDA‐based formulations in terms of safety and therapeutic efficacy. Finally, a conceptual framework is proposed for understanding the role of PDA in oral therapeutic delivery, thereby providing insightful directions for subsequent research.
Collapse
Affiliation(s)
- Jie Liu
- Centre for Chinese Herbal Medicine Drug Development Limited Hong Kong Baptist University Hong Kong 000000 China
- School of Chinese Medicine Hong Kong Baptist University Hong Kong 000000 China
- GoodMedX Tech Limited Hong Kong 000000 China
- Institute of Biomedical Health Technology and Engineering and Institute of Systems and Physical Biology Shenzhen Bay Laboratory Shenzhen Guangdong 518107 China
| | - Hui‐Shi Tan
- Department of Gastroenterology and Hepatology Guangzhou First People's Hospital School of Medicine South China University of Technology Guangzhou 510180 China
| | - Jun Wang
- Department of Gastroenterology The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou 510330 China
| | - Cheng‐Yuan Lin
- Centre for Chinese Herbal Medicine Drug Development Limited Hong Kong Baptist University Hong Kong 000000 China
| | - Hai‐Tao Xiao
- School of Pharmaceutical Sciences Shenzhen University Shenzhen 518060 China
| | - Jun Liu
- Department of General Surgery Jiujiang No.1 People's Hospital Jiujiang Jiangxi 332000 China
| | - Zhi‐Ping Xu
- Institute of Biomedical Health Technology and Engineering and Institute of Systems and Physical Biology Shenzhen Bay Laboratory Shenzhen Guangdong 518107 China
- Australian Institute for Bioengineering and Nanotechnology the University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Chong‐Yang Huang
- Centre for Chinese Herbal Medicine Drug Development Limited Hong Kong Baptist University Hong Kong 000000 China
- Department of Gastroenterology The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou 510330 China
| | - Zhao‐Xiang Bian
- Centre for Chinese Herbal Medicine Drug Development Limited Hong Kong Baptist University Hong Kong 000000 China
- School of Chinese Medicine Hong Kong Baptist University Hong Kong 000000 China
| |
Collapse
|
2
|
Zhou T, Li X. Chemically modified seaweed polysaccharides: Improved functional and biological properties and prospective in food applications. Compr Rev Food Sci Food Saf 2024; 23:e13396. [PMID: 38925601 DOI: 10.1111/1541-4337.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Seaweed polysaccharides are natural biomacromolecules with unique physicochemical properties (e.g., good gelling, emulsifying, and film-forming properties) and diverse biological activities (e.g., anticoagulant, antioxidant, immunoregulatory, and antitumor effects). Furthermore, they are nontoxic, biocompatible and biodegradable, and abundant in resources. Therefore, they have been widely utilized in food, cosmetics, and pharmaceutical industries. However, their properties and bioactivities sometimes are not satisfactory for some purposes. Modification of polysaccharides can impart the amphiphilicity and new functions to the biopolymers and change the structure and conformation, thus effectively improving their functional properties and biological activities so as to meet the requirement for targeted applications. This review outlined the modification methods of representative red algae polysaccharides (carrageenan and agar), brown algae polysaccharides (fucoidan, alginate, and laminaran), and green algae polysaccharides (ulvan) that have potential food applications, including etherification, esterification, degradation, sulfation, phosphorylation, selenylation, and so on. The improved functional properties and bioactivities of the modified seaweed polysaccharides and their potential food applications are also summarized.
Collapse
Affiliation(s)
- Tao Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| | - Xinyue Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
3
|
Ragole VD, Wankhede DS, Gayakwad SV. Biologically active mixed ligand complexes of Co(II), Ni(II), Cu(II) and Zn(II) as potential antimalarial, antidibetic and anticancer agents. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2043377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Vikas D. Ragole
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| | - Dnyaneshwar S. Wankhede
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| | - Sonaji V. Gayakwad
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| |
Collapse
|
4
|
A Dioxidovanadium Complex cis-[VO2 (obz) py] Attenuates Hyperglycemia in Streptozotocin (STZ)-Induced Diabetic Male Sprague-Dawley Rats via Increased GLUT4 and Glycogen Synthase Expression in the Skeletal Muscle. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5372103. [PMID: 35140800 PMCID: PMC8820858 DOI: 10.1155/2022/5372103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/22/2021] [Accepted: 12/11/2021] [Indexed: 11/17/2022]
Abstract
Vanadium has demonstrated antihyperglycemic effects in diabetes mellitus (DM) but is, however, associated with toxicity. Therefore, new vanadium complexes envisaged to possess heightened therapeutic potency while rendering less toxicity are being explored. Accordingly, the aim of the study was to investigate the effects of a dioxidovanadium (V) complex, cis-[VO2 (obz) py], on selected glucose metabolism markers in streptozotocin (STZ)-induced diabetic rats. STZ-induced diabetic rats were treated orally with cis-[VO2 (obz) py] (10, 20, and 40 mg/kg) twice every 3rd day for 5 weeks. Blood glucose concentrations, body weight, and food and water intake were monitored weekly, for 5 weeks. Rats were then euthanized after which blood, liver, and muscle tissues were collected for biochemical analysis. The administration of dioxidovanadium complex significantly decreased blood glucose concentrations throughout the 5-week period in comparison with the diabetic control (DC). The attenuation of hyperglycemia was accompanied by an increased glycogen concentration in both liver and muscle tissues in the treated groups. Furthermore, a significant increase was observed in the expression of glucose transporter type 4 (GLUT4) in the skeletal muscle tissues and glycogen synthase in the liver tissues. These findings indicate that our vanadium complex cis-[VO2 (obz) py] may exert antihyperglycemic effects through increased glucose uptake, glycogen synthesis, and increased GLUT4 and glycogen synthase expression.
Collapse
|
5
|
Dipteran Carboxymethyl Chitosan as an Inexhaustible Derivative with a Potential Antiproliferative Activity in Hepatocellular Carcinoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4396305. [PMID: 33062011 PMCID: PMC7539079 DOI: 10.1155/2020/4396305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 11/18/2022]
Abstract
Traditional folk therapies indicate that insects have diverse medicinal potentials. However, the therapeutic application of insect chitosan and its derivatives has not been explored. To investigate the application of chitosan and its derivatives, the carboxymethyl derivative of chitosan (CM-Ch) was extracted from two dipteran larvae species, Chrysomya albiceps and Sarcophaga aegyptiaca. The degree of deacetylation (DD) and CM-Ch functional groups were validated using Fourier-transform infrared (FTIR) spectroscopy analysis and proton nuclear magnetic resonance spectroscopy (1H NMR), respectively. The molecular weight was estimated using MALDI-TOF MS analysis. The effect of CM-Ch on the morphology and proliferation of human liver HepG2 cancer cells was assessed. IC50 of CM-Ch induced significant growth-inhibitory effects in HepG2 cells. CM-Ch treatment altered the morphology of HepG2 in a dose-dependent manner and induced apoptosis in a caspase-dependent manner. CM-Ch treatment showed no signs of toxicity, and no alterations in liver and kidney biochemical markers were observed in albino rats. A CM-Ch derivative from commercial crustacean chitosan was used to assess the efficacy of the insect-derived CM-Ch. The data presented here introduce insect CM-Ch as a promising, inexhaustible, safe derivative of chitosan with antitumor potential in liver cancer. This is the first report highlighting the anticancer activity of insect CM-Ch in hepatocellular carcinoma cells.
Collapse
|
6
|
Synthesis, Characterization, and Anti-diabetic Activity of Some Novel Vanadium-Folate-Amino Acid Materials. Biomolecules 2020; 10:biom10050781. [PMID: 32443614 PMCID: PMC7277503 DOI: 10.3390/biom10050781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
A new six intraperitoneal injections insulin-mimetic vanadyl(IV) compounds [(VO)(FA)(AAn)] (where n = 1–6: AA1 = isoleucine, AA2 = threonine, AA3 = proline, AA4 = phenylalanine, AA5 = lysine, and AA6 = glutamine) were synthesized by the chemical reactions between folic acid (FA), VOSO4, and amino acids (AAn) with equal molar ratio 1:1:1 in neutralized media. These complexes were characterized by elemental analysis and estimation of vanadyl(IV) metal ions. The thermal stability behavior of these complexes was studied by TG-DTG-DTA analyses. The structures of these complexes were elucidated by spectroscopic methods like infrared, electron spin resonance (ESR), and solid reflectance spectroscopes. The powder X-ray diffraction (XRD) study suggested the crystalline nature of the complexes. Magnetic moments and electronic spectra revealed the square-pyramid geometrical structure of the complexes. The conductivity results refereed that all synthesized vanadyl(IV) complexes were of a non-electrolyte behavior. The infrared spectra assignments of these complexes revealed that the FAH2 and AAn chelates act as a bidentate ligation. The chelation towards vanadyl (IV) ions existed via deprotonation of one of the carboxylic groups of FAH2 drug ligand, and so amino acids act as bidentate ligands via N-amino and O-carboxylate groups. Both scanning and transmission electron microscope (SEM and TEM) techniques were used to investigate the surface morphology. The main task of this research is the aim of designing a new insulin alternative antidiabetic drug agent. The antidiabetic efficiency of these complexes was evaluated in streptozotocin-induced diabetic male albino rats. Liver and kidney functions, insulin and blood glucose levels, lipid profile, and superoxide dismutase antioxidant (SOD) are verified identifiers for the efficiency of VO(IV)/FA/AAn system compounds as antidiabetic drug agents.
Collapse
|
7
|
Nazos TT, Kokarakis EJ, Valsami EA, Stratigakis NC, Poloniataki EG, Sfendourakis GP, Ghanotakis DF. Characterization of a novel herbicide and antibiotic-resistant Chlorella sp. with an extensive extracellular matrix. PHOTOSYNTHESIS RESEARCH 2020; 143:315-334. [PMID: 31965466 DOI: 10.1007/s11120-020-00710-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
A herbicide and antibiotic-resistant microalgal strain, isolated from a eutrophic site at Giofyros river (Heraklion, Crete, Greece) was extensively characterized. In the presence of relatively high concentrations of common photosynthesis inhibitors (DCMU and atrazine), as well as various antibiotics (spectinomycin, kanamycin, and chloramphenicol), the green microalga was able to increase its biomass in approximately equal levels compared to the control. Despite the high concentrations of the inhibitors, photosynthetic efficiency and chlorophyll a amount per dry cell biomass were comparable to those of control cultures in almost all cases. 18S rDNA analysis showed that this microalga belongs to the Chlorella genus. Optical and electron microscopy studies revealed the presence of an extensive extracellular matrix (EM) that surrounds the cells and plays an important role in colony formation and cell-cell interactions. Fourier transform infrared spectroscopy provided evidence that the EM consists of a polysaccharide. This matrix could be separated from the cells with a simple centrifugation. Depending on growth conditions, the dry cell biomass of this Chlorella strain was found to contain 35-39% proteins and 27-42% carbohydrates. The results of this study have demonstrated that the EM plays a protective role for cell homeostasis maintenance against the various chemical agents. This green microalga is a suitable candidate for further studies regarding sustainable biomass production in waste waters for a series of applications.
Collapse
Affiliation(s)
- Theocharis T Nazos
- Department of Chemistry, University of Crete, Vasilika Voutes, 70013, Heraklion, Crete, Greece
| | - Emmanuel J Kokarakis
- Department of Chemistry, University of Crete, Vasilika Voutes, 70013, Heraklion, Crete, Greece
| | | | | | - Eleni G Poloniataki
- Department of Chemistry, University of Crete, Vasilika Voutes, 70013, Heraklion, Crete, Greece
| | - Georgios P Sfendourakis
- Department of Chemistry, University of Crete, Vasilika Voutes, 70013, Heraklion, Crete, Greece
| | - Demetrios F Ghanotakis
- Department of Chemistry, University of Crete, Vasilika Voutes, 70013, Heraklion, Crete, Greece.
| |
Collapse
|
8
|
Al-Wasidi AS, Al-Jafshar NM, Al-Anazi AM, Refat MS, Ismail LA, Al-Omar MA, Naglah AM, Kalmouch A. Synthesis, Characterization, and Anti-Diabetic Therapeutic Activity of New Vanadyl(II) Complexes with Orotic Acid and Different Amino Acids Mixed Ligands. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363219100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Naglah AM, Refat MS, Al-Omar MA, Bhat MA, AlKahtani HM, Al-Wasidi AS. Synthesis of a vanadyl (IV) folate complex for the treatment of diabetes: spectroscopic, structural, and biological characterization. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1409-1420. [PMID: 31118576 PMCID: PMC6498434 DOI: 10.2147/dddt.s190310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background This study aimed to design a compound with folic acid (FAH2) and vanadyl (IV) for use in the treatment of diabetes. Materials and methods A novel vanadyl (IV) FAH2 complex was synthesized and characterized [(FA2-)(VO2+)]⋅3H2O. The speculated structure of this folate complex was determined using physicochemical techniques including microanalytical analysis, conductivity studies, spectroscopic examination, magnetic measurements, thermogravimetric analyses, and morphological X-ray powder diffraction, and scanning and transmission electron microscopies. The anti-diabetic therapeutic potential of the complexes was tested in a 30-day streptozotocin-induced diabetes rat model. Results The conductivity test of the complex implied electrolyte behavior. The spectroscopic assessments of the isolated dark yellow solid complex revealed that FAH2 acts as a bidentate ligand. The coordination process with two vanadyl (IV) ions occurred through the deprotonation of both carboxyl groups of FAH2 in a regular square pyramid arrangement at a 2(FA)2-: 2(VO)2+ molar ratio. XRD, SEM, and TEM analyses revealed the complex crystalline nature of the complex. Treating diabetic rats with vanadyl (IV) FAH2 complex significantly improved many biological parameters relevant to diabetes pathology with minimal toxicity. Conclusion The data generated in this study indicate that the synthesized vanadyl (IV) folate complex acts as a model of anti-diabetic agent.
Collapse
Affiliation(s)
- Ahmed M Naglah
- Department of Pharmaceutical Chemistry, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, .,Peptide Chemistry Department, Chemical Industries Research Division, National Research Centre, Cairo 12622, Egypt,
| | - Moamen S Refat
- Chemistry Department, Faculty of Science, Taif University, Taif 21974, Saudi Arabia.,Department of Chemistry, Faculty of Science, Port Said University, Port Said, Egypt
| | - Mohamed A Al-Omar
- Department of Pharmaceutical Chemistry, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia,
| | - Mashooq A Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamad M AlKahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asma S Al-Wasidi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| |
Collapse
|
10
|
Synthesis and Biological Evaluations of a Novel Oxidovanadium(IV) Adenosine Monophosphate Complex as Anti-Diabetic Agent. CRYSTALS 2019. [DOI: 10.3390/cryst9040208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the present study, a novel [(AMP)(VO)(H2O)2] complex was formed through chemical reactions between oxidovanadium(IV)sulfate and adenosine monophosphate. This complex was characterized using various analyses, including microanalytical, molar conductivity, spectroscopic (solid reflectance and FTIR), magnetic susceptibility, thermogravimetric (TGA), X-ray powder diffraction (XRD), and scanning (SEM) and transmission (TEM) electron microscopy. The in vivo antidiabetic activity of the oxidovanadium(IV) complex was determined using streptozotocin-induced rats. The results suggested that the synthesized complex can be used as an antidiabetic agent based on the observed biochemical effects.
Collapse
|
11
|
Feiz MS, Meshkini A. Targeted delivery of adenosine 5'-triphosphate using chitosan-coated mesoporous hydroxyapatite: A theranostic pH-sensitive nanoplatform with enhanced anti-cancer effect. Int J Biol Macromol 2018; 129:1090-1102. [PMID: 30170062 DOI: 10.1016/j.ijbiomac.2018.08.158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/28/2018] [Accepted: 08/27/2018] [Indexed: 12/16/2022]
Abstract
In this Study, a pH-sensitive nanoplatform made up of chitosan (Cs) and mesoporous hydroxyapatite (HAP) was synthesized and employed for delivering of adenosine 5'-triphosphate (ATP). The fabricated system was decorated with folic acid (FA), providing both tumor targeting and imaging. The FA.Cs.ATP@HAP nanoparticles displayed enhanced colloidal stability and controlled drug release. In vitro biological experiments revealed that FA.Cs.ATP@HAP was internalized into the tumor cells with a high efficiency in a time-dependent manner and exhibited strong fluorescence within the cells. Compared with free ATP, the FA.Cs.ATP@HAP nanoparticles exhibited a significant inhibition effect against the proliferation of the tumor cells (Saos-2, T47D, and MCF7) in a dose-dependent manner, while no significant cytotoxic effect was observed in the normal cells (HEK-293), indicating the selective cytotoxicity of the fabricated nanosystem against the tumor cells. Also, the mechanism of action of FA.Cs.ATP@HAP was investigated, and it was found that it induces a high rate of apoptosis in the tumor cells through a decrease in mitochondrial membrane potential and caspase activation. Based on these findings, FA.Cs.ATP@HAP is a novel biomedical material with targeting, imaging, and high anticancer properties against tumor cells, and it could be considered as a promising candidate for cancer therapy.
Collapse
Affiliation(s)
- Mohadeseh S Feiz
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | - Azadeh Meshkini
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.
| |
Collapse
|
12
|
El-Shenawy NS, Refat MS, Fakihi FH. Decreasing the diabetic complication by vanadyl(VO)2+/vitamin B 6 complex in alloxan-induced diabetic mice. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:911-930. [PMID: 23397279 DOI: 10.1007/s10856-013-4852-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/16/2013] [Indexed: 06/01/2023]
Abstract
The scope of this work was to synthesize a novel bifunctionalized vanadyl(VO)(2+)/vitamin B 6 complex. The diabetic therapeutic efficacy of the new complex was investigated in alloxan-induced diabetic mice. The results suggested that vanadyl(VO)(2+)/vit B6 complex has an anti-diabetic potency, improved the lipid profile and liver and kidney functions. The new complex possesses an antioxidant activity. The current results support the therapeutic potentiality of vanadyl(VO)(2+)/vitamin B 6 complex for the management of diabetes.
Collapse
Affiliation(s)
- Nahla S El-Shenawy
- Biology Department, Faculty of Science, Taif University, Qurwa, Taif, Saudi Arabia.
| | | | | |
Collapse
|
13
|
Antihyperglycemic effects of fermented and nonfermented mung bean extracts on alloxan-induced-diabetic mice. J Biomed Biotechnol 2012; 2012:285430. [PMID: 23091343 PMCID: PMC3469204 DOI: 10.1155/2012/285430] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 07/30/2012] [Accepted: 08/26/2012] [Indexed: 12/03/2022] Open
Abstract
Mung bean was reported as a potential antidiabetic agent while fermented food has been proposed as one of the major contributors that can reduce the risk of diabetes in Asian populations. In this study, we have compared the normoglycemic effect, glucose-induced hyperglycemic effect, and alloxan-induced hyperglycemic effect of fermented and nonfermented mung bean extracts. Our results showed that fermented mung bean extracts did not induce hypoglycemic effect on normal mice but significantly reduced the blood sugar levels of glucose- and alloxan-induced hyperglycemic mice. The serum levels of cholesterol, triglyceride (TG), and low-density lipoprotein (LDL) were also lowered while insulin secretion and antioxidant level as measured by malonaldehyde (MDA) assays were significantly improved in the plasma of the fermented mung bean-treated group in alloxan-induced hyperglycemic mouse. These results indicated that fermentation using Mardi Rhizopus sp. strain 5351 inoculums could enhance the antihyperglycemic and the antioxidant effects of mung bean in alloxan-treated mice. The improvement in the antihyperglycemic effect may also be contributed by the increased content of GABA and the free amino acid that are present in the fermented mung bean extracts.
Collapse
|