1
|
Deubler M, Weißenborn L, Leukel S, Horn AHC, Eichler J, Sticht H. Computational Characterization of the Binding Properties of the HIV1-Neutralizing Antibody PG16 and Design of PG16-Derived CDRH3 Peptides. BIOLOGY 2023; 12:824. [PMID: 37372110 DOI: 10.3390/biology12060824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
PG16 is a broadly neutralizing antibody that binds to the gp120 subunit of the HIV-1 Env protein. The major interaction site is formed by the unusually long complementarity determining region (CDR) H3. The CDRH3 residue Tyr100H is known to represent a tyrosine sulfation site; however, this modification is not present in the experimental complex structure of PG16 with full-length HIV-1 Env. To investigate the role of sulfation for this complex, we modeled the sulfation of Tyr100H and compared the dynamics and energetics of the modified and unmodified complex by molecular dynamics simulations at the atomic level. Our results show that sulfation does not affect the overall conformation of CDRH3, but still enhances gp120 interactions both at the site of modification and for the neighboring residues. This stabilization affects not only protein-protein contacts, but also the interactions between PG16 and the gp120 glycan shield. Furthermore, we also investigated whether PG16-CDRH3 is a suitable template for the development of peptide mimetics. For a peptide spanning residues 93-105 of PG16, we obtained an experimental EC50 value of 3nm for the binding of gp120 to the peptide. This affinity can be enhanced by almost one order of magnitude by artificial disulfide bonding between residues 99 and 100F. In contrast, any truncation results in significantly lower affinity, suggesting that the entire peptide segment is involved in gp120 recognition. Given their high affinity, it should be possible to further optimize the PG16-derived peptides as potential inhibitors of HIV invasion.
Collapse
Affiliation(s)
- Manuel Deubler
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Lucas Weißenborn
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Simon Leukel
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Anselm H C Horn
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Erlangen National High Performance Computing Center (NHR@FAU), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Jutta Eichler
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Erlangen National High Performance Computing Center (NHR@FAU), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| |
Collapse
|
2
|
Vivekanandan S, Vetrivel U, Hanna LE. Design of human immunodeficiency virus-1 neutralizing peptides targeting CD4-binding site: An integrative computational biologics approach. Front Med (Lausanne) 2022; 9:1036874. [DOI: 10.3389/fmed.2022.1036874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022] Open
Abstract
Peptide therapeutics have recently gained momentum in antiviral therapy due to their increased potency and cost-effectiveness. Interaction of the HIV-1 envelope gp120 with the host CD4 receptor is a critical step for viral entry, and therefore the CD4-binding site (CD4bs) of gp120 is a potential hotspot for blocking HIV-1 infection. The present study aimed to design short peptides from well-characterized CD4bs targeting broadly neutralizing antibodies (bNAbs), which could be utilized as bNAb mimetics for viral neutralization. Co-crystallized structures of HIV-1 gp120 in complex with CD4bs-directed bNAbs were used to derive hexameric peptides using the Rosetta Peptiderive protocol. Based on empirical insights into co-crystallized structures, peptides derived from the heavy chain alone were considered. The peptides were docked with both HIV-1 subtype B and C gp120, and the stability of the peptide–antigen complexes was validated using extensive Molecular Dynamics (MD) simulations. Two peptides identified in the study demonstrated stable intermolecular interactions with SER365, GLY366, and GLY367 of the PHE43 cavity in the CD4 binding pocket, and with ASP368 of HIV-1 gp120, thereby mimicking the natural interaction between ASP368gp120 and ARG59CD4–RECEPTOR. Furthermore, the peptides featured favorable physico-chemical properties for virus neutralization suggesting that these peptides may be highly promising bNAb mimetic candidates that may be taken up for experimental validation.
Collapse
|
3
|
Zhao B, Fan S, Fan Z, Wang H, Zhang N, Guo X, Yang D, Wu Q, Yu B, Zhou S. Discovery of Pyruvate Kinase as a Novel Target of New Fungicide Candidate 3-(4-Methyl-1,2,3-thiadiazolyl)-6-trichloromethyl-[1,2,4]-triazolo-[3,4- b][1,3,4]-thiadizole. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12439-12452. [PMID: 30350975 DOI: 10.1021/acs.jafc.8b03797] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Target identification is an essential basis for novel-pesticide development in new molecular design and lead optimization. 3-(4-Methyl-1,2,3-thiadiazolyl)-6-trichloromethyl[1,2,4]triazolo[3,4- b][1,3,4]thiadizole (YZK-C22) is a novel fungicide candidate with specific antifungal activity. We investigated its mode of action, and our studies indicated that YZK-C22 showed no cross resistance against Saccharomyces cerevisiae mutants with classic fungicide targets. Mec1 and Rad53 are two kinases that respond to DNA-replication damage, and the efficacy test showed that YZK-C22 could not perform its fungicidal activity by inhibiting DNA repair. Target screening by drug-affinity-responsive target stability (DARTS) showed that pyruvate kinase (PK), a key enzyme in the glycolytic pathway, was the potent new fungicidal target of YZK-C22. Fifty-eight differentially expressed proteins (DEPs) primarily involved in the metabolic process were identified by isobaric tags for relative and absolute quantification analysis (iTRAQ) in S. cerevisiae, and protein expression in the citrate cycle decreased with treatment of 5 mg/L YZK-C22, which was consistent with the results of DARTS. Molecular-docking analysis further validated that YZK-C22 could dock into the active center of PK instead of phosphoenolpyruvate. The enzyme activity of PK from S. cerevisiae was competitively inhibited with a Ki of 3.33 ± 0.28 μmol/L, and the cell-growth inhibition of S. cerevisiae was released by supplementation with pyruvic acid, whereas the growth of S. cerevisiae was not recovered by adding PK's substrate (phosphoenolpyruvate) or allosteric regulator (fructose-1,6-bisphosphate). The present studies uncovered and validated the primary target of the new, potent fungicidal candidate YZK-C22; our results provide a successful, valuable, and applicable case of target discovery and identification for novel-fungicide development.
Collapse
Affiliation(s)
- Bin Zhao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Number 94, Weijin Road , Nankai District, Tianjin 300071 , PR China
| | - Sijia Fan
- Tianjin No. 1 High School , Number 117, Xian Road , Heping District, Tianjin 300051 , PR China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Number 94, Weijin Road , Nankai District, Tianjin 300071 , PR China
| | - Haixia Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Number 94, Weijin Road , Nankai District, Tianjin 300071 , PR China
| | - Nailou Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Number 94, Weijin Road , Nankai District, Tianjin 300071 , PR China
| | - Xiaofeng Guo
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Number 94, Weijin Road , Nankai District, Tianjin 300071 , PR China
| | - Dongyan Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Number 94, Weijin Road , Nankai District, Tianjin 300071 , PR China
| | - Qifan Wu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Number 94, Weijin Road , Nankai District, Tianjin 300071 , PR China
| | - Bin Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Number 94, Weijin Road , Nankai District, Tianjin 300071 , PR China
| | - Shuang Zhou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Number 94, Weijin Road , Nankai District, Tianjin 300071 , PR China
| |
Collapse
|
4
|
Structure-Based Discovery and Synthesis of Potential Transketolase Inhibitors. Molecules 2018; 23:molecules23092116. [PMID: 30142874 PMCID: PMC6225308 DOI: 10.3390/molecules23092116] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 01/09/2023] Open
Abstract
Transketolase (TKL) plays a key role in plant photosynthesis and has been predicted to be a potent herbicide target. Homology modeling and molecular dynamics simulation were used to construct a target protein model. A target-based virtual screening was developed to discover novel potential transketolase inhibitors. Based on the receptor transketolase 1 and a target-based virtual screening combined with structural similarity, six new compounds were selected from the ZINC database. Among the structural leads, a new compound ZINC12007063 was identified as a novel inhibitor of weeds. Two novel series of carboxylic amide derivatives were synthesized, and their structures were rationally identified by NMR and HRMS. Biological evaluation of the herbicidal and antifungal activities indicated that the compounds 4u and 8h were the most potent herbicidal agents, and they also showed potent fungicidal activity with a relatively broad-spectrum. ZINC12007063 was identified as a lead compound of potential transketolase inhibitors, 4u and 8h which has the herbicidal and antifungal activities were synthesized based on ZINC12007063. This study lays a foundation for the discovery of new pesticides.
Collapse
|
6
|
Meier J, Kassler K, Sticht H, Eichler J. Peptides presenting the binding site of human CD4 for the HIV-1 envelope glycoprotein gp120. Beilstein J Org Chem 2012; 8:1858-66. [PMID: 23209523 PMCID: PMC3511023 DOI: 10.3762/bjoc.8.214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 09/24/2012] [Indexed: 01/31/2023] Open
Abstract
Based on the structure of the HIV-1 glycoprotein gp120 in complex with its cellular receptor CD4, we have designed and synthesized peptides that mimic the binding site of CD4 for gp120. The ability of these peptides to bind to gp120 can be strongly enhanced by increasing their conformational stability through cyclization, as evidenced by binding assays, as well as through molecular-dynamics simulations of peptide–gp120 complexes. The specificity of the peptide–gp120 interaction was demonstrated by using peptide variants, in which key residues for the interaction with gp120 were replaced by alanine or D-amino acids.
Collapse
Affiliation(s)
- Julia Meier
- Department of Chemistry and Pharmacy, Universität Erlangen-Nürnberg, Schuhstrasse 19, 91052 Erlangen, Germany
| | | | | | | |
Collapse
|