1
|
Scala P, Manzo P, Longo R, Giudice V, Ciardulli MC, Serio B, Selleri C, Guadagno L, Rehak L, Maffulli N, Della Porta G. Contribution of peripheral blood mononuclear cells isolated by advanced filtration system to myogenesis of human bone marrow mesenchymal stem cells co-cultured with myoblasts. Heliyon 2023; 9:e17141. [PMID: 37484299 PMCID: PMC10361327 DOI: 10.1016/j.heliyon.2023.e17141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
Background Contribution of peripheral blood mononuclear cells (PBMCs) in myogenesis is still under debate, even though blood filtration systems are commonly used in clinical practice for successfully management of critic limb ischemia. Objectives A commercial blood filter used for autologous human PBMC transplantation procedures is characterized and used to collect PBMCs, that are then added to well-established 2D in vitro myogenic models assembled with a co-culture of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and skeletal myoblasts (hSkMs) whit the aim of investigating their potential contribution to stem cell myogenic commitment. Methods A commercial blood filter was physically and chemically studied to understand its morphological characteristics and composition. PBMCs were concentrated using this system, further isolated by Ficoll-Paque density gradient centrifugation, and then added in an upper transwell chamber to a 2D co-culture of hBM-MSCs and hSkMs. Myogenic commitment was investigated by RT-PCR, immunofluorescence, and flow cytometry immunophenotyping. Cytokine levels were monitored by ELISA assay in culture media. Results The blood filtration system was disassembled and appeared to be formed by twelve membranes of poly-butylene terephthalate fibers (diameters, 0.9-4.0 μm) with pore size distribution of 1-20 μm. Filter functional characterization was achieved by characterizing collected cells by flow cytometry. Subsequently, collected PBMCs fraction was added to an in-vitro model of hBM-MSC myogenic commitment. In the presence of PBMCs, stem cells significantly upregulated myogenic genes, such as Desmin and MYH2, as confirmed by qRT-PCR and expressed related proteins by immunofluorescence (IF) assay, while downregulated pro-inflammatory cytokines (IL12A at day 14) along the 21 days of culture. Novelty Our work highlights chemical-physical properties of commercial blood filter and suggests that blood filtrated fraction of PBMC might modulate cytokine expression in response to muscle injury and promote myogenic events, supporting their clinical use in autologous transplantation.
Collapse
Affiliation(s)
- Pasqualina Scala
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 43, 84081 Baronissi SA, Italy
| | - Paola Manzo
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D'Aragona”, Largo Città d'Ippocrate, 1, 84131 Salerno SA, Italy
| | - Raffaele Longo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano SA, Italy
| | - Valentina Giudice
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 43, 84081 Baronissi SA, Italy
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D'Aragona”, Largo Città d'Ippocrate, 1, 84131 Salerno SA, Italy
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 43, 84081 Baronissi SA, Italy
| | - Bianca Serio
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D'Aragona”, Largo Città d'Ippocrate, 1, 84131 Salerno SA, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 43, 84081 Baronissi SA, Italy
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D'Aragona”, Largo Città d'Ippocrate, 1, 84131 Salerno SA, Italy
| | - Liberata Guadagno
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano SA, Italy
| | - Laura Rehak
- Athena Biomedical Innovations, Viale Europa 139, Florence, 50126, Italy
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 43, 84081 Baronissi SA, Italy
- Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 275 Bancroft Road, London E1 4DG, UK
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 43, 84081 Baronissi SA, Italy
- Interdepartment Centre BIONAM, Università di Salerno, via Giovanni Paolo II, 132, 84084 Fisciano SA, Italy
| |
Collapse
|
2
|
Scala P, Manzo P, Lamparelli EP, Lovecchio J, Ciardulli MC, Giudice V, Selleri C, Giordano E, Rehak L, Maffulli N, Della Porta G. Peripheral blood mononuclear cells contribute to myogenesis in a 3D bioengineered system of bone marrow mesenchymal stem cells and myoblasts. Front Bioeng Biotechnol 2023; 10:1075715. [PMID: 36704300 PMCID: PMC9871311 DOI: 10.3389/fbioe.2022.1075715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
In this work, a 3D environment obtained using fibrin scaffold and two cell populations, such as bone marrow-derived mesenchymal stem cells (BM-MSCs), and primary skeletal muscle cells (SkMs), was assembled. Peripheral blood mononuclear cells (PBMCs) fraction obtained after blood filtration with HemaTrate® filter was then added to the 3D culture system to explore their influence on myogenesis. The best cell ratio into a 3D fibrin hydrogel was 1:1 (BM-MSCs plus SkMs:PBMCs) when cultured in a perfusion bioreactor; indeed, excellent viability and myogenic event induction were observed. Myogenic genes were significantly overexpressed when cultured with PBMCs, such as MyoD1 of 118-fold at day 14 and Desmin 6-fold at day 21. Desmin and Myosin Heavy Chain were also detected at protein level by immunostaining along the culture. Moreover, the presence of PBMCs in 3D culture induced a significant downregulation of pro-inflammatory cytokine gene expression, such as IL6. This smart biomimetic environment can be an excellent tool for investigation of cellular crosstalk and PBMC influence on myogenic processes.
Collapse
Affiliation(s)
- Pasqualina Scala
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| | - Paola Manzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy,Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, Salerno, Italy
| | | | - Joseph Lovecchio
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, Bologna, Italy
| | | | - Valentina Giudice
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy,Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, Salerno, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy,Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, Salerno, Italy
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, Bologna, Italy
| | - Laura Rehak
- Athena Biomedical innovations, Florence, Italy
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy,Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, England
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy,Interdepartment Centre BIONAM, University of Salerno, Fisciano, Italy,*Correspondence: Giovanna Della Porta,
| |
Collapse
|
3
|
Tang X, Daneshmandi L, Awale G, Nair LS, Laurencin CT. Skeletal Muscle Regenerative Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019; 5:233-251. [PMID: 33778155 DOI: 10.1007/s40883-019-00102-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Skeletal muscles have the intrinsic ability to regenerate after minor injury, but under certain circumstances such as severe trauma from accidents, chronic diseases or battlefield injuries the regeneration process is limited. Skeletal muscle regenerative engineering has emerged as a promising approach to address this clinical issue. The regenerative engineering approach involves the convergence of advanced materials science, stem cell science, physical forces, insights from developmental biology, and clinical translation. This article reviews recent studies showing the potential of the convergences of technologies involving biomaterials, stem cells and bioactive factors in concert with clinical translation, in promoting skeletal muscle regeneration. Several types of biomaterials such as electrospun nanofibers, hydrogels, patterned scaffolds, decellularized tissues, and conductive matrices are being investigated. Detailed discussions are given on how these biomaterials can interact with cells and modulate their behavior through physical, chemical and mechanical cues. In addition, the application of physical forces such as mechanical and electrical stimulation are reviewed as strategies that can further enhance muscle contractility and functionality. The review also discusses established animal models to evaluate regeneration in two clinically relevant muscle injuries; volumetric muscle loss (VML) and muscle atrophy upon rotator cuff injury. Regenerative engineering approaches using advanced biomaterials, cells, and physical forces, developmental cues along with insights from immunology, genetics and other aspects of clinical translation hold significant potential to develop promising strategies to support skeletal muscle regeneration.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA.,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Leila Daneshmandi
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Guleid Awale
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Lakshmi S Nair
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA.,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA.,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
4
|
Implantation of platelet rich fibrin and allogenic mesenchymal stem cells facilitate the healing of muscle injury: An experimental study on animal. INTERNATIONAL JOURNAL OF SURGERY OPEN 2018. [DOI: 10.1016/j.ijso.2018.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Choi JS, Yoon HI, Lee KS, Choi YC, Yang SH, Kim IS, Cho YW. Exosomes from differentiating human skeletal muscle cells trigger myogenesis of stem cells and provide biochemical cues for skeletal muscle regeneration. J Control Release 2015; 222:107-15. [PMID: 26699421 DOI: 10.1016/j.jconrel.2015.12.018] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 12/03/2015] [Accepted: 12/12/2015] [Indexed: 12/19/2022]
Abstract
Exosomes released from skeletal muscle cells play important roles in myogenesis and muscle development via the transfer of specific signal molecules. In this study, we investigated whether exosomes secreted during myotube differentiation from human skeletal myoblasts (HSkM) could induce a cellular response from human adipose-derived stem cells (HASCs) and enhance muscle regeneration in a muscle laceration mouse model. The exosomes contained various signal molecules including myogenic growth factors related to muscle development, such as insulin-like growth factors (IGFs), hepatocyte growth factor (HGF), fibroblast growth factor-2 (FGF2), and platelet-derived growth factor-AA (PDGF-AA). Interestingly, exosome-treated HASCs fused with neighboring cells at early time points and exhibited a myotube-like phenotype with increased expression of myogenic proteins (myosin heavy chain and desmin). On day 21, mRNAs of terminal myogenic genes were also up-regulated in exosome-treated HASCs. Moreover, in vivo studies demonstrated that exosomes from differentiating HSkM reduced the fibrotic area and increased the number of regenerated myofibers in the injury site, resulting in significant improvement of skeletal muscle regeneration. Our findings suggest that exosomes act as a biochemical cue directing stem cell differentiation and provide a cell-free therapeutic approach for muscle regeneration.
Collapse
Affiliation(s)
- Ji Suk Choi
- Department of Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 426-791, Republic of Korea
| | - Hwa In Yoon
- Department of Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 426-791, Republic of Korea; Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea
| | - Kyoung Soo Lee
- Department of Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 426-791, Republic of Korea
| | - Young Chan Choi
- Department of Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 426-791, Republic of Korea
| | - Seong Hyun Yang
- Department of Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 426-791, Republic of Korea
| | - In-San Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea; KU-KIST School, Korea University, 1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Yong Woo Cho
- Department of Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 426-791, Republic of Korea.
| |
Collapse
|
6
|
Jana S, Leung M, Chang J, Zhang M. Effect of nano- and micro-scale topological features on alignment of muscle cells and commitment of myogenic differentiation. Biofabrication 2014; 6:035012. [DOI: 10.1088/1758-5082/6/3/035012] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Ahmad CS, Redler LH, Ciccotti MG, Maffulli N, Longo UG, Bradley J. Evaluation and management of hamstring injuries. Am J Sports Med 2013; 41:2933-47. [PMID: 23703914 DOI: 10.1177/0363546513487063] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Muscle injuries are the most common injuries in sports, with hamstring injuries accounting for 29% of all injuries in athletes. These injuries lead to prolonged impairment and have a reinjury risk of 12% to 31%. They range from mild muscle damage without loss of structural integrity to complete muscle tearing with fiber disruption. Novel MRI scores are increasingly being used and allow a more precise prediction of return to sport. In this article, the authors review the history, mechanisms of injury, and classification systems for hamstring injuries as well as present the latest evidence related to the management of hamstring injuries, including intramuscular and both proximal and distal insertional injuries. Indications for surgical treatment of certain proximal and distal avulsions, biological augmentation to the nonoperative treatment of midsubstance injuries, and advances in risk reduction and injury prevention are discussed.
Collapse
Affiliation(s)
- Christopher S Ahmad
- Lauren H. Redler, Center for Shoulder, Elbow, and Sports Medicine, Department of Orthopaedic Surgery, Columbia University, 622 West 168th Street, PH-11 Center, New York, NY 10032.
| | | | | | | | | | | |
Collapse
|