1
|
Jin S, Wang J, He Y. The brain network hub degeneration in Alzheimer's disease. BIOPHYSICS REPORTS 2024; 10:213-229. [PMID: 39281195 PMCID: PMC11399886 DOI: 10.52601/bpr.2024.230025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/26/2024] [Indexed: 09/18/2024] Open
Abstract
Alzheimer's disease (AD) has been conceptualized as a syndrome of brain network dysfunction. Recent imaging connectomics studies have provided unprecedented opportunities to map structural and functional brain networks in AD. By reviewing molecular, imaging, and computational modeling studies, we have shown that highly connected brain hubs are primarily distributed in the medial and lateral prefrontal, parietal, and temporal regions in healthy individuals and that the hubs are selectively and severely affected in AD as manifested by increased amyloid-beta deposition and regional atrophy, hypo-metabolism, and connectivity dysfunction. Furthermore, AD-related hub degeneration depends on the imaging modality with the most notable degeneration in the medial temporal hubs for morphological covariance networks, the prefrontal hubs for structural white matter networks, and in the medial parietal hubs for functional networks. Finally, the AD-related hub degeneration shows metabolic, molecular, and genetic correlates. Collectively, we conclude that the brain-network-hub-degeneration framework is promising to elucidate the biological mechanisms of network dysfunction in AD, which provides valuable information on potential diagnostic biomarkers and promising therapeutic targets for the disease.
Collapse
Affiliation(s)
- Suhui Jin
- Institute for Brain Research and Rehabilitation, Guangzhou 510631, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, Guangzhou 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Guangzhou 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
| | - Yong He
- IDG/McGovern Institute for Brain Research, Beijing 100875, China
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Stanford W, Mucha PJ, Dayan E. Age-related differences in network controllability are mitigated by redundancy in large-scale brain networks. Commun Biol 2024; 7:701. [PMID: 38849512 PMCID: PMC11161655 DOI: 10.1038/s42003-024-06392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
The aging brain undergoes major changes in its topology. The mechanisms by which the brain mitigates age-associated changes in topology to maintain robust control of brain networks are unknown. Here we use diffusion MRI data from cognitively intact participants (n = 480, ages 40-90) to study age-associated differences in the average controllability of structural brain networks, topological features that could mitigate these differences, and the overall effect on cognitive function. We find age-associated declines in average controllability in control hubs and large-scale networks, particularly within the frontoparietal control and default mode networks. Further, we find that redundancy, a hypothesized mechanism of reserve, quantified via the assessment of multi-step paths within networks, mitigates the effects of topological differences on average network controllability. Lastly, we discover that average network controllability, redundancy, and grey matter volume, each uniquely contribute to predictive models of cognitive function. In sum, our results highlight the importance of redundancy for robust control of brain networks and in cognitive function in healthy-aging.
Collapse
Affiliation(s)
- William Stanford
- Biological and Biomedical Sciences Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Peter J Mucha
- Department of Mathematics, Dartmouth College, Hanover, NH, USA
| | - Eran Dayan
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Luppi AI, Olbrich E, Finn C, Suárez LE, Rosas FE, Mediano PA, Jost J. Quantifying synergy and redundancy between networks. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:101892. [PMID: 38720789 PMCID: PMC11077508 DOI: 10.1016/j.xcrp.2024.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/18/2024] [Accepted: 03/01/2024] [Indexed: 05/12/2024]
Abstract
Understanding how different networks relate to each other is key for understanding complex systems. We introduce an intuitive yet powerful framework to disentangle different ways in which networks can be (dis)similar and complementary to each other. We decompose the shortest paths between nodes as uniquely contributed by one source network, or redundantly by either, or synergistically by both together. Our approach considers the networks' full topology, providing insights at multiple levels of resolution: from global statistics to individual paths. Our framework is widely applicable across scientific domains, from public transport to brain networks. In humans and 124 other species, we demonstrate the prevalence of unique contributions by long-range white-matter fibers in structural brain networks. Across species, efficient communication also relies on significantly greater synergy between long-range and short-range fibers than expected by chance. Our framework could find applications for designing network systems or evaluating existing ones.
Collapse
Affiliation(s)
- Andrea I. Luppi
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- St John’s College, University of Cambridge, Cambridge, UK
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Eckehard Olbrich
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
| | - Conor Finn
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
| | - Laura E. Suárez
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Fernando E. Rosas
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
- Department of Informatics, University of Sussex, Brighton, UK
- Centre for Complexity Science, Imperial College London, London, UK
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK
| | | | - Jürgen Jost
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
- ScaDS.AI, Leipzig University, Leipzig, Germany
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
4
|
Ghanbari M, Li G, Hsu L, Yap P. Accumulation of network redundancy marks the early stage of Alzheimer's disease. Hum Brain Mapp 2023; 44:2993-3006. [PMID: 36896755 PMCID: PMC10171535 DOI: 10.1002/hbm.26257] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 03/11/2023] Open
Abstract
Brain wiring redundancy counteracts aging-related cognitive decline by reserving additional communication channels as a neuroprotective mechanism. Such a mechanism plays a potentially important role in maintaining cognitive function during the early stages of neurodegenerative disorders such as Alzheimer's disease (AD). AD is characterized by severe cognitive decline and involves a long prodromal stage of mild cognitive impairment (MCI). Since MCI subjects are at high risk of converting to AD, identifying MCI individuals is essential for early intervention. To delineate the redundancy profile during AD progression and enable better MCI diagnosis, we define a metric that reflects redundant disjoint connections between brain regions and extract redundancy features in three high-order brain networks-medial frontal, frontoparietal, and default mode networks-based on dynamic functional connectivity (dFC) captured by resting-state functional magnetic resonance imaging (rs-fMRI). We show that redundancy increases significantly from normal control (NC) to MCI individuals and decreases slightly from MCI to AD individuals. We further demonstrate that statistical features of redundancy are highly discriminative and yield state-of-the-art accuracy of up to 96.8 ± 1.0% in support vector machine (SVM) classification between NC and MCI individuals. This study provides evidence supporting the notion that redundancy serves as a crucial neuroprotective mechanism in MCI.
Collapse
Affiliation(s)
- Maryam Ghanbari
- Department of RadiologyUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Biomedical Research Imaging CenterUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Guoshi Li
- Department of RadiologyUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Biomedical Research Imaging CenterUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Li‐Ming Hsu
- Department of RadiologyUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Biomedical Research Imaging CenterUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Pew‐Thian Yap
- Department of RadiologyUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Biomedical Research Imaging CenterUniversity of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
5
|
Stanford W, Mucha PJ, Dayan E. Age-related changes in network controllability are mitigated by redundancy in large-scale brain networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528999. [PMID: 36824776 PMCID: PMC9949152 DOI: 10.1101/2023.02.17.528999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The aging brain undergoes major changes in its topology. The mechanisms by which the brain mitigates age-associated changes in topology to maintain robust control of brain networks are unknown. Here we used diffusion MRI data from cognitively intact participants (n=480, ages 40-90) to study age-associated changes in the controllability of structural brain networks, features that could mitigate these changes, and the overall effect on cognitive function. We found age-associated declines in controllability in control hubs and large-scale networks, particularly within the and frontoparietal control and default mode networks. Redundancy, quantified via the assessment of multi-step paths within networks, mitigated the effects of changes in topology on network controllability. Lastly, network controllability, redundancy, and grey matter volume each played important complementary roles in cognitive function. In sum, our results highlight the importance of redundancy for robust control of brain networks and in cognitive function in healthy-aging.
Collapse
|
6
|
Ghanbari M, Soussia M, Jiang W, Wei D, Yap PT, Shen D, Zhang H. Alterations of dynamic redundancy of functional brain subnetworks in Alzheimer's disease and major depression disorders. Neuroimage Clin 2021; 33:102917. [PMID: 34929585 PMCID: PMC8688702 DOI: 10.1016/j.nicl.2021.102917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 11/15/2022]
Abstract
The human brain is not only efficiently but also "redundantly" connected. The redundancy design could help the brain maintain resilience to disease attacks. This paper explores subnetwork-level redundancy dynamics and the potential of such metrics in disease studies. As such, we looked into specific functional subnetworks, including those associated with high-level functions. We investigated how the subnetwork redundancy dynamics change along with Alzheimer's disease (AD) progression and with major depressive disorder (MDD), two major disorders that could share similar subnetwork alterations. We found an increased dynamic redundancy of the subcortical-cerebellum subnetwork and its connections to other high-order subnetworks in the mild cognitive impairment (MCI) and AD compared to the normal control (NC). With gained spatial specificity, we found such a redundancy index was sensitive to disease symptoms and could act as a protective mechanism to prevent the collapse of the brain network and functions. The dynamic redundancy of the medial frontal subnetwork and its connections to the frontoparietal subnetwork was also found decreased in MDD compared to NC. The spatial specificity of the redundancy dynamics changes may provide essential knowledge for a better understanding of shared neural substrates in AD and MDD.
Collapse
Affiliation(s)
- Maryam Ghanbari
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mayssa Soussia
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weixiong Jiang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dongming Wei
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pew-Thian Yap
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Han Zhang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
7
|
Ghanbari M, Zhou Z, Hsu LM, Han Y, Sun Y, Yap PT, Zhang H, Shen D. Altered Connectedness of the Brain Chronnectome During the Progression to Alzheimer's Disease. Neuroinformatics 2021; 20:391-403. [PMID: 34837154 DOI: 10.1007/s12021-021-09554-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 11/24/2022]
Abstract
Graph theory has been extensively used to investigate brain network topology and its changes in disease cohorts. However, many graph theoretic analysis-based brain network studies focused on the shortest paths or, more generally, cost-efficiency. In this work, we use two new concepts, connectedness and 2-connectedness, to measure different global properties compared to the previously widely adopted ones. We apply them to unravel interesting characteristics in the brain, such as redundancy design and further conduct a time-varying brain functional network analysis for characterizing the progression of Alzheimer's disease (AD). Specifically, we define different connectedness and 2-connectedness states and evaluate their dynamics in AD and its preclinical stage, mild cognitive impairment (MCI), compared to the normal controls (NC). Results indicate that, compared to MCI and NC, brain networks of AD tend to be more frequently connected at a sparse level. For MCI, we found that their brains are more likely to be 2-connected in the minimal connected state as well indicating increasing redundancy in brain connectivity. Such a redundant design could ensure maintained connectedness of the MCI's brain network in the case that pathological damages break down any link or silenced any node, making it possible to preserve cognitive abilities. Our study suggests that the redundancy in the brain functional chronnectome could be altered in the preclinical stage of AD. The findings can be successfully replicated in a retest study and with an independent MCI dataset. Characterizing redundancy design in the brain chronnectome using connectedness and 2-connectedness analysis provides a unique viewpoint for understanding disease affected brain networks.
Collapse
Affiliation(s)
- Maryam Ghanbari
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhen Zhou
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Li-Ming Hsu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ying Han
- Department of National Clinical Research Center for Geriatric Disorders, Beijing, 100053, China
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China
- Beijing Institute of Geriatrics, Beijing, 100053, China
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yu Sun
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Pew-Thian Yap
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Han Zhang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China.
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China.
- Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China.
| |
Collapse
|
8
|
Langella S, Mucha PJ, Giovanello KS, Dayan E. The association between hippocampal volume and memory in pathological aging is mediated by functional redundancy. Neurobiol Aging 2021; 108:179-188. [PMID: 34614422 DOI: 10.1016/j.neurobiolaging.2021.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
Hippocampal neurodegeneration, a primary component of Alzheimer's disease pathology, relates to poor cognition; however, the mechanisms underlying this relationship are not well understood. Using a sample of cognitively normal older adults and individuals with mild cognitive impairment, this study aims to determine the topological properties of functional networks accompanying hippocampal atrophy in aging, along with their association to cognition and clinical progression. We considered two conceptually differing topological properties: redundancy (the existence of alternative channels of functional commutation) and local efficiency (the efficiency of local information exchange). Hippocampal redundancy, but not local efficiency, mediated the association between low hippocampal volume and low memory in both the whole sample and in ß-amyloid positive participants. Additionally, participants with high hippocampal volume, redundancy, and memory clustered separately from those with low values on all three measures, with the latter group showing higher conversion rates to dementia within three years. Together, these results demonstrate that reduced hippocampal redundancy is one mechanism through which hippocampal atrophy associates with memory impairment in healthy and pathological aging.
Collapse
Affiliation(s)
- Stephanie Langella
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Peter J Mucha
- Department of Mathematics, Dartmouth College, NH 03755, USA
| | - Kelly S Giovanello
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, NC 27599, USA; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC 27514, USA
| | - Eran Dayan
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC 27514, USA; Department of Radiology, University of North Carolina at Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
9
|
Langella S, Sadiq MU, Mucha PJ, Giovanello KS, Dayan E. Lower functional hippocampal redundancy in mild cognitive impairment. Transl Psychiatry 2021; 11:61. [PMID: 33462184 PMCID: PMC7813821 DOI: 10.1038/s41398-020-01166-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022] Open
Abstract
With an increasing prevalence of mild cognitive impairment (MCI) and Alzheimer's disease (AD) in response to an aging population, it is critical to identify and understand neuroprotective mechanisms against cognitive decline. One potential mechanism is redundancy: the existence of duplicate elements within a system that provide alternative functionality in case of failure. As the hippocampus is one of the earliest sites affected by AD pathology, we hypothesized that functional hippocampal redundancy is protective against cognitive decline. We compared hippocampal functional redundancy derived from resting-state functional MRI networks in cognitively normal older adults, with individuals with early and late MCI, as well as the relationship between redundancy and cognition. Posterior hippocampal redundancy was reduced between cognitively normal and MCI groups, plateauing across early and late MCI. Higher hippocampal redundancy was related to better memory performance only for cognitively normal individuals. Critically, functional hippocampal redundancy did not come at the expense of network efficiency. Our results provide support that hippocampal redundancy protects against cognitive decline in aging.
Collapse
Affiliation(s)
- Stephanie Langella
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Muhammad Usman Sadiq
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Peter J Mucha
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kelly S Giovanello
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eran Dayan
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Corliss BA, Mathews C, Doty R, Rohde G, Peirce SM. Methods to label, image, and analyze the complex structural architectures of microvascular networks. Microcirculation 2019; 26:e12520. [PMID: 30548558 PMCID: PMC6561846 DOI: 10.1111/micc.12520] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/31/2018] [Accepted: 11/26/2018] [Indexed: 12/30/2022]
Abstract
Microvascular networks play key roles in oxygen transport and nutrient delivery to meet the varied and dynamic metabolic needs of different tissues throughout the body, and their spatial architectures of interconnected blood vessel segments are highly complex. Moreover, functional adaptations of the microcirculation enabled by structural adaptations in microvascular network architecture are required for development, wound healing, and often invoked in disease conditions, including the top eight causes of death in the Unites States. Effective characterization of microvascular network architectures is not only limited by the available techniques to visualize microvessels but also reliant on the available quantitative metrics that accurately delineate between spatial patterns in altered networks. In this review, we survey models used for studying the microvasculature, methods to label and image microvessels, and the metrics and software packages used to quantify microvascular networks. These programs have provided researchers with invaluable tools, yet we estimate that they have collectively attained low adoption rates, possibly due to limitations with basic validation, segmentation performance, and nonstandard sets of quantification metrics. To address these existing constraints, we discuss opportunities to improve effectiveness, rigor, and reproducibility of microvascular network quantification to better serve the current and future needs of microvascular research.
Collapse
Affiliation(s)
- Bruce A. Corliss
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Corbin Mathews
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Richard Doty
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Gustavo Rohde
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Shayn M. Peirce
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| |
Collapse
|
11
|
|
12
|
Olejarczyk E, Marzetti L, Pizzella V, Zappasodi F. Comparison of connectivity analyses for resting state EEG data. J Neural Eng 2017; 14:036017. [PMID: 28378705 DOI: 10.1088/1741-2552/aa6401] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE In the present work, a nonlinear measure (transfer entropy, TE) was used in a multivariate approach for the analysis of effective connectivity in high density resting state EEG data in eyes open and eyes closed. Advantages of the multivariate approach in comparison to the bivariate one were tested. Moreover, the multivariate TE was compared to an effective linear measure, i.e. directed transfer function (DTF). Finally, the existence of a relationship between the information transfer and the level of brain synchronization as measured by phase synchronization value (PLV) was investigated. APPROACH The comparison between the connectivity measures, i.e. bivariate versus multivariate TE, TE versus DTF, TE versus PLV, was performed by means of statistical analysis of indexes based on graph theory. MAIN RESULTS The multivariate approach is less sensitive to false indirect connections with respect to the bivariate estimates. The multivariate TE differentiated better between eyes closed and eyes open conditions compared to DTF. Moreover, the multivariate TE evidenced non-linear phenomena in information transfer, which are not evidenced by the use of DTF. We also showed that the target of information flow, in particular the frontal region, is an area of greater brain synchronization. SIGNIFICANCE Comparison of different connectivity analysis methods pointed to the advantages of nonlinear methods, and indicated a relationship existing between the flow of information and the level of synchronization of the brain.
Collapse
Affiliation(s)
- Elzbieta Olejarczyk
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | |
Collapse
|
13
|
Jiang X, Gripon V, Berrou C, Rabbat M. Storing Sequences in Binary Tournament-Based Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2016; 27:913-925. [PMID: 27101078 DOI: 10.1109/tnnls.2015.2431319] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An extension to a recently introduced architecture of clique-based neural networks is presented. This extension makes it possible to store sequences with high efficiency. To obtain this property, network connections are provided with orientation and with flexible redundancy carried by both spatial and temporal redundancies, a mechanism of anticipation being introduced in the model. In addition to the sequence storage with high efficiency, this new scheme also offers biological plausibility. In order to achieve accurate sequence retrieval, a double-layered structure combining heteroassociation and autoassociation is also proposed.
Collapse
|
14
|
Pizzella V, Marzetti L, Penna SD, de Pasquale F, Zappasodi F, Romani GL. Magnetoencephalography in the study of brain dynamics. FUNCTIONAL NEUROLOGY 2014; 29:241-253. [PMID: 25764254 PMCID: PMC4370437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To progress toward understanding of the mechanisms underlying the functional organization of the human brain, either a bottom-up or a top-down approach may be adopted. The former starts from the study of the detailed functioning of a small number of neuronal assemblies, while the latter tries to decode brain functioning by considering the brain as a whole. This review discusses the top-down approach and the use of magnetoencephalography (MEG) to describe global brain properties. The main idea behind this approach is that the concurrence of several areas is required for the brain to instantiate a specific behavior/functioning. A central issue is therefore the study of brain functional connectivity and the concept of brain networks as ensembles of distant brain areas that preferentially exchange information. Importantly, the human brain is a dynamic device, and MEG is ideally suited to investigate phenomena on behaviorally relevant timescales, also offering the possibility of capturing behaviorally-related brain connectivity dynamics.
Collapse
|