1
|
Chan KL, Tatarinova TV, Rosli R, Amiruddin N, Azizi N, Halim MAA, Sanusi NSNM, Jayanthi N, Ponomarenko P, Triska M, Solovyev V, Firdaus-Raih M, Sambanthamurthi R, Murphy D, Low ETL. Evidence-based gene models for structural and functional annotations of the oil palm genome. Biol Direct 2017; 12:21. [PMID: 28886750 PMCID: PMC5591544 DOI: 10.1186/s13062-017-0191-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/07/2017] [Indexed: 11/13/2022] Open
Abstract
Background Oil palm is an important source of edible oil. The importance of the crop, as well as its long breeding cycle (10-12 years) has led to the sequencing of its genome in 2013 to pave the way for genomics-guided breeding. Nevertheless, the first set of gene predictions, although useful, had many fragmented genes. Classification and characterization of genes associated with traits of interest, such as those for fatty acid biosynthesis and disease resistance, were also limited. Lipid-, especially fatty acid (FA)-related genes are of particular interest for the oil palm as they specify oil yields and quality. This paper presents the characterization of the oil palm genome using different gene prediction methods and comparative genomics analysis, identification of FA biosynthesis and disease resistance genes, and the development of an annotation database and bioinformatics tools. Results Using two independent gene-prediction pipelines, Fgenesh++ and Seqping, 26,059 oil palm genes with transcriptome and RefSeq support were identified from the oil palm genome. These coding regions of the genome have a characteristic broad distribution of GC3 (fraction of cytosine and guanine in the third position of a codon) with over half the GC3-rich genes (GC3 ≥ 0.75286) being intronless. In comparison, only one-seventh of the oil palm genes identified are intronless. Using comparative genomics analysis, characterization of conserved domains and active sites, and expression analysis, 42 key genes involved in FA biosynthesis in oil palm were identified. For three of them, namely EgFABF, EgFABH and EgFAD3, segmental duplication events were detected. Our analysis also identified 210 candidate resistance genes in six classes, grouped by their protein domain structures. Conclusions We present an accurate and comprehensive annotation of the oil palm genome, focusing on analysis of important categories of genes (GC3-rich and intronless), as well as those associated with important functions, such as FA biosynthesis and disease resistance. The study demonstrated the advantages of having an integrated approach to gene prediction and developed a computational framework for combining multiple genome annotations. These results, available in the oil palm annotation database (http://palmxplore.mpob.gov.my), will provide important resources for studies on the genomes of oil palm and related crops. Reviewers This article was reviewed by Alexander Kel, Igor Rogozin, and Vladimir A. Kuznetsov. Electronic supplementary material The online version of this article (doi:10.1186/s13062-017-0191-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kuang-Lim Chan
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia.,Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Tatiana V Tatarinova
- Department of Biology, University of La Verne, La Verne, California, 91750, USA.,Spatial Sciences Institute, University of Southern California, Los Angeles, CA, 90089, USA
| | - Rozana Rosli
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia.,Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, CF371DL, UK
| | - Nadzirah Amiruddin
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Norazah Azizi
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Mohd Amin Ab Halim
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Nik Shazana Nik Mohd Sanusi
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Nagappan Jayanthi
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Petr Ponomarenko
- Spatial Sciences Institute, University of Southern California, Los Angeles, CA, 90089, USA
| | - Martin Triska
- Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, 90089, USA
| | - Victor Solovyev
- Softberry Inc., 116 Radio Circle, Suite 400, Mount Kisco, NY, 10549, USA
| | - Mohd Firdaus-Raih
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Ravigadevi Sambanthamurthi
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Denis Murphy
- Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, CF371DL, UK
| | - Eng-Ti Leslie Low
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia.
| |
Collapse
|
2
|
Da Lage JL, Binder M, Hua-Van A, Janeček S, Casane D. Gene make-up: rapid and massive intron gains after horizontal transfer of a bacterial α-amylase gene to Basidiomycetes. BMC Evol Biol 2013; 13:40. [PMID: 23405862 PMCID: PMC3584928 DOI: 10.1186/1471-2148-13-40] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 01/30/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing genome data show that introns, a hallmark of eukaryotes, already existed at a high density in the last common ancestor of extant eukaryotes. However, intron content is highly variable among species. The tempo of intron gains and losses has been irregular and several factors may explain why some genomes are intron-poor whereas other are intron-rich. RESULTS We studied the dynamics of intron gains and losses in an α-amylase gene, whose product breaks down starch and other polysaccharides. It was transferred from an Actinobacterium to an ancestor of Agaricomycotina. This gene underwent further duplications in several species. The results indicate a high rate of intron insertions soon after the gene settled in the fungal genome. A number of these oldest introns, regularly scattered along the gene, remained conserved. Subsequent gains and losses were lineage dependent, with a majority of losses. Moreover, a few species exhibited a high number of both specific intron gains and losses in recent periods. There was little sequence conservation around insertion sites, then probably little information for splicing, whereas splicing sites, inside introns, showed typical and conserved patterns. There was little variation of intron size. CONCLUSIONS Since most Basidiomycetes have intron-rich genomes and this richness was ancestral in Fungi, long before the transfer event, we suggest that the new gene was shaped to comply with requirements of the splicing machinery, such as short exon and intron sizes, in order to be correctly processed.
Collapse
Affiliation(s)
- Jean-Luc Da Lage
- Laboratoire Evolution, génomes et spéciation UPR 9034 CNRS, 91198 Gif-sur-Yvette, and Université Paris-Sud, Orsay, 91405, France.
| | | | | | | | | |
Collapse
|
3
|
Kokošar J, Kordiš D. Genesis and regulatory wiring of retroelement-derived domesticated genes: a phylogenomic perspective. Mol Biol Evol 2013; 30:1015-31. [PMID: 23348003 PMCID: PMC3670739 DOI: 10.1093/molbev/mst014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Molecular domestications of transposable elements have occurred repeatedly during the evolution of eukaryotes. Vertebrates, especially mammals, possess numerous single copy domesticated genes (DGs) that have originated from the intronless multicopy transposable elements. However, the origin and evolution of the retroelement-derived DGs (RDDGs) that originated from Metaviridae has been only partially elucidated, due to absence of genome data or to limited analysis of a single family of DGs. We traced the genesis and regulatory wiring of the Metaviridae-derived DGs through phylogenomic analysis, using whole-genome information from more than 90 chordate genomes. Phylogenomic analysis of these DGs in chordate genomes provided direct evidence that major diversification has occurred in the ancestor of placental mammals. Mammalian RDDGs have been shown to originate in several steps by independent domestication events and to diversify later by gene duplications. Analysis of syntenic loci has shown that diverse RDDGs and their chromosomal positions were fully established in the ancestor of placental mammals. By analysis of active Metaviridae lineages in amniotes, we have demonstrated that RDDGs originated from retroelement remains. The chromosomal gene movements of RDDGs were highly dynamic only in the ancestor of placental mammals. During the domestication process, de novo acquisition of regulatory regions is shown to be a prerequisite for the survival of the DGs. The origin and evolution of de novo acquired promoters and untranslated regions in diverse mammalian RDDGs have been explained by comparative analysis of orthologous gene loci. The origin of placental mammal-specific innovations and adaptations, such as placenta and newly evolved brain functions, was most probably connected to the regulatory wiring of DGs and their rapid fixation in the ancestor of placental mammals.
Collapse
Affiliation(s)
- Janez Kokošar
- Department of Molecular and Biomedical Sciences, Josef Stefan Institute, Ljubljana, Slovenia
| | | |
Collapse
|