1
|
Tsomidis I, Voumvouraki A, Kouroumalis E. The Pathogenesis of Pancreatitis and the Role of Autophagy. GASTROENTEROLOGY INSIGHTS 2024; 15:303-341. [DOI: 10.3390/gastroent15020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The pathogenesis of acute and chronic pancreatitis has recently evolved as new findings demonstrate a complex mechanism operating through various pathways. In this review, the current evidence indicating that several mechanisms act in concert to induce and perpetuate pancreatitis were presented. As autophagy is now considered a fundamental mechanism in the pathophysiology of both acute and chronic pancreatitis, the fundamentals of the autophagy pathway were discussed to allow for a better understanding of the pathophysiological mechanisms of pancreatitis. The various aspects of pathogenesis, including trypsinogen activation, ER stress and mitochondrial dysfunction, the implications of inflammation, and macrophage involvement in innate immunity, as well as the significance of pancreatic stellate cells in the development of fibrosis, were also analyzed. Recent findings on exosomes and the miRNA regulatory role were also presented. Finally, the role of autophagy in the protection and aggravation of pancreatitis and possible therapeutic implications were reviewed.
Collapse
Affiliation(s)
- Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece
| | - Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| |
Collapse
|
2
|
Vaccaro MI, Mitchell F, Rivera F, Gonzalez CD. Protein expression in exocrine pancreatic diseases. Focus on VMP1 mediated autophagy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 132:175-197. [PMID: 36088075 DOI: 10.1016/bs.apcsb.2022.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The exocrine pancreas produces enzymes involved in the digestive process whereas endocrine pancreas mainly regulates glucose metabolism. Diseases of the exocrine pancreas are characterized by high morbidity and mortality. Acute pancreatitis is a painful disease in which pancreatic secretory proteins are prematurely activated causing the digestion of the gland. Pancreatic adenocarcinoma is one of the most malignant cancers due to its resistance to treatment, its late diagnosis and high capacity for metastasis. Autophagy is a catabolic process that aims at degrading cytoplasmic contents and damaged organelles, to preserve cell viability and homeostasis. VMP1 is a transmembrane protein that plays a key role in triggering autophagy and being part of the autophagosome membrane. A specific type of selective autophagy pathway called zymophagy protects the pancreas against self-digestion in the setting of acute pancreatitis by sequestering intracellularly activated zymogen granules. Mitophagy is also responsible for maintaining pancreatitis as a mild disease by preserving mitochondrial function. Dysregulation of these selective autophagic processes by pancreatitis itself constitutes a risk factor for development of severe disease. In pancreatic adenocarcinoma, VMP1 mediated autophagy promotes cancer cell survival and resistance to chemotherapy. Therefore, it is relevant to highlight a role for controlling VMP1 expression and targeting VMP1 molecular pathways to improve exocrine pancreatic diseases prognosis.
Collapse
Affiliation(s)
- Maria I Vaccaro
- University of Buenos Aires, CONICET, Institute for Biochemistry and Molecular Medicine, Department of Pathophysiology, Buenos Aires, Argentina; CEMIC University Hospital, Unit of Translational Medical Research, Buenos Aires, Argentina.
| | - Florencia Mitchell
- CEMIC University Institute, School of Medicine, Department of Pharmacology, Buenos Aires, Argentina
| | - Francisco Rivera
- CEMIC University Institute, School of Medicine, Department of Pharmacology, Buenos Aires, Argentina
| | - Claudio D Gonzalez
- CEMIC University Hospital, Unit of Translational Medical Research, Buenos Aires, Argentina; CEMIC University Institute, School of Medicine, Department of Pharmacology, Buenos Aires, Argentina
| |
Collapse
|
3
|
Molecular mechanisms of mammalian autophagy. Biochem J 2021; 478:3395-3421. [PMID: 34554214 DOI: 10.1042/bcj20210314] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
The ubiquitin-proteasome pathway (UPP) and autophagy play integral roles in cellular homeostasis. As part of their normal life cycle, most proteins undergo ubiquitination for some form of redistribution, localization and/or functional modulation. However, ubiquitination is also important to the UPP and several autophagic processes. The UPP is initiated after specific lysine residues of short-lived, damaged or misfolded proteins are conjugated to ubiquitin, which targets these proteins to proteasomes. Autophagy is the endosomal/lysosomal-dependent degradation of organelles, invading microbes, zymogen granules and macromolecules such as protein, carbohydrates and lipids. Autophagy can be broadly separated into three distinct subtypes termed microautophagy, chaperone-mediated autophagy and macroautophagy. Although autophagy was once thought of as non-selective bulk degradation, advancements in the field have led to the discovery of several selective forms of autophagy. Here, we focus on the mechanisms of primary and selective mammalian autophagy pathways and highlight the current knowledge gaps in these molecular pathways.
Collapse
|
4
|
Vanasco V, Ropolo A, Grasso D, Ojeda DS, García MN, Vico TA, Orquera T, Quarleri J, Alvarez S, Vaccaro MI. Mitochondrial Dynamics and VMP1-Related Selective Mitophagy in Experimental Acute Pancreatitis. Front Cell Dev Biol 2021; 9:640094. [PMID: 33816487 PMCID: PMC8012556 DOI: 10.3389/fcell.2021.640094] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Mitophagy and zymophagy are selective autophagy pathways early induced in acute pancreatitis that may explain the mild, auto limited, and more frequent clinical presentation of this disease. Adequate mitochondrial bioenergetics is necessary for cellular restoration mechanisms that are triggered during the mild disease. However, mitochondria and zymogen contents are direct targets of damage in acute pancreatitis. Cellular survival depends on the recovering possibility of mitochondrial function and efficient clearance of damaged mitochondria. This work aimed to analyze mitochondrial dynamics and function during selective autophagy in pancreatic acinar cells during mild experimental pancreatitis in rats. Also, using a cell model under the hyperstimulation of the G-coupled receptor for CCK (CCK-R), we aimed to investigate the mechanisms involved in these processes in the context of zymophagy. We found that during acute pancreatitis, mitochondrial O2 consumption and ATP production significantly decreased early after induction of acute pancreatitis, with a consequent decrease in the ATP/O ratio. Mitochondrial dysfunction was accompanied by changes in mitochondrial dynamics evidenced by optic atrophy 1 (OPA-1) and dynamin-related protein 1 (DRP-1) differential expression and ultrastructural features of mitochondrial fission, mitochondrial elongation, and mitophagy during the acute phase of experimental mild pancreatitis in rats. Mitophagy was also evaluated by confocal assay after transfection with the pMITO-RFP-GFP plasmid that specifically labels autophagic degradation of mitochondria and the expression and redistribution of the ubiquitin ligase Parkin1. Moreover, we report for the first time that vacuole membrane protein-1 (VMP1) is involved and required in the mitophagy process during acute pancreatitis, observable not only by repositioning around specific mitochondrial populations, but also by detection of mitochondria in autophagosomes specifically isolated with anti-VMP1 antibodies as well. Also, VMP1 downregulation avoided mitochondrial degradation confirming that VMP1 expression is required for mitophagy during acute pancreatitis. In conclusion, we identified a novel DRP1-Parkin1-VMP1 selective autophagy pathway, which mediates the selective degradation of damaged mitochondria by mitophagy in acute pancreatitis. The understanding of the molecular mechanisms involved to restore mitochondrial function, such as mitochondrial dynamics and mitophagy, could be relevant in the development of novel therapeutic strategies in acute pancreatitis.
Collapse
Affiliation(s)
- Virginia Vanasco
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Alejandro Ropolo
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Daniel Grasso
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Diego S. Ojeda
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Buenos Aires, Argentina
| | - María Noé García
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Tamara A. Vico
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Tamara Orquera
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Jorge Quarleri
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Buenos Aires, Argentina
| | - Silvia Alvarez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - María I. Vaccaro
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| |
Collapse
|
5
|
Gubas A, Dikic I. A guide to the regulation of selective autophagy receptors. FEBS J 2021; 289:75-89. [PMID: 33730405 DOI: 10.1111/febs.15824] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Autophagy is a highly conserved catabolic process cells use to maintain their homeostasis by degrading misfolded, damaged and excessive proteins, nonfunctional organelles, foreign pathogens and other cellular components. Hence, autophagy can be nonselective, where bulky portions of the cytoplasm are degraded upon stress, or a highly selective process, where preselected cellular components are degraded. To distinguish between different cellular components, autophagy employs selective autophagy receptors, which will link the cargo to the autophagy machinery, thereby sequestering it in the autophagosome for its subsequent degradation in the lysosome. Autophagy receptors undergo post-translational and structural modifications to fulfil their role in autophagy, or upon executing their role, for their own degradation. We highlight the four most prominent protein modifications - phosphorylation, ubiquitination, acetylation and oligomerisation - that are essential for autophagy receptor recruitment, function and turnover. Understanding the regulation of selective autophagy receptors will provide deeper insights into the pathway and open up potential therapeutic avenues.
Collapse
Affiliation(s)
- Andrea Gubas
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Germany.,Max Planck Institute of Biophysics, Frankfurt, Germany
| |
Collapse
|
6
|
Gonzalez CD, Resnik R, Vaccaro MI. Secretory Autophagy and Its Relevance in Metabolic and Degenerative Disease. Front Endocrinol (Lausanne) 2020; 11:266. [PMID: 32477265 PMCID: PMC7232537 DOI: 10.3389/fendo.2020.00266] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Proteins to be secreted through so-called "conventional mechanisms" are characterized by the presence of an N-terminal peptide that is a leader or signal peptide, needed for access to the endoplasmic reticulum and the Golgi apparatus for further secretion. However, some relevant cytosolic proteins lack of this signal peptides and should be secreted by different unconventional or "non-canonical" processes. One form of this unconventional secretion was named secretory autophagy (SA) because it is specifically associated with the autophagy pathway. It is defined by ATG proteins that regulate the biogenesis of the autophagosome, its representative organelle. The canonical macroautophagy involves the fusion of the autophagosomes with lysosomes for content degradation, whereas the SA pathway bypasses this degradative process to allow the secretion. ATG5, as well as other factors involved in autophagy such as BCN1, are also activated as part of the secretory pathway. SA has been recognized as a new mechanism that is becoming of increasing relevance to explain the unconventional secretion of a series of cytosolic proteins that have critical biological importance. Also, SA may play a role in the release of aggregation-prone protein since it has been related to the autophagosome biogenesis machinery. SA requires the autophagic pathway and both, secretory autophagy and canonical degradative autophagy are at the same time, integrated and highly regulated processes that interact in ultimate cross-talking molecular mechanisms. The potential implications of alterations in SA, its cargos, pathways, and regulation in human diseases such as metabolic/aging pathological processes are predictable. Further research of SA as potential target of therapeutic intervention is deserved.
Collapse
Affiliation(s)
- Claudio Daniel Gonzalez
- Department of Pathophysiology, Institute of Biochemistry and Molecular Medicine (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
- CEMIC University Institute, Buenos Aires, Argentina
| | - Roxana Resnik
- Department of Pathophysiology, Institute of Biochemistry and Molecular Medicine (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
- CEMIC University Institute, Buenos Aires, Argentina
| | - Maria Ines Vaccaro
- Department of Pathophysiology, Institute of Biochemistry and Molecular Medicine (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
- CEMIC University Institute, Buenos Aires, Argentina
| |
Collapse
|
7
|
Cavalli G, Cenci S. Autophagy and Protein Secretion. J Mol Biol 2020; 432:2525-2545. [PMID: 31972172 DOI: 10.1016/j.jmb.2020.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/08/2020] [Accepted: 01/12/2020] [Indexed: 12/13/2022]
Abstract
Autophagy - conventional for macroautophagy - is a major recycling strategy that ensures cellular homeostasis through the selective engulfment of cytoplasmic supramolecular cargos in double membrane vesicles and their rapid dispatch to the lysosome for digestion. As autophagy operates in the cytoplasm, its interference with secretory proteins, that is, proteins destined to the plasma membrane or the extracellular space, generally synthesized and routed within the endoplasmic reticulum (ER), has been relatively overlooked in the past. However, mounting evidence reveals that autophagy in fact heavily regulates protein secretion through diverse mechanisms. First, autophagy is closely involved in the unconventional secretion of leaderless proteins, a pool of proteins destined extracellularly, but lacking an ER-targeted leader sequence, and thus manufactured in the cytosol. Autophagy-related (ATG) genes now appear instrumental to the underlying pathways, hence the recently coined concept of secretory autophagy, or better ATG gene-dependent secretion. Indeed, ATG genes regulate unconventional protein secretion at multiple levels, ranging from intracellular inflammatory signaling, for example, through the control of mitochondrial health and inflammasome activity, to trafficking of leaderless proteins. Moreover, perhaps less expectedly, autophagy also participates in the control of conventional secretion, intersecting the secretory apparatus at multiple points, though with surprising differences among professional secretory cell types that disclose remarkable and unpredicted specificity. This review synopsizes the multiple mechanisms whereby autophagy interfaces with conventional and unconventional protein secretory pathways and discusses the relative teleology. Altogether, the diverse controls exerted on protein secretion broaden and deepen the homeostatic significance of autophagy within the cell.
Collapse
Affiliation(s)
- Giulio Cavalli
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Ospedale San Raffaele, Milano, Italy; Vita-Salute San Raffaele University, Milano, Italy
| | - Simone Cenci
- Vita-Salute San Raffaele University, Milano, Italy; Unit of Age Related Diseases, Division of Genetics and Cell Biology, Ospedale San Raffaele, Milano, Italy.
| |
Collapse
|
8
|
Abstract
Acute pancreatitis is one of the first pathological processes where autophagy has been described in a human tissue. Autophagy, autodigestion, and cell death are early cellular events in acute pancreatitis. Recent advances in understanding autophagy highlight its importance in pathological conditions. However, methods for monitoring autophagic activity during complex diseases, involving highly differentiated secretory cells, are complicated, and the results are sometimes misinterpreted. Here, we describe methods used to identify autophagic structures and to measure autophagic flux in cultured cell models and animal models of pancreatitis. We also briefly describe the pancreas specific autophagy mouse model that was useful to understand the actual role of autophagy in pancreatitis and to identify a novel selective autophagy pathway named zymophagy. Lastly, we describe the immunomagnetic isolation of autophagosomes and the detection of autophagy in pancreatic tissue samples derived from humans.
Collapse
|
9
|
Autophagy impairment in pancreatic acinar cells causes zymogen granule accumulation and pancreatitis. Biochem Biophys Res Commun 2018; 503:2576-2582. [DOI: 10.1016/j.bbrc.2018.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023]
|
10
|
Lugea A, Waldron RT, Mareninova OA, Shalbueva N, Deng N, Su HY, Thomas DD, Jones EK, Messenger SW, Yang J, Hu C, Gukovsky I, Liu Z, Groblewski GE, Gukovskaya AS, Gorelick FS, Pandol SJ. Human Pancreatic Acinar Cells: Proteomic Characterization, Physiologic Responses, and Organellar Disorders in ex Vivo Pancreatitis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2726-2743. [PMID: 28935577 DOI: 10.1016/j.ajpath.2017.08.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 06/30/2017] [Accepted: 08/03/2017] [Indexed: 12/17/2022]
Abstract
Knowledge of the molecular mechanisms of acute pancreatitis is largely based on studies using rodents. To assess similar mechanisms in humans, we performed ex vivo pancreatitis studies in human acini isolated from cadaveric pancreata from organ donors. Because data on these human acinar preparations are sparse, we assessed their functional integrity and cellular and organellar morphology using light, fluorescence, and electron microscopy; and their proteome by liquid chromatography-tandem mass spectrometry. Acinar cell responses to the muscarinic agonist carbachol (CCh) and the bile acid taurolithocholic acid 3-sulfate were also analyzed. Proteomic analysis of acini from donors of diverse ethnicity showed similar profiles of digestive enzymes and proteins involved in translation, secretion, and endolysosomal function. Human acini preferentially expressed the muscarinic acetylcholine receptor M3 and maintained physiological responses to CCh for at least 20 hours. As in rodent acini, human acini exposed to toxic concentrations of CCh and taurolithocholic acid 3-sulfate responded with trypsinogen activation, decreased cell viability, organelle damage manifest by mitochondrial depolarization, disordered autophagy, and pathological endoplasmic reticulum stress. Human acini also secreted inflammatory mediators elevated in acute pancreatitis patients, including IL-6, tumor necrosis factor-α, IL-1β, chemokine (C-C motif) ligands 2 and 3, macrophage inhibitory factor, and chemokines mediating neutrophil and monocyte infiltration. In conclusion, human cadaveric pancreatic acini maintain physiological functions and have similar pathological responses and organellar disorders with pancreatitis-causing treatments as observed in rodent acini.
Collapse
Affiliation(s)
- Aurelia Lugea
- Department of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California; Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California.
| | - Richard T Waldron
- Department of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California; Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - Olga A Mareninova
- Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - Natalia Shalbueva
- Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - Nan Deng
- Department of Biostatistics and Bioinformatics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hsin-Yuan Su
- Department of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Diane D Thomas
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin
| | - Elaina K Jones
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin
| | - Scott W Messenger
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin
| | - Jiayue Yang
- Department of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Cheng Hu
- Department of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ilya Gukovsky
- Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - Zhenqiu Liu
- Department of Biostatistics and Bioinformatics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Guy E Groblewski
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin
| | - Anna S Gukovskaya
- Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - Fred S Gorelick
- Departments of Internal Medicine and Cell Biology, Yale University School of Medicine, New Haven, Connecticut; Veterans Administration Connecticut Healthcare, West Haven, Connecticut
| | - Stephen J Pandol
- Department of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California; Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| |
Collapse
|
11
|
Hayat M. Overview of Autophagy. AUTOPHAGY: CANCER, OTHER PATHOLOGIES, INFLAMMATION, IMMUNITY, INFECTION, AND AGING 2017:3-90. [DOI: 10.1016/b978-0-12-805420-8.00001-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Hayat M. Overview of Autophagy. AUTOPHAGY: CANCER, OTHER PATHOLOGIES, INFLAMMATION, IMMUNITY, INFECTION, AND AGING 2017:1-122. [DOI: 10.1016/b978-0-12-812146-7.00001-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Transcriptional Maintenance of Pancreatic Acinar Identity, Differentiation, and Homeostasis by PTF1A. Mol Cell Biol 2016; 36:3033-3047. [PMID: 27697859 DOI: 10.1128/mcb.00358-16] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/23/2016] [Indexed: 12/17/2022] Open
Abstract
Maintenance of cell type identity is crucial for health, yet little is known of the regulation that sustains the long-term stability of differentiated phenotypes. To investigate the roles that key transcriptional regulators play in adult differentiated cells, we examined the effects of depletion of the developmental master regulator PTF1A on the specialized phenotype of the adult pancreatic acinar cell in vivo Transcriptome sequencing and chromatin immunoprecipitation sequencing results showed that PTF1A maintains the expression of genes for all cellular processes dedicated to the production of the secretory digestive enzymes, a highly attuned surveillance of unfolded proteins, and a heightened unfolded protein response (UPR). Control by PTF1A is direct on target genes and indirect through a ten-member transcription factor network. Depletion of PTF1A causes an imbalance that overwhelms the UPR, induces cellular injury, and provokes acinar metaplasia. Compromised cellular identity occurs by derepression of characteristic stomach genes, some of which are also associated with pancreatic ductal cells. The loss of acinar cell homeostasis, differentiation, and identity is directly relevant to the pathologies of pancreatitis and pancreatic adenocarcinoma.
Collapse
|
14
|
Farré JC, Subramani S. Mechanistic insights into selective autophagy pathways: lessons from yeast. Nat Rev Mol Cell Biol 2016; 17:537-52. [PMID: 27381245 PMCID: PMC5549613 DOI: 10.1038/nrm.2016.74] [Citation(s) in RCA: 292] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autophagy has burgeoned rapidly as a field of study because of its evolutionary conservation, the diversity of intracellular cargoes degraded and recycled by this machinery, the mechanisms involved, as well as its physiological relevance to human health and disease. This self-eating process was initially viewed as a non-selective mechanism used by eukaryotic cells to degrade and recycle macromolecules in response to stress; we now know that various cellular constituents, as well as pathogens, can also undergo selective autophagy. In contrast to non-selective autophagy, selective autophagy pathways rely on a plethora of selective autophagy receptors (SARs) that recognize and direct intracellular protein aggregates, organelles and pathogens for specific degradation. Although SARs themselves are not highly conserved, their modes of action and the signalling cascades that activate and regulate them are. Recent yeast studies have provided novel mechanistic insights into selective autophagy pathways, revealing principles of how various cargoes can be marked and targeted for selective degradation.
Collapse
Affiliation(s)
- Jean-Claude Farré
- University of California, 3326 Bonner Hall, 9500 Gilman Drive, San Diego, La Jolla, California 92093-0322, USA
| | - Suresh Subramani
- University of California, 3326 Bonner Hall, 9500 Gilman Drive, San Diego, La Jolla, California 92093-0322, USA
| |
Collapse
|
15
|
Wu JS, Li WM, Chen YN, Zhao Q, Chen QF. Endoplasmic reticulum stress is activated in acute pancreatitis. J Dig Dis 2016; 17:295-303. [PMID: 27059531 DOI: 10.1111/1751-2980.12347] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/21/2016] [Accepted: 03/31/2016] [Indexed: 12/11/2022]
Abstract
Endoplasmic reticulum (ER) is one of the most important cell organelles in the body, regulating protein synthesis, folding and aggregation. Endoplasmic reticulum stress (ERS) is a particular subcellular pathological process involving an imbalance of homeostasis and ER disorder. In the early stage of ERS, cells show a protective unfolded protein response that changes the cellular transcriptional and translational programs to alleviate the process. Therefore, a certain degree of ERS can activate the protective adaptation of cells, whereas sustained severe ERS triggers an apoptotic signal and leads to apoptosis. Acute pancreatitis is a disease caused by trypsin digestion of the pancreas, although the pathogenesis is not completely understood. However, a close association has been suggested between pancreatitis and ERS. This article reviewed relevant research advances and discussed the effect of ERS on the development and progression of acute pancreatitis.
Collapse
Affiliation(s)
- Jian Sheng Wu
- Department of Gastroenterology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wei Min Li
- Department of Gastroenterology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yi Na Chen
- Department of Gastroenterology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qian Zhao
- Department of Gastroenterology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qin Fen Chen
- Department of Gastroenterology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
16
|
Hayat M. Overview of Autophagy. AUTOPHAGY: CANCER, OTHER PATHOLOGIES, INFLAMMATION, IMMUNITY, INFECTION, AND AGING 2016:1-71. [DOI: 10.1016/b978-0-12-802937-4.00001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Hayat M. Overview of Autophagy. AUTOPHAGY: CANCER, OTHER PATHOLOGIES, INFLAMMATION, IMMUNITY, INFECTION, AND AGING 2016:3-84. [DOI: 10.1016/b978-0-12-805421-5.00001-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
18
|
Hayat M. Overview of Autophagy. AUTOPHAGY: CANCER, OTHER PATHOLOGIES, INFLAMMATION, IMMUNITY, INFECTION, AND AGING 2016:3-73. [DOI: 10.1016/b978-0-12-802936-7.00001-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
19
|
Hayat M. Introduction to Autophagy. AUTOPHAGY: CANCER, OTHER PATHOLOGIES, INFLAMMATION, IMMUNITY, INFECTION, AND AGING 2015:1-53. [DOI: 10.1016/b978-0-12-801043-3.00001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Hayat M. Introduction to Autophagy. AUTOPHAGY: CANCER, OTHER PATHOLOGIES, INFLAMMATION, IMMUNITY, INFECTION, AND AGING 2015:1-48. [DOI: 10.1016/b978-0-12-801033-4.00001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
21
|
Hayat M. Introduction to Autophagy. AUTOPHAGY: CANCER, OTHER PATHOLOGIES, INFLAMMATION, IMMUNITY, INFECTION, AND AGING 2015:1-51. [DOI: 10.1016/b978-0-12-801032-7.00001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
22
|
Hale AN, Ledbetter DJ, Gawriluk TR, Rucker EB. Autophagy: regulation and role in development. Autophagy 2014; 9:951-72. [PMID: 24121596 DOI: 10.4161/auto.24273] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Autophagy is an evolutionarily conserved cellular process through which long-lived proteins and damaged organelles are recycled to maintain energy homeostasis. These proteins and organelles are sequestered into a double-membrane structure, or autophagosome, which subsequently fuses with a lysosome in order to degrade the cargo. Although originally classified as a type of programmed cell death, autophagy is more widely viewed as a basic cell survival mechanism to combat environmental stressors. Autophagy genes were initially identified in yeast and were found to be necessary to circumvent nutrient stress and starvation. Subsequent elucidation of mammalian gene counterparts has highlighted the importance of this process to normal development. This review provides an overview of autophagy, the types of autophagy, its regulation and its known impact on development gleaned primarily from murine models.
Collapse
Affiliation(s)
- Amber N Hale
- Department of Biology; University of Kentucky; Lexington, KY USA
| | | | | | | |
Collapse
|
23
|
Hayat M. Introduction to Autophagy. AUTOPHAGY: CANCER, OTHER PATHOLOGIES, INFLAMMATION, IMMUNITY, INFECTION, AND AGING 2014:1-46. [DOI: 10.1016/b978-0-12-405528-5.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
24
|
The zinc transporter Zip5 (Slc39a5) regulates intestinal zinc excretion and protects the pancreas against zinc toxicity. PLoS One 2013; 8:e82149. [PMID: 24303081 PMCID: PMC3841122 DOI: 10.1371/journal.pone.0082149] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/28/2013] [Indexed: 11/20/2022] Open
Abstract
Background ZIP5 localizes to the baso-lateral membranes of intestinal enterocytes and pancreatic acinar cells and is internalized and degraded coordinately in these cell-types during periods of dietary zinc deficiency. These cell-types are thought to control zinc excretion from the body. The baso-lateral localization and zinc-regulation of ZIP5 in these cells are unique among the 14 members of the Slc39a family and suggest that ZIP5 plays a role in zinc excretion. Methods/Principal Findings We created mice with floxed Zip5 genes and deleted this gene in the entire mouse or specifically in enterocytes or acinar cells and then examined the effects on zinc homeostasis. We found that ZIP5 is not essential for growth and viability but total knockout of ZIP5 led to increased zinc in the liver in mice fed a zinc-adequate (ZnA) diet but impaired accumulation of pancreatic zinc in mice fed a zinc-excess (ZnE) diet. Loss-of-function of enterocyte ZIP5, in contrast, led to increased pancreatic zinc in mice fed a ZnA diet and increased abundance of intestinal Zip4 mRNA. Finally, loss-of-function of acinar cell ZIP5 modestly reduced pancreatic zinc in mice fed a ZnA diet but did not impair zinc uptake as measured by the rapid accumulation of 67zinc. Retention of pancreatic 67zinc was impaired in these mice but the absence of pancreatic ZIP5 sensitized them to zinc-induced pancreatitis and exacerbated the formation of large cytoplasmic vacuoles containing secretory protein in acinar cells. Conclusions These studies demonstrate that ZIP5 participates in the control of zinc excretion in mice. Specifically, they reveal a paramount function of intestinal ZIP5 in zinc excretion but suggest a role for pancreatic ZIP5 in zinc accumulation/retention in acinar cells. ZIP5 functions in acinar cells to protect against zinc-induced acute pancreatitis and attenuate the process of zymophagy. This suggests that it may play a role in autophagy.
Collapse
|