1
|
Liu MM, Chen X, Bao XH, Huang BH. Lipids, lipid-lowering drugs and lateral epicondylitis of the humerus: a drug-targeted Mendelian randomization study. Front Genet 2024; 15:1437712. [PMID: 39286458 PMCID: PMC11402682 DOI: 10.3389/fgene.2024.1437712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Background Clinical observations indicate that blood lipids may be risk factors for lateral epicondylitis (LE) of the humerus, and lipid-lowering drugs are also used for the prevention and treatment of tendon diseases, but these lack high-quality clinical trial evidence and remain inconclusive. Mendelian randomization (MR) analyses can overcome biases in traditional observational studies and offer more accurate inference of causal relationships. Therefore, we employed this approach to investigate whether blood lipids are risk factors for LE and if lipid-lowering drugs can prevent it. Methods Genetic variations associated with lipid traits, including low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), and total cholesterol (TC), were obtained from the UK Biobank and the Global Lipids Genetics Consortium (GLGC). Data on genetic variation in LE were sourced from FinnGen, including 24,061 patients and 275,212 controls. Subsequently, MR analyses were conducted to assess the potential correlation between lipid traits and LE. Additionally, drug-target Mendelian randomization analyses were performed on 10 drug targets relevant to LE. For those drug targets that yielded significant results, further analysis was conducted using colocalization techniques. Results No correlation was found between three blood lipid traits and LE. Lipoprotein lipase (LPL) enhancement is significantly associated with a decreased risk of LE (OR = 0.76, [95% CI, 0.65-0.90], p = 0.001). The expression of LPL in the blood is associated with LE and shares a single causal variant (12.07%), greatly exceeding the probability of different causal variations (1.93%), with a colocalization probability of 86.2%. Conclusion The three lipid traits are not risk factors for lateral epicondylitis. LPL is a potential drug target for the prevention and treatment of LE.
Collapse
Affiliation(s)
- Meng-Meng Liu
- School of Physical Education And Health, Guangxi Medical University, Nanning, China
| | - Xiang Chen
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiao-Hang Bao
- Department of Spinal Surgery, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Bao-Hua Huang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
2
|
Li W, Li Y, Gao S, Huang N, Kojima I, Kusama T, Ou Y, Iikubo M, Niu X. Integrating lipid metabolite analysis with MRI-based transformer and radiomics for early and late stage prediction of oral squamous cell carcinoma. BMC Cancer 2024; 24:795. [PMID: 38961418 PMCID: PMC11221018 DOI: 10.1186/s12885-024-12533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Oral Squamous Cell Carcinoma (OSCC) presents significant diagnostic challenges in its early and late stages. This study aims to utilize preoperative MRI and biochemical indicators of OSCC patients to predict the stage of tumors. METHODS This study involved 198 patients from two medical centers. A detailed analysis of contrast-enhanced T1-weighted (ceT1W) and T2-weighted (T2W) MRI were conducted, integrating these with biochemical indicators for a comprehensive evaluation. Initially, 42 clinical biochemical indicators were selected for consideration. Through univariate analysis and multivariate analysis, only those indicators with p-values less than 0.05 were retained for model development. To extract imaging features, machine learning algorithms in conjunction with Vision Transformer (ViT) techniques were utilized. These features were integrated with biochemical indicators for predictive modeling. The performance of model was evaluated using the Receiver Operating Characteristic (ROC) curve. RESULTS After rigorously screening biochemical indicators, four key markers were selected for the model: cholesterol, triglyceride, very low-density lipoprotein cholesterol and chloride. The model, developed using radiomics and deep learning for feature extraction from ceT1W and T2W images, showed a lower Area Under the Curve (AUC) of 0.85 in the validation cohort when using these imaging modalities alone. However, integrating these biochemical indicators improved the model's performance, increasing the validation cohort AUC to 0.87. CONCLUSION In this study, the performance of the model significantly improved following multimodal fusion, outperforming the single-modality approach. CLINICAL RELEVANCE STATEMENT This integration of radiomics, ViT models, and lipid metabolite analysis, presents a promising non-invasive technique for predicting the staging of OSCC.
Collapse
Affiliation(s)
- Wen Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yang Li
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Oral Diagnosis, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Shiyu Gao
- School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, China
| | - Nengwen Huang
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Ikuho Kojima
- Department of Oral Diagnosis, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Taro Kusama
- Department of Oral Diagnosis, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yanjing Ou
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Masahiro Iikubo
- Department of Oral Diagnosis, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| | - Xuegang Niu
- Department of Neurosurgey, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Department of Neurosurgey, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
3
|
Hu Q, Chen S, Li Y, Hu T, Hu J, Wang C, Yang F, Yang X, Zhou F, Liu Z, Xu W, Zhang J. ANGPTL4, a direct target of hsa-miR-133a-3p, accelerates lung adenocarcinoma lipid metabolism, proliferation and invasion. Aging (Albany NY) 2023; 16:8348-8360. [PMID: 38159259 PMCID: PMC11132016 DOI: 10.18632/aging.205313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/12/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Globally, lung adenocarcinoma (LUAD) is the most common type of lung cancer. The secreted protein angiopoietin-like 4 (ANGPTL4) has been implicated in a number of physiological and pathological processes, including angiogenesis and lipid metabolism. But the role of ANGPTL4 in LUAD remains unknown. METHODS The expression of ANGPTL4 and miR-133a-3p was confirmed by public database analysis. Xenograft model, MTT, Clone formation and EdU analysis were used to confirm the effects of miR-133a-3p/ANGPTL4 on LUAD cell proliferation and growth. Wound healing and Transwell analysis were used to elucidate the role of miR-133a-3p/ANGPTL4 in LUAD cell migration and invasion. Oil red O staining was used to confirm ANGPTL4 in LUAD lipids production. Dual-luciferase reporter gene analysis was used to demonstrate miR-133a-3p could directly bind ANGPTL4 3'-UTR. WB and PCR were used to confirm the protein expression of ANGPTL4. RESULTS ANGPTL4 was significantly increased in LUAD samples, which could promote LUAD cell proliferation, migration, invasion, growth and lipid production. miR-133a-3p could directly bind to ANGPTL4 mRNA, and repress the expression ANGPTL4, resulting in suppressing LUAD proliferation and metastasis. CONCLUSION In conclusion, miR-133a-3p/ANGPTL4 axis might be a potential biomarker and therapeutic target for LUAD patients.
Collapse
Affiliation(s)
- Qihao Hu
- Department of Thoracic Surgery, The First People’s Hospital of Changde City, Changde, Hunan, China
| | - Shi Chen
- Department of Thoracic Surgery, The First People’s Hospital of Changde City, Changde, Hunan, China
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Teng Hu
- Department of Pathology, The First People’s Hospital of Changde City, Changde, Hunan, China
| | - Jianpeng Hu
- Department of Thoracic Surgery, The First People’s Hospital of Changde City, Changde, Hunan, China
| | - Cheng Wang
- Department of Thoracic Surgery, The First People’s Hospital of Changde City, Changde, Hunan, China
| | - Fei Yang
- Department of Thoracic Surgery, The First People’s Hospital of Changde City, Changde, Hunan, China
| | - Xiang Yang
- Department of Thoracic Surgery, The First People’s Hospital of Changde City, Changde, Hunan, China
| | - Feng Zhou
- Department of Thoracic Surgery, The First People’s Hospital of Changde City, Changde, Hunan, China
| | - Zhengdong Liu
- Department of Thoracic Surgery, The First People’s Hospital of Changde City, Changde, Hunan, China
| | - Wei Xu
- Department of Thoracic Surgery, The First People’s Hospital of Changde City, Changde, Hunan, China
| | - Ji Zhang
- Department of Thoracic Surgery, The First People’s Hospital of Changde City, Changde, Hunan, China
| |
Collapse
|
4
|
Chaube B, Citrin KM, Sahraei M, Singh AK, de Urturi DS, Ding W, Pierce RW, Raaisa R, Cardone R, Kibbey R, Fernández-Hernando C, Suárez Y. Suppression of angiopoietin-like 4 reprograms endothelial cell metabolism and inhibits angiogenesis. Nat Commun 2023; 14:8251. [PMID: 38086791 PMCID: PMC10716292 DOI: 10.1038/s41467-023-43900-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Angiopoietin-like 4 (ANGPTL4) is known to regulate various cellular and systemic functions. However, its cell-specific role in endothelial cells (ECs) function and metabolic homeostasis remains to be elucidated. Here, using endothelial-specific Angptl4 knock-out mice (Angptl4iΔEC), and transcriptomics and metabolic flux analysis, we demonstrate that ANGPTL4 is required for maintaining EC metabolic function vital for vascular permeability and angiogenesis. Knockdown of ANGPTL4 in ECs promotes lipase-mediated lipoprotein lipolysis, which results in increased fatty acid (FA) uptake and oxidation. This is also paralleled by a decrease in proper glucose utilization for angiogenic activation of ECs. Mice with endothelial-specific deletion of Angptl4 showed decreased pathological neovascularization with stable vessel structures characterized by increased pericyte coverage and reduced permeability. Together, our study denotes the role of endothelial-ANGPTL4 in regulating cellular metabolism and angiogenic functions of EC.
Collapse
Affiliation(s)
- Balkrishna Chaube
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
| | - Kathryn M Citrin
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Mahnaz Sahraei
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Abhishek K Singh
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Diego Saenz de Urturi
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
| | - Wen Ding
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Richard W Pierce
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Raaisa Raaisa
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Rebecca Cardone
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Richard Kibbey
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Carlos Fernández-Hernando
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Yajaira Suárez
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Tokgözoğlu L, Pirillo A, Catapano AL. Glycerol and β-hydroxybutyrate: friends or foes? Eur Heart J 2023; 44:4183-4185. [PMID: 37574968 DOI: 10.1093/eurheartj/ehad368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Affiliation(s)
- Lale Tokgözoğlu
- Department of Cardiology, Hacettepe University Medical Faculty, Ankara, Turkey
| | - Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy
- IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy
| | | |
Collapse
|
6
|
Hossain MA, Sohel M, Rahman MH, Hasan MI, Khan MS, Amin MA, Islam MZ, Peng S. Bioinformatics and In silico approaches to identify novel biomarkers and key pathways for cancers that are linked to the progression of female infertility: A comprehensive approach for drug discovery. PLoS One 2023; 18:e0265746. [PMID: 36608061 PMCID: PMC9821510 DOI: 10.1371/journal.pone.0265746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 03/07/2022] [Indexed: 01/07/2023] Open
Abstract
Despite modern treatment, infertility remains one of the most common gynecologic diseases causing severe health effects worldwide. The clinical and epidemiological data have shown that several cancerous risk factors are strongly linked to Female Infertility (FI) development, but the exact causes remain unknown. Understanding how these risk factors affect FI-affected cell pathways might pave the door for the discovery of critical signaling pathways and hub proteins that may be targeted for therapeutic intervention. To deal with this, we have used a bioinformatics pipeline to build a transcriptome study of FI with four carcinogenic risk factors: Endometrial Cancer (EC), Ovarian Cancer (OC), Cervical Cancer (CC), and Thyroid Cancer (TC). We identified FI sharing 97, 211, 87 and 33 differentially expressed genes (DEGs) with EC, OC, CC, and TC, respectively. We have built gene-disease association networks from the identified genes based on the multilayer network and neighbour-based benchmarking. Identified TNF signalling pathways, ovarian infertility genes, cholesterol metabolic process, and cellular response to cytokine stimulus were significant molecular and GO pathways, both of which improved our understanding the fundamental molecular mechanisms of cancers associated with FI progression. For therapeutic intervention, we have targeted the two most significant hub proteins VEGFA and PIK3R1, out of ten proteins based on Maximal Clique Centrality (MCC) value of cytoscape and literature analysis for molecular docking with 27 phytoestrogenic compounds. Among them, sesamin, galangin and coumestrol showed the highest binding affinity for VEGFA and PIK3R1 proteins together with favourable ADMET properties. We recommended that our identified pathway, hub proteins and phytocompounds may be served as new targets and therapeutic interventions for accurate diagnosis and treatment of multiple diseases.
Collapse
Affiliation(s)
- Md. Arju Hossain
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Md Sohel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Islamic University, Kushtia, Bangladesh
- * E-mail:
| | - Md Imran Hasan
- Department of Computer Science and Engineering, Islamic University, Kushtia, Bangladesh
| | - Md. Sharif Khan
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Md. Al Amin
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Md. Zahidul Islam
- Department of Electronics, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Silong Peng
- Institute of Automation, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Singh Y, Subbarao N, Jaimini A, Hathaway QA, Kunovac A, Erickson B, Swarup V, Singh HN. Genome-wide expression reveals potential biomarkers in breast cancer bone metastasis. J Integr Bioinform 2022; 19:jib-2021-0041. [PMID: 35388653 PMCID: PMC9521824 DOI: 10.1515/jib-2021-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/08/2022] [Indexed: 11/23/2022] Open
Abstract
Breast cancer metastases are most commonly found in bone, an indication of poor prognosis. Pathway-based biomarkers identification may help elucidate the cellular signature of breast cancer metastasis in bone, further characterizing the etiology and promoting new therapeutic approaches. We extracted gene expression profiles from mouse macrophages from the GEO dataset, GSE152795 using the GEO2R webtool. The differentially expressed genes (DEGs) were filtered by log2 fold-change with threshold 1.5 (FDR < 0.05). STRING database and Enrichr were used for GO-term analysis, miRNA and TF analysis associated with DEGs. Autodock Vienna was exploited to investigate interaction of anti-cancer drugs, Actinomycin-D and Adriamycin. Sensitivity and specificity of DEGs was assessed using receiver operating characteristic (ROC) analyses. A total of 61 DEGs, included 27 down-regulated and 34 up-regulated, were found to be significant in breast cancer bone metastasis. Major DEGs were associated with lipid metabolism and immunological response of tumor tissue. Crucial DEGs, Bcl3, ADGRG7, FABP4, VCAN, and IRF4 were regulated by miRNAs, miR-497, miR-574, miR-138 and TFs, CCDN1, STAT6, IRF8. Docking analysis showed that these genes possessed strong binding with the drugs. ROC analysis demonstrated Bcl3 is specific to metastasis. DEGs Bcl3, ADGRG7, FABP4, IRF4, their regulating miRNAs and TFs have strong impact on proliferation and metastasis of breast cancer in bone tissues. In conclusion, present study revealed that DEGs are directly involved in of breast tumor metastasis in bone tissues. Identified genes, miRNAs, and TFs can be possible drug targets that may be used for the therapeutics. However, further experimental validation is necessary.
Collapse
Affiliation(s)
- Yashbir Singh
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhinav Jaimini
- Divisions of PET Imaging, MIRC, Institute of Nuclear Medicine and Allied Sciences (INMAS), Timarpur, Delhi, India
| | - Quincy A Hathaway
- Department of Cardiology, West Virginia University School of Medicine, Heart & Vascular Institute, Morgantown, WV, USA
| | - Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | | | - Vishnu Swarup
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Himanshu Narayan Singh
- Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille 13288, France.,MTA Infotech, Varanasi, India
| |
Collapse
|
8
|
Gago-Dominguez M, Redondo CM, Calaza M, Matabuena M, Bermudez MA, Perez-Fernandez R, Torres-Español M, Carracedo Á, Castelao JE. LIPG endothelial lipase and breast cancer risk by subtypes. Sci Rep 2021; 11:10436. [PMID: 34001944 PMCID: PMC8129130 DOI: 10.1038/s41598-021-89669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/21/2021] [Indexed: 11/09/2022] Open
Abstract
Experimental data showed that endothelial lipase (LIPG) is a crucial player in breast cancer. However, very limited data exists on the role of LIPG on the risk of breast cancer in humans. We examined the LIPG-breast cancer association within our population-based case-control study from Galicia, Spain, BREOGAN (BREast Oncology GAlicia Network). Plasma LIPG and/or OxLDL were measured on 114 breast cancer cases and 82 controls from our case-control study, and were included in the present study. The risk of breast cancer increased with increasing levels of LIPG (multivariable OR for the highest category (95% CI) 2.52 (1.11-5.81), P-trend = 0.037). The LIPG-breast cancer association was restricted to Pre-menopausal breast cancer (Multivariable OR for the highest LIPG category (95% CI) 4.76 (0.94-28.77), P-trend = 0.06, and 1.79 (0.61-5.29), P-trend = 0.372, for Pre-menopausal and Post-menopausal breast cancer, respectively). The LIPG-breast cancer association was restricted to Luminal A breast cancers (Multivariable OR for the highest LIPG category (95% CI) 3.70 (1.42-10.16), P-trend = 0.015, and 2.05 (0.63-7.22), P-trend = 0.311, for Luminal A and non-Luminal A breast cancers, respectively). Subset analysis only based on HER2 receptor indicated that the LIPG-breast cancer relationship was restricted to HER2-negative breast cancers (Multivariable OR for the highest LIPG category (95% CI) 4.39 (1.70-12.03), P-trend = 0.012, and 1.10 (0.28-4.32), P-trend = 0.745, for HER2-negative and HER2-positive tumors, respectively). The LIPG-breast cancer association was restricted to women with high total cholesterol levels (Multivariable OR for the highest LIPG category (95% CI) 6.30 (2.13-20.05), P-trend = 0.018, and 0.65 (0.11-3.28), P-trend = 0.786, among women with high and low cholesterol levels, respectively). The LIPG-breast cancer association was also restricted to non-postpartum breast cancer (Multivariable OR for the highest LIPG category (95% CI) 3.83 (1.37-11.39), P-trend = 0.003, and 2.35 (0.16-63.65), P-trend = 0.396, for non-postpartum and postpartum breast cancer, respectively), although we lacked precision. The LIPG-breast cancer association was more pronounced among grades II and III than grade I breast cancers (Multivariable ORs for the highest category of LIPG (95% CI) 2.73 (1.02-7.69), P-trend = 0.057, and 1.90 (0.61-6.21), P-trend = 0.170, for grades II and III, and grade I breast cancers, respectively). No association was detected for OxLDL levels and breast cancer (Multivariable OR for the highest versus the lowest category (95% CI) 1.56 (0.56-4.32), P-trend = 0.457).
Collapse
Affiliation(s)
- Manuela Gago-Dominguez
- Galician Public Foundation of Genomic Medicine (FPGMX), Servicio Galego de Saúde (SERGAS), Santiago de Compostela, Spain.
- Genomic Medicine Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Centro en Red de Enfermedades Raras (CIBERER), University of Santiago de Compostela, Santiago de Compostela, Spain.
- Galician Public Foundation of Genomic Medicine (FPGMX), Genomic Medicine Group, International Cancer Genetics and Epidemiology Group, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain.
| | - Carmen M Redondo
- Oncology and Genetics Unit, Instituto de Investigación Sanitaria Galicia Sur, Vigo, Spain
| | - Manuel Calaza
- Conselleria de Educación, Xunta de Galicia, Santiago de Compostela, Spain
| | - Marcos Matabuena
- Centro de Investigación en Tecnoloxías da Información (CiTIUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria A Bermudez
- Department of Biology, Faculty of Science, University of A Coruña, A Coruña, Spain
| | - Roman Perez-Fernandez
- Department of Physiology and Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Torres-Español
- Galician Public Foundation of Genomic Medicine (FPGMX), Servicio Galego de Saúde (SERGAS), Santiago de Compostela, Spain
- Genomic Medicine Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Centro en Red de Enfermedades Raras (CIBERER), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ángel Carracedo
- Galician Public Foundation of Genomic Medicine (FPGMX), Servicio Galego de Saúde (SERGAS), Santiago de Compostela, Spain
- Genomic Medicine Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Centro en Red de Enfermedades Raras (CIBERER), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - J Esteban Castelao
- Oncology and Genetics Unit, Instituto de Investigación Sanitaria Galicia Sur, Vigo, Spain
| |
Collapse
|
9
|
Li K, Fan J, Qin X, Wei Q. Novel therapeutic compounds for prostate adenocarcinoma treatment: An analysis using bioinformatic approaches and the CMap database. Medicine (Baltimore) 2020; 99:e23768. [PMID: 33371142 PMCID: PMC7748316 DOI: 10.1097/md.0000000000023768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 11/17/2020] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Prostate adenocarcinoma is the most frequently diagnosed malignancy, particularly for people >70 years old. The main challenge in the treatment of advanced neoplasm is bone metastasis and therapeutic resistance for known oncology drugs. Novel treatment methods to prolong the survival time and improve the life quality of these specific patients are required. The present study attempted to screen potential therapeutic compounds for the tumor through bioinformatics approaches, in order to provide conceptual treatment for this malignant disease. METHODS Differentially expressed genes were obtained from the Gene Expression Omnibus database and submitted into the Connectivity Map database for the detection of potentially associated compounds. Target genes were extracted from the search results. Functional annotation and pathway enrichment were performed for the confirmation. Survival analysis was used to measure potential therapeutic effects. RESULTS It was revealed that 3 compounds (vanoxerine, tolnaftate, and gabexate) may help to prolong the disease-free survival time from tumor metastasis of patients with the tumor. A total of 6 genes [also-keto reductase family 1 member C3 (AKR1C3), collagen type III α 1 chain (COL3A1), lipoprotein lipase (LPL), glucuronidase, β pseudogene 11 (GUSBP11), apolipoprotein E (APOE), and collagen type I α 1 chain (COL1A1)] were identified to be the potential therapeutic targets for the aforementioned compounds. CONCLUSION In the present study, it was speculated that 3 compounds may function as the potential therapeutic drugs of bone metastatic prostate adenocarcinoma; however, further studies verifying vitro and in vivo are necessary.
Collapse
Affiliation(s)
- Kai Li
- Departments of Orthopedics, The First Affiliated Hospital, Guangxi Medical University
| | - Jingyuan Fan
- Departments of Orthopedics, The First Affiliated Hospital, Guangxi Medical University
| | - Xinyi Qin
- Graduate School of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Qingjun Wei
- Departments of Orthopedics, The First Affiliated Hospital, Guangxi Medical University
| |
Collapse
|
10
|
Chandra P, Enespa, Singh R, Arora PK. Microbial lipases and their industrial applications: a comprehensive review. Microb Cell Fact 2020; 19:169. [PMID: 32847584 PMCID: PMC7449042 DOI: 10.1186/s12934-020-01428-8] [Citation(s) in RCA: 328] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Lipases are very versatile enzymes, and produced the attention of the several industrial processes. Lipase can be achieved from several sources, animal, vegetable, and microbiological. The uses of microbial lipase market is estimated to be USD 425.0 Million in 2018 and it is projected to reach USD 590.2 Million by 2023, growing at a CAGR of 6.8% from 2018. Microbial lipases (EC 3.1.1.3) catalyze the hydrolysis of long chain triglycerides. The microbial origins of lipase enzymes are logically dynamic and proficient also have an extensive range of industrial uses with the manufacturing of altered molecules. The unique lipase (triacylglycerol acyl hydrolase) enzymes catalyzed the hydrolysis, esterification and alcoholysis reactions. Immobilization has made the use of microbial lipases accomplish its best performance and hence suitable for several reactions and need to enhance aroma to the immobilization processes. Immobilized enzymes depend on the immobilization technique and the carrier type. The choice of the carrier concerns usually the biocompatibility, chemical and thermal stability, and insolubility under reaction conditions, capability of easy rejuvenation and reusability, as well as cost proficiency. Bacillus spp., Achromobacter spp., Alcaligenes spp., Arthrobacter spp., Pseudomonos spp., of bacteria and Penicillium spp., Fusarium spp., Aspergillus spp., of fungi are screened large scale for lipase production. Lipases as multipurpose biological catalyst has given a favorable vision in meeting the needs for several industries such as biodiesel, foods and drinks, leather, textile, detergents, pharmaceuticals and medicals. This review represents a discussion on microbial sources of lipases, immobilization methods increased productivity at market profitability and reduce logistical liability on the environment and user.
Collapse
Affiliation(s)
- Prem Chandra
- Food Microbiology & Toxicology, Department of Microbiology, School for Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh 226025 India
| | - Enespa
- Department of Plant Pathology, School for Agriculture, SMPDC, University of Lucknow, Lucknow, 226007 U.P. India
| | - Ranjan Singh
- Department of Environmental Science, School for Environmental Science, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, U.P. India
| | - Pankaj Kumar Arora
- Department of Microbiology, School for Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, U.P. India
| |
Collapse
|
11
|
Johnson AA. Lipid Hydrolase Enzymes: Pragmatic Prolongevity Targets for Improved Human Healthspan? Rejuvenation Res 2019; 23:107-121. [PMID: 31426688 DOI: 10.1089/rej.2019.2211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Compelling evidence suggests that lipid metabolism, which plays critical roles in fat storage, cell membrane maintenance, and cell signaling, is intricately linked to aging. Lipid hydrolases are important enzymes that catalyze the hydrolysis of more complex lipids into simpler lipids. Diverse interventions targeting lipid hydrolases can prolong or shorten life in model organisms. For example, the genetic removal of or RNAi knockdown against a phospholipase can reduce lifespan in Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus. The removal of lysosomal acid lipase results in premature death in mice, while its overexpression in nematodes generates lean, long-lived individuals. The overexpression or inhibition of diacylglycerol lipase leads to enhanced or reduced longevity, respectively, in both worms and flies. Lifespan can also be extended by knocking down triacylglycerol lipases in yeast, overexpressing fatty acid amide hydrolase in worms, or removing hepatic lipase in a mouse model of coronary disease. Conversely, flies lacking the triacylglycerol lipase Brummer are obese and short lived. Linking sphingolipids and aging, removing the sphingomyelinase inositol phosphosphingolipid phospholipase shortens chronological lifespan in Saccharomyces cerevisiae, while inhibiting an acid sphingomyelinase in worms or inactivating alkaline ceramidase in flies extends lifespan. The clinical potential of manipulating these enzymes is highlighted by the FDA-approved obesity drug orlistat, which is an inhibitor of pancreatic and hepatic lipases that induces weight loss and improves insulin/glucose homeostasis. Additional research is warranted to better understand how these lipid hydrolases impact aging and to determine if clinical interventions targeting them are capable of improving human healthspan.
Collapse
|
12
|
Lin H, Qiu X, Zhang B, Zhang J. Identification of the predictive genes for the response of colorectal cancer patients to FOLFOX therapy. Onco Targets Ther 2018; 11:5943-5955. [PMID: 30271178 PMCID: PMC6149834 DOI: 10.2147/ott.s167656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Colorectal cancer is a malignant tumor with high death rate. Chemotherapy, radiotherapy and surgery are the three common treatments of colorectal cancer. For early colorectal cancer patients, postoperative adjuvant chemotherapy can reduce the risk of recurrence. For advanced colorectal cancer patients, palliative chemotherapy can significantly improve the life quality of patients and prolong survival. FOLFOX is one of the mainstream chemotherapies in colorectal cancer, however, its response rate is only about 50%. Methods To systematically investigate why some of the colorectal cancer patients have response to FOLFOX therapy while others do not, we searched all publicly available database and combined three gene expression datasets of colorectal cancer patients with FOLFOX therapy. With advanced minimal redundancy maximal relevance and incremental feature selection method, we identified the biomarker genes. Results A Support Vector Machine-based classifier was constructed to predict the response of colorectal cancer patients to FOLFOX therapy. Its accuracy, sensitivity and specificity were 0.854, 0.845 and 0.863, respectively. Conclusion The biological analysis of representative biomarker genes suggested that apoptosis and inflammation signaling pathways were essential for the response of colorectal cancer patients to FOLFOX chemotherapy.
Collapse
Affiliation(s)
- Hengjun Lin
- Department of Tumor, Anus and Intestine, Jinhua People's Hospital, Jinhua, Zhejiang 321000, China,
| | - Xueke Qiu
- Department of Tumor, Anus and Intestine, Jinhua People's Hospital, Jinhua, Zhejiang 321000, China,
| | - Bo Zhang
- Department of Tumor, Anus and Intestine, Jinhua People's Hospital, Jinhua, Zhejiang 321000, China,
| | - Jichao Zhang
- Department of Tumor, Anus and Intestine, Jinhua People's Hospital, Jinhua, Zhejiang 321000, China,
| |
Collapse
|
13
|
Yu R, Wang M, Zhu X, Sun Z, Jiang A, Yao H. Therapeutic effects of lenvatinib in combination with rAd-p53 for the treatment of non-small cell lung cancer. Oncol Lett 2018; 16:6573-6581. [PMID: 30405797 PMCID: PMC6202525 DOI: 10.3892/ol.2018.9428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to analyze the effects of the combined treatment of lenvatinib and adenoviral delivered p53 gene (rAd-p53) on non-small cell lung cancer (NSCLC) cells and a total of 120 patients with NSCLC. The therapeutic effects of gene therapy of rAd-p53 and target therapy of Lenvatinib were investigated in NSCLC patients. The anti-tumor effects of combined treatment of llenvatinib and rAd-p53 was administered orally once-daily in NSCLC patients. Patients with NSCLC were divided into three groups and received lenvatinib (n=40), rAd-p53 (n=40) or combined treatment of lenvatinib and rAd-p53 (n=40) for a total of 30 days. Results showed that p53 was down-regulated and VEGFR, FGFR and PDGFR-β were up-regulated in NSCLC tissues compared to adjacent normal tissues. Combined treatment of Lenvatinib and rAd-p53 markedly inhibited NSCLC cell growth, migration and invasion, and promoted apoptosis compared to either lenvatinib or rAd-p53 alone. The most common treatment-related adverse events included hypertension, diarrhea, nausea, proteinuria and body weight loss. Outcomes indicated that combined treatment of lenvatinib and rAd-p53 markedly inhibited tumor growth compared to lenvatinib and rAd-p53 alone for NSCLC patients. Combined treatment of lenvatinib and rAd-p53 did not exhibit drug accumulation after 30-day treatment. In conclusion, these outcomes indicate that combined treatment of lenvatinib and rAd-p53 may be an efficient therapeutic schedule for the treatment of NSCLC patients.
Collapse
Affiliation(s)
- Renzhi Yu
- Department of Respiratory Medicine, Mudanjiang Medical University Affiliated HongQi Hospital, Mudanjiang, Heilongjiang 157000, P.R. China
| | - Minghuan Wang
- Community Health Service Center, Medical University Affiliated HongQi Hospital, Mudanjiang, Heilongjiang 157000, P.R. China
| | - Xiuli Zhu
- Community Health Service Center, Medical University Affiliated HongQi Hospital, Mudanjiang, Heilongjiang 157000, P.R. China
| | - Zhe Sun
- Department of Insurance, Mudanjiang Medical University Affiliated HongQi Hospital, Mudanjiang, Heilongjiang 157000, P.R. China
| | - Aiying Jiang
- Department of Respiratory Medicine, Mudanjiang Medical University Affiliated HongQi Hospital, Mudanjiang, Heilongjiang 157000, P.R. China
| | - Huixin Yao
- Department of Medicine, Mudanjiang Medical University Affiliated HongQi Hospital, Mudanjiang, Heilongjiang 157000, P.R. China
| |
Collapse
|
14
|
He PP, Jiang T, OuYang XP, Liang YQ, Zou JQ, Wang Y, Shen QQ, Liao L, Zheng XL. Lipoprotein lipase: Biosynthesis, regulatory factors, and its role in atherosclerosis and other diseases. Clin Chim Acta 2018; 480:126-137. [PMID: 29453968 DOI: 10.1016/j.cca.2018.02.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 01/20/2023]
Abstract
Lipoprotein lipase (LPL) is a rate-limiting enzyme that catalyzes hydrolysis of the triglyceride (TG) core of circulating TG-rich lipoproteins including chylomicrons (CM), low-density lipoproteins (LDL) and very low-density lipoproteins (VLDL). A variety of parenchymal cells can synthesize and secrete LPL. Recent studies have demonstrated that complicated processes are involved in LPL biosynthesis, secretion and transport. The enzyme activity of LPL is regulated by many factors, such as apolipoproteins, angiopoietins, hormones and miRNAs. In this article, we also reviewed the roles of LPL in atherosclerosis, coronary heart disease, cerebrovascular accident, Alzheimer disease and chronic lymphocytic leukemia. LPL in different tissues exerts differential physiological functions. The role of LPL in atherosclerosis is still controversial as reported in the literature. Here, we focused on the properties of LPL derived from macrophages, endothelial cells and smooth muscle cells in the vascular wall. We also explore the existence of crosstalk between LPL and those cells when the molecule mainly plays a proatherogenic role. This review will provide insightful knowledge of LPL and open new therapeutic perspectives.
Collapse
Affiliation(s)
- Ping-Ping He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, 28 West Changsheng Road, Hengyang 421001, Hunan, China; Nursing School, University of South China, Hengyang 421001, Hunan, China; Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Health Sciences Center, 3330 Hospital Dr. NW, Calgary, Alberta T2N 4N1, Canada
| | - Ting Jiang
- Department of Practice Educational, Office of Academic Affairs, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Xin-Ping OuYang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, 28 West Changsheng Road, Hengyang 421001, Hunan, China; Department of Physiology, The Neuroscience Institute, Medical College, University of South China, Hengyang, Hunan 421001, China; Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Health Sciences Center, 3330 Hospital Dr. NW, Calgary, Alberta T2N 4N1, Canada
| | - Ya-Qin Liang
- Nursing School, University of South China, Hengyang 421001, Hunan, China
| | - Jie-Qiong Zou
- Nursing School, University of South China, Hengyang 421001, Hunan, China; The Affiliated First Hospital, Hengyang 421001, Hunan, China
| | - Yan Wang
- Nursing School, University of South China, Hengyang 421001, Hunan, China; The Affiliated First Hospital, Hengyang 421001, Hunan, China
| | - Qian-Qian Shen
- Nursing School, University of South China, Hengyang 421001, Hunan, China
| | - Li Liao
- Nursing School, University of South China, Hengyang 421001, Hunan, China.
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Health Sciences Center, 3330 Hospital Dr. NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
15
|
Osteopontin Deficiency Suppresses Intestinal Tumor Development in Apc-Deficient Min Mice. Int J Mol Sci 2017; 18:ijms18051058. [PMID: 28505114 PMCID: PMC5454970 DOI: 10.3390/ijms18051058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 12/18/2022] Open
Abstract
Osteopontin (OPN) is a secreted phosphoglycoprotein, and is a transcriptional target of aberrant Wnt signaling. OPN is upregulated in human colon cancers, and is suggested to enhance cancer progression. In this study, the effect of deficiency of OPN on intestinal tumor development in Apc-deficient Min mice was investigated. At 16 weeks of age, the number of small intestinal polyps in Min/OPN(+/−) and Min/OPN(−/−) mice was lower than that of Min/OPN(+/+) mice. Colorectal tumor incidences and multiplicities in Min/OPN(+/−) and Min/OPN(−/−) mice were significantly lower than those in Min/OPN(+/+) mice, being 48% and 0.6 ± 0.8, 50% and 0.8 ± 0.9 vs. 80% and 1.6 ± 1.7, respectively. OPN expression in colorectal tumors was strongly upregulated in Min/OPN(+/+) compared to adjacent non-tumor parts, but was decreased in Min/OPN(+/−) and not detected in Min/OPN(−/−). Targets of OPN, matrix metalloproteinases (MMPs)-3, -9, and -13 were lowered by OPN deficiency. Macrophage marker F4/80 in colorectal tumors was also lowered by OPN deficiency. MMP-9 expression was observed in tumor cells and tumor-infiltrating neutrophils. These results indicate that induction of OPN by aberrant Wnt signaling could enhance colorectal tumor development in part by upregulation of MMP-3, -9, and -13 and infiltration of macrophage and neutrophils. Suppression of OPN expression could contribute to tumor prevention, but complete deficiency of OPN may cause some adverse effects.
Collapse
|
16
|
Hamoya T, Fujii G, Miyamoto S, Takahashi M, Totsuka Y, Wakabayashi K, Toshima J, Mutoh M. Effects of NSAIDs on the risk factors of colorectal cancer: a mini review. Genes Environ 2016; 38:6. [PMID: 27350826 PMCID: PMC4918106 DOI: 10.1186/s41021-016-0033-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/03/2016] [Indexed: 12/18/2022] Open
Abstract
Evidence from epidemiological and experimental studies has shown that non-steroidal anti-inflammatory drugs (NSAIDs) reduce the risk of colorectal cancer (CRC). The function of NSAIDs and the molecular targets for chemopreventive effects on CRC have been extensively studied and their data were reported. However, the relation between NSAIDs and the risk factors of CRC have not been fully elucidated yet. Thus, relations between NSAIDs and the risk factors of CRC, such as overweight and obesity, alcohol, aging, hypertriglyceridemia and smoking, are summarized with our data and with recent reported data in this review.
Collapse
Affiliation(s)
- Takahiro Hamoya
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku Tokyo, 104-0045 Japan ; Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, , Katsusika-ku Tokyo, 125-8585 Japan
| | - Gen Fujii
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku Tokyo, 104-0045 Japan
| | - Shingo Miyamoto
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku Tokyo, 104-0045 Japan
| | - Mami Takahashi
- Central Animal Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku Tokyo, 104-0045 Japan
| | - Yukari Totsuka
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku Tokyo, 104-0045 Japan
| | - Keiji Wakabayashi
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku Shizuoka, 422-8526 Japan
| | - Jiro Toshima
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, , Katsusika-ku Tokyo, 125-8585 Japan
| | - Michihiro Mutoh
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku Tokyo, 104-0045 Japan ; Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku Tokyo, 104-0045 Japan
| |
Collapse
|
17
|
Tian JY, Tao RY, Zhang XL, Liu Q, He YB, Su YL, Ji TF, Ye F. Effect of Hypericum perforatum L. extract on insulin resistance and lipid metabolic disorder in high-fat-diet induced obese mice. Phytother Res 2014; 29:86-92. [PMID: 25266458 PMCID: PMC4303982 DOI: 10.1002/ptr.5230] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 08/07/2014] [Accepted: 08/30/2014] [Indexed: 11/17/2022]
Abstract
Natural product Hypericum perforatum L. has been used in folk medicine to improve mental performance. However, the effect of H. perforatum L. on metabolism is still unknown. In order to test whether H. perforatum L. extract (EHP) has an effect on metabolic syndrome, we treated diet induced obese (DIO) C57BL/6J mice with the extract. The chemical characters of EHP were investigated with thin-layer chromatography, ultraviolet, high-performance liquid chromatography (HPLC), and HPLC-mass spectrometry fingerprint analysis. Oral glucose tolerance test (OGTT), insulin tolerance test (ITT), and the glucose infusion rate (GIR) in hyperinsulinemic–euglycemic clamp test were performed to evaluate the glucose metabolism and insulin sensitivity. Skeletal muscle was examined for lipid metabolism. The results suggest that EHP can significantly improve the glucose and lipid metabolism in DIO mice. In vitro, EHP inhibited the catalytic activity of recombinant human protein tyrosine phosphatase 1B (PTP1B) and reduced the protein and mRNA levels of PTP1B in the skeletal muscle. Moreover, expressions of genes related to fatty acid uptake and oxidation were changed by EHP in the skeletal muscle. These results suggest that EHP may improve insulin resistance and lipid metabolism in DIO mice. © 2014 The Authors. Phytotherapy Research published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Jin-ying Tian
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, 100050, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Feng D, Huang QY, Liu K, Zhang SC, Liu ZH. Comparative studies of zebrafish Danio rerio lipoprotein lipase (lpl) and hepatic lipase (lipc) genes belonging to the lipase gene family: evolution and expression pattern. JOURNAL OF FISH BIOLOGY 2014; 85:329-342. [PMID: 24905963 DOI: 10.1111/jfb.12423] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/11/2014] [Indexed: 06/03/2023]
Abstract
In this study, bioinformatics analysis, tissue distribution and developmental expression pattern of lipoprotein lipase (lpl) and hepatic lipase (lipc) in zebrafish Danio rerio are reported. In adult D. rerio, lpl was highly expressed in liver. This is remarkably different from the tissue expression pattern of LPL in mammals, which is not detected in the adult liver. The expression of lipc was liver specific, which is consistent with that in mammals. During embryogenesis, lpl mRNA was increased gradually in concentration from 0.5 hpf (hour post fertilization) to 6 dpf (days post fertilization), but lipc was not expressed at the early stage of the embryo until 3 dpf. In situ hybridization further displayed the expression pattern of lpl mainly restricted to the head region including cells surrounding the mouth opening, branchial arches, pectoral fin and lateral line neuromast, whereas lipc was mainly restricted to the liver and part of head regions including lens. This lays a foundation for further investigation of lpl or lipc function and evolution in fishes.
Collapse
Affiliation(s)
- D Feng
- Institute of Evolution & Marine Biodiversity and College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | | | | | | | | |
Collapse
|
19
|
Harima Y, Ikeda K, Utsunomiya K, Komemushi A, Kanno S, Shiga T, Tanigawa N. Apolipoprotein C-II is a potential serum biomarker as a prognostic factor of locally advanced cervical cancer after chemoradiation therapy. Int J Radiat Oncol Biol Phys 2013; 87:1155-61. [PMID: 24120821 DOI: 10.1016/j.ijrobp.2013.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/30/2013] [Accepted: 08/19/2013] [Indexed: 01/07/2023]
Abstract
PURPOSE To determine pretreatment serum protein levels for generally applicable measurement to predict chemoradiation treatment outcomes in patients with locally advanced squamous cell cervical carcinoma (CC). METHODS AND MATERIALS In a screening study, measurements were conducted twice. At first, 6 serum samples from CC patients (3 with no evidence of disease [NED] and 3 with cancer-caused death [CD]) and 2 from healthy controls were tested. Next, 12 serum samples from different CC patients (8 NED, 4 CD) and 4 from healthy controls were examined. Subsequently, 28 different CC patients (18 NED, 10 CD) and 9 controls were analyzed in the validation study. Protein chips were treated with the sample sera, and the serum protein pattern was detected by surface-enhanced laser desorption and ionization-time-of-flight mass spectrometry (SELDI-TOF MS). Then, single MS-based peptide mass fingerprinting (PMF) and tandem MS (MS/MS)-based peptide/protein identification methods, were used to identify protein corresponding to the detected peak. And then, turbidimetric assay was used to measure the levels of a protein that indicated the best match with this peptide peak. RESULTS The same peak 8918 m/z was identified in both screening studies. Neither the screening study nor the validation study had significant differences in the appearance of this peak in the controls and NED. However, the intensity of the peak in CD was significantly lower than that of controls and NED in both pilot studies (P=.02, P=.04) and validation study (P=.01, P=.001). The protein indicated the best match with this peptide peak at 8918 m/z was identified as apolipoprotein C-II (ApoC-II) using PMF and MS/MS methods. Turbidimetric assay showed that the mean serum levels of ApoC-II tended to decrease in CD group when compared with NED group (P=.078). CONCLUSION ApoC-II could be used as a biomarker for detection in predicting and estimating the radiation treatment outcome of patients with CC.
Collapse
Affiliation(s)
- Yoko Harima
- Department of Radiology, Takii Hospital, Kansai Medical University, Moriguchi, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Prolyl Isomerase Pin1 Regulated Signaling Pathway Revealed by Pin1 +/+ and Pin1 −/− Mouse Embryonic Fibroblast Cells. Pathol Oncol Res 2013; 19:667-75. [DOI: 10.1007/s12253-013-9629-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 03/22/2013] [Indexed: 12/20/2022]
|
21
|
Dong X, Wang G, Zhang G, Ni Z, Suo J, Cui J, Cui A, Yang Q, Xu Y, Li F. The endothelial lipase protein is promising urinary biomarker for diagnosis of gastric cancer. Diagn Pathol 2013; 8:45. [PMID: 23510199 PMCID: PMC3621381 DOI: 10.1186/1746-1596-8-45] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/10/2013] [Indexed: 12/31/2022] Open
Abstract
Background Gastric cancer is one of the most common malignant tumors in the world. Finding effective diagnostic biomarkers in urine or serum would represent the most ideal solution to detecting gastric cancer during annual physical examination. This study was to evaluate the potential of endothelial lipase (EL) as a urinary biomarker for diagnosis of gastric cancer. Methods The expression levels of EL was measured using Western blotting and immunohistochemical staining experiments on (tissue, serum, and urine) samples of gastric cancer patients versus healthy people. We also checked the EL levels in the urine samples of other cancer types (lung, colon and rectum cancers) and benign lesions (gastritis and gastric leiomyoma) to check if EL was specific to gastric cancer. Result We observed a clear separation between the EL expression levels in the urine samples of 90 gastric cancer patients and of 57 healthy volunteers. It was approximately 9.9 fold average decrease of the EL expression levels in the urine samples of gastric cancer compared to the healthy controls (P <0.0001), achieving a 0.967 AUC value for the ROC (receiver operating characteristic) curve, demonstrating it’s highly accurate as a diagnostic marker for gastric cancer. Interestingly, the expression levels of EL in tissue and serum samples were not nearly as discriminative as in urine samples (P = 0.90 and P = 0.79). In immunohistochemical experiments, positive expression of the EL protein was found in 67% (8/12) of gastric adjacent noncancerous and in 58% (7/12) of gastric cancer samples. There was no significant statistical in the expression levels of this protein between the gastric cancer and the matching noncancerous tissues (P =0.67). Conclusions The urinary EL as a highly accurate gastric cancer biomarker that is potentially applicable to the general screening with high sensitivity and specificity. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/4527331618757552
Collapse
Affiliation(s)
- Xueyan Dong
- Department of Pathogeny Biology, Norman Bethune Medical College of Jilin University, Changchun, Jilin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
OBJECTIVE This study aimed to investigate whether the reported relationship between diabetes and pancreatic cancer (PC) could result from detection bias and whether dyslipidemia and/or new-onset diabetes (diagnosed within 1 year) could predict PC. METHODS A random sample of 1 million subjects covered by National Health Insurance was recruited. From 2003 to 2005, 495,493 men and 503,901 women without PC were followed up. Cox regression was used to evaluate the adjusted relative risk considering potential PC detection examinations and covariates. RESULTS Diabetic patients had a significantly higher probability of receiving examinations that might lead to PC diagnosis. In Cox proportional hazards regression models, diabetes was not a significant predictor, but dyslipidemia was significantly associated with an approximately 40% higher risk of PC. Age, living in more urbanized regions, and potential PC detection examinations were significant covariates. Patients with new-onset diabetes and previous dyslipidemia had a remarkably higher risk compared with those without either condition (relative risk [95% confidence interval], 2.512 [1.169-5.398]). CONCLUSIONS Dyslipidemia, but not diabetes, is a significant risk factor for PC. The link between diabetes and PC is likely due to confounders and detection bias. Patients with new-onset diabetes and a history of dyslipidemia are at an especially high risk of PC.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|