1
|
Kawano T, Inokuchi J, Eto M, Murata M, Kang JH. Protein Kinase C (PKC) Isozymes as Diagnostic and Prognostic Biomarkers and Therapeutic Targets for Cancer. Cancers (Basel) 2022; 14:5425. [PMID: 36358843 PMCID: PMC9658272 DOI: 10.3390/cancers14215425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 08/05/2023] Open
Abstract
Protein kinase C (PKC) is a large family of calcium- and phospholipid-dependent serine/threonine kinases that consists of at least 11 isozymes. Based on their structural characteristics and mode of activation, the PKC family is classified into three subfamilies: conventional or classic (cPKCs; α, βI, βII, and γ), novel or non-classic (nPKCs; δ, ε, η, and θ), and atypical (aPKCs; ζ, ι, and λ) (PKCλ is the mouse homolog of PKCι) PKC isozymes. PKC isozymes play important roles in proliferation, differentiation, survival, migration, invasion, apoptosis, and anticancer drug resistance in cancer cells. Several studies have shown a positive relationship between PKC isozymes and poor disease-free survival, poor survival following anticancer drug treatment, and increased recurrence. Furthermore, a higher level of PKC activation has been reported in cancer tissues compared to that in normal tissues. These data suggest that PKC isozymes represent potential diagnostic and prognostic biomarkers and therapeutic targets for cancer. This review summarizes the current knowledge and discusses the potential of PKC isozymes as biomarkers in the diagnosis, prognosis, and treatment of cancers.
Collapse
Affiliation(s)
- Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatoshi Eto
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jeong-Hun Kang
- Division of Biopharmaceutics and Pharmacokinetics, National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan
| |
Collapse
|
2
|
Zhan Y, Wang H, Ning Y, Zheng H, Liu S, Yang Y, Zhou M, Fan S. Understanding the roles of stress granule during chemotherapy for patients with malignant tumors. Am J Cancer Res 2020; 10:2226-2241. [PMID: 32905441 PMCID: PMC7471355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023] Open
Abstract
The assembly of stress granules (SGs) is a conserved mechanism to regulate protein synthesis under cell stress, where the translation of global protein is silenced and selective protein synthesis for survival maintains. SG formation confers survival advantages and chemotherapeutic resistance to malignant cells. Targeting SG assembly may represent a potential treatment strategy to overcome the primary and acquired chemotherapeutic resistance and enhance curative effect. We conduct a comprehensive review of the published literatures focusing on the drugs that potentially induce SGs and the related mechanism, retrospect the relationship between SGs and drug resistance related proteins, illuminate the regulated pathways and potential targets for SG assembly, and discuss future directions of overcoming the resistance to chemotherapy.
Collapse
Affiliation(s)
- Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Haihua Wang
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Yue Ning
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Hongmei Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Sile Liu
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Yang Yang
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Ming Zhou
- Cancer Research Institute Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| |
Collapse
|
3
|
Minotti L, Baldassari F, Galasso M, Volinia S, Bergamini CM, Bianchi N. A long non-coding RNA inside the type 2 transglutaminase gene tightly correlates with the expression of its transcriptional variants. Amino Acids 2018; 50:421-438. [PMID: 29313085 DOI: 10.1007/s00726-017-2528-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/10/2017] [Indexed: 12/13/2022]
Abstract
The long non-coding RNAs (lncRNAs) are matter of intense investigation as potential regulators of gene expression. In the case of the transglutaminase 2 gene (TGM2) the databases of genome sequence indicate location of a lncRNA (LOC107987281) within the first intron. This lncRNA is 1000 bp long, arises from 2 exons and starts few nucleotides 3' of the first splicing site of translated TGM2. We have analysed correlations between expression of LOC107987281 lncRNA and TGM2 mRNA by real-time PCR in K562 cell line untreated or treated with the anticancer drugs TPA (12-O-tetradecanoylphorbol-13-acetate), Docetaxel and Doxorubicin. In the treated cells the lncRNA increase follows the trend of TGM2 transcript. To validate this finding we used HumanExon1_0ST Affymetrix; chip data were background-adjusted, quantile-normalized and summarized using robust multi-array average analysis implemented in the R package. The probesets recognize sequences inside each exon, near intronic splicing sites and others located in the untranslated regions of TGM2 gene. The analysis of total RNA samples in GEO datasets from K562, HL-60, THP-1 and U937 cell lines, untreated or treated with TPA in replicated experiments confirmed our earlier results. These demonstrate correlation between LOC107987281 and TGM2 mRNA in the cell lines (K562, HL60 and THP-1) where increased levels of TGM2 mRNA are produced. Additional array study on 358 samples of several normal and paired tumor tissues leads to the same conclusions, indicating a correlation between full-length TGM2 mRNA and LOC107987281 lncRNA in relation to the development of several tumors.
Collapse
Affiliation(s)
- Linda Minotti
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Federica Baldassari
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Marco Galasso
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Stefano Volinia
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Carlo M Bergamini
- Section of Biochemistry, Molecular Biology and Medical Genetics, Department of Biomedical Sciences and Specialist Surgery, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Nicoletta Bianchi
- Section of Biochemistry, Molecular Biology and Medical Genetics, Department of Biomedical Sciences and Specialist Surgery, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| |
Collapse
|
4
|
Liu M, Chen F, Yu R, Zhang W, Han M, Liu F, Wu J, Zhao X, Miao J. Synthesis and Cytotoxicity against K562 Cells of 3-O-Angeloyl-20-O-acetyl Ingenol, a Derivative of Ingenol Mebutate. Int J Mol Sci 2016; 17:ijms17081348. [PMID: 27548156 PMCID: PMC5000744 DOI: 10.3390/ijms17081348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 01/18/2023] Open
Abstract
Ingenol mebutate possesses significant cytotoxicity and is clinically used to treat actinic keratosis. However, ingenol mebutate undergoes acyl migration which affects its bioactivity. Compound 3-O-angeloyl-20-O-acetyl ingenol (AAI, also known as 20-O-acetyl-ingenol-3-angelate or PEP008) is a synthetic derivative of ingenol mebutate. In this work, we report the AAI synthesis details and demonstrate AAI has higher cytotoxicity than ingenol mebutate in a chronic myeloid leukemia K562 cell line. Our data indicate that the increased activity of AAI originates from the improved intracellular stability of AAI rather than the increased binding affinity between AAI and the target protein protein kinase Cδ (PKCδ). AAI inhibits cell proliferation, induces G2/M phase arrest, disrupts the mitochondrial membrane potential, and stimulates apoptosis, as well as necrosis in K562 cells. Similar to ingenol mebutate, AAI activates PKCδ and extracellular signal regulated kinase (ERK), and inactivates protein kinase B (AKT). Furthermore, AAI also inhibits JAK/STAT3 pathway. Altogether, our studies show that ingenol derivative AAI is cytotoxic to K562 cells and modulates PKCδ/ERK, JAK/STAT3, and AKT signaling pathways. Our work suggests that AAI may be a new candidate of chemotherapeutic agent.
Collapse
Affiliation(s)
- Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Fangling Chen
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Weiyi Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Mei Han
- Department of Pharmacology, Medical College Qingdao University, Qingdao 266071, China.
| | - Fei Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem Sun Yat-sen), Nanjing 210014, China.
| | - Jing Wu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Xingzeng Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem Sun Yat-sen), Nanjing 210014, China.
| | - Jinlai Miao
- Key Laboratory of Marine Bioactive Substance, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China.
| |
Collapse
|
5
|
Guo XF, Yang XJ. Endoplasmic reticulum stress response in spontaneously hypertensive rats is affected by myocardial ischemia reperfusion injury. Exp Ther Med 2014; 9:319-326. [PMID: 25574192 PMCID: PMC4280955 DOI: 10.3892/etm.2014.2094] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 08/01/2014] [Indexed: 01/23/2023] Open
Abstract
Cell apoptosis induced by endoplasmic reticulum (ER) stress appears to be one of the main causes of myocardial necrosis following myocardial ischemia/reperfusion (MI/R). The C/EBP homologous protein (CHOP) pathway is the main pathway through which apoptosis is induced during ER stress. Glucose-regulated protein 78 (GRP78) is an important protein involved in the CHOP pathway. The present study investigated the hypothesis that MI/R activates the CHOP pathway through signaling via a pathway involving PKR-like ER kinase (PERK), α-subunit of eukaryotic initiation factor 2 (eIF2α) and activating transcription factor 2 (ATF2). Immunohistochemical staining of the heart tissues from spontaneously hypersensitive rats indicated that MI/R injury increases CHOP and GPR78 protein expression levels. To further analyze the mechanism by which MI/R injury induces apoptosis by ER stress, the expression levels of five marker proteins involved in the hypothetical PERK-eIF2α-ATF2 pathway were detected, namely PERK, phosphorylated PERK (P-PERK), eIF2α, phosphorylated eIF2α (P-eIF2α) and ATF2. An increase in the collective expression levels of these proteins would indicate that apoptosis was induced by this signaling pathway. In addition, the study also explored whether hypertension affects the signaling pathway of MI/R-induced myocardial apoptosis by treating spontaneously hypertensive rats (SHRs) with captopril (an effective drug used to treat hypertension). Rats treated with captopril experienced a reduction in blood pressure to normal levels, but no marked differences in the expression levels of the tested proteins or in MI/R injury severity compared with those in untreated rats. These results suggest that MI/R activates the CHOP pathway during ER stress by activating the PERK-eIF2α-ATF2 pathway and that hypertension does not affect this signaling pathway.
Collapse
Affiliation(s)
- Xiao-Fu Guo
- Department of Cardiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China ; Department of Emergency and ICU, Suzhou Municipal Hospital (East Area), Suzhou, Jiangsu 215001, P.R. China
| | - Xiang-Jun Yang
- Department of Cardiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
6
|
Abstract
Protein kinase C (PKC) is a family of phospholipid-dependent serine/threonine kinases, which can be further classified into three PKC isozymes subfamilies: conventional or classic, novel or nonclassic, and atypical. PKC isozymes are known to be involved in cell proliferation, survival, invasion, migration, apoptosis, angiogenesis, and drug resistance. Because of their key roles in cell signaling, PKC isozymes also have the potential to be promising therapeutic targets for several diseases, such as cardiovascular diseases, immune and inflammatory diseases, neurological diseases, metabolic disorders, and multiple types of cancer. This review primarily focuses on the activation, mechanism, and function of PKC isozymes during cancer development and progression.
Collapse
|
7
|
Tuval-Kochen L, Paglin S, Keshet G, Lerenthal Y, Nakar C, Golani T, Toren A, Yahalom J, Pfeffer R, Lawrence Y. Eukaryotic initiation factor 2α--a downstream effector of mammalian target of rapamycin--modulates DNA repair and cancer response to treatment. PLoS One 2013; 8:e77260. [PMID: 24204783 PMCID: PMC3808413 DOI: 10.1371/journal.pone.0077260] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/30/2013] [Indexed: 02/06/2023] Open
Abstract
In an effort to circumvent resistance to rapamycin – an mTOR inhibitor - we searched for novel rapamycin-downstream-targets that may be key players in the response of cancer cells to therapy. We found that rapamycin, at nM concentrations, increased phosphorylation of eukaryotic initiation factor (eIF) 2α in rapamycin-sensitive and estrogen-dependent MCF-7 cells, but had only a minimal effect on eIF2α phosphorylation in the rapamycin-insensitive triple-negative MDA-MB-231 cells. Addition of salubrinal – an inhibitor of eIF2α dephosphorylation – decreased expression of a surface marker associated with capacity for self renewal, increased senescence and induced clonogenic cell death, suggesting that excessive phosphorylation of eIF2α is detrimental to the cells' survival. Treating cells with salubrinal enhanced radiation-induced increase in eIF2α phosphorylation and clonogenic death and showed that irradiated cells are more sensitive to increased eIF2α phosphorylation than non-irradiated ones. Similar to salubrinal - the phosphomimetic eIF2α variant - S51D - increased sensitivity to radiation, and both abrogated radiation-induced increase in breast cancer type 1 susceptibility gene, thus implicating enhanced phosphorylation of eIF2α in modulation of DNA repair. Indeed, salubrinal inhibited non-homologous end joining as well as homologous recombination repair of double strand breaks that were induced by I-SceI in green fluorescent protein reporter plasmids. In addition to its effect on radiation, salubrinal enhanced eIF2α phosphorylation and clonogenic death in response to the histone deacetylase inhibitor – vorinostat. Finally, the catalytic competitive inhibitor of mTOR - Ku-0063794 - increased phosphorylation of eIF2α demonstrating further the involvement of mTOR activity in modulating eIF2α phosphorylation. These experiments suggest that excessive phosphorylation of eIF2α decreases survival of cancer cells; making eIF2α a worthy target for drug development, with the potential to enhance the cytotoxic effects of established anti-neoplastic therapies and circumvent resistance to rapalogues and possibly to other drugs that inhibit upstream components of the mTOR pathway.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Cellular Senescence/drug effects
- Cinnamates/pharmacology
- DNA Repair/drug effects
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Deoxyribonucleases, Type II Site-Specific/genetics
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/radiation effects
- Eukaryotic Initiation Factor-2/antagonists & inhibitors
- Eukaryotic Initiation Factor-2/genetics
- Eukaryotic Initiation Factor-2/metabolism
- Female
- Gamma Rays
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/radiation effects
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- Hydroxamic Acids/pharmacology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Morpholines/pharmacology
- Peptidomimetics/pharmacology
- Phosphorylation/drug effects
- Phosphorylation/radiation effects
- Pyrimidines/pharmacology
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Signal Transduction
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Thiourea/analogs & derivatives
- Thiourea/pharmacology
- Transgenes
- Vorinostat
Collapse
Affiliation(s)
- Liron Tuval-Kochen
- Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shoshana Paglin
- Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- * E-mail:
| | - Gilmor Keshet
- Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Yaniv Lerenthal
- Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Charles Nakar
- Department of Oncology, Memorial Sloan-Kettering, New-York, New York, United States of America
| | - Tamar Golani
- Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Amos Toren
- Department of Pediatric Hematology-Oncology, Safra Children's Hospital, Tel-Hashomer, Ramat-Gan, Israel
| | - Joachim Yahalom
- Department of Oncology, Memorial Sloan-Kettering, New-York, New York, United States of America
| | - Raphael Pfeffer
- Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Yaacov Lawrence
- Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| |
Collapse
|