1
|
Kaplan-Neeman R, Greenbom T, Habiballah S, Henkin Y. Biomarkers of auditory cortical plasticity and development of binaural pathways in children with unilateral hearing loss using a hearing aid. Hear Res 2024; 451:109096. [PMID: 39116708 DOI: 10.1016/j.heares.2024.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 07/13/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Congenital or early-onset unilateral hearing loss (UHL) can disrupt the normal development of the auditory system. In extreme cases of UHL (i.e., single sided deafness), consistent cochlear implant use during sensitive periods resulted in cortical reorganization that partially reversed the detrimental effects of unilateral sensory deprivation. There is a gap in knowledge, however, regarding cortical plasticity i.e. the brain's capacity to adapt, reorganize, and develop binaural pathways in milder degrees of UHL rehabilitated by a hearing aid (HA). The current study was set to investigate early-stage cortical processing and electrophysiological manifestations of binaural processing by means of cortical auditory evoked potentials (CAEPs) to speech sounds, in children with moderate to severe-to-profound UHL using a HA. Fourteen children with UHL (CHwUHL), 6-14 years old consistently using a HA for 3.5 (±2.3) years participated in the study. CAEPs were elicited to the speech sounds /m/, /g/, and /t/ in three listening conditions: monaural [Normal hearing (NH), HA], and bilateral [BI (NH + HA)]. Results indicated age-appropriate CAEP morphology in the NH and BI listening conditions in all children. In the HA listening condition: (1) CAEPs showed similar morphology to that found in the NH listening condition, however, the mature morphology observed in older children in the NH listening condition was not evident; (2) P1 was elicited in all but two children with severe-to-profound hearing loss, to at least one speech stimuli, indicating effective audibility; (3) A significant mismatch in timing and synchrony between the NH and HA ear was found; (4) P1 was sensitive to the acoustic features of the eliciting stimulus and to the amplification characteristics of the HA. Finally, a cortical binaural interaction component (BIC) was derived in most children. In conclusion, the current study provides first-time evidence for cortical plasticity and partial reversal of the detrimental effects of moderate to severe-to-profound UHL rehabilitated by a HA. The derivation of a cortical biomarker of binaural processing implies that functional binaural pathways can develop when sufficient auditory input is provided to the affected ear. CAEPs may thus serve as a clinical tool for assessing, monitoring, and managing CHwUHL using a HA.
Collapse
Affiliation(s)
- Ricky Kaplan-Neeman
- Department of Communication Disorders, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Hearing, Speech, and Language Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Tzvia Greenbom
- Department of Communication Disorders, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Hearing, Speech, and Language Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Suhaill Habiballah
- Department of Communication Disorders, Haifa University, Haifa, Israel; Alango Technologies LTD, Tirat Carmel, Israel
| | - Yael Henkin
- Department of Communication Disorders, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Hearing, Speech, and Language Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.
| |
Collapse
|
2
|
Van Hirtum T, Somers B, Dieudonné B, Verschueren E, Wouters J, Francart T. Neural envelope tracking predicts speech intelligibility and hearing aid benefit in children with hearing loss. Hear Res 2023; 439:108893. [PMID: 37806102 DOI: 10.1016/j.heares.2023.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/01/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
Early assessment of hearing aid benefit is crucial, as the extent to which hearing aids provide audible speech information predicts speech and language outcomes. A growing body of research has proposed neural envelope tracking as an objective measure of speech intelligibility, particularly for individuals unable to provide reliable behavioral feedback. However, its potential for evaluating speech intelligibility and hearing aid benefit in children with hearing loss remains unexplored. In this study, we investigated neural envelope tracking in children with permanent hearing loss through two separate experiments. EEG data were recorded while children listened to age-appropriate stories (Experiment 1) or an animated movie (Experiment 2) under aided and unaided conditions (using personal hearing aids) at multiple stimulus intensities. Neural envelope tracking was evaluated using a linear decoder reconstructing the speech envelope from the EEG in the delta band (0.5-4 Hz). Additionally, we calculated temporal response functions (TRFs) to investigate the spatio-temporal dynamics of the response. In both experiments, neural tracking increased with increasing stimulus intensity, but only in the unaided condition. In the aided condition, neural tracking remained stable across a wide range of intensities, as long as speech intelligibility was maintained. Similarly, TRF amplitudes increased with increasing stimulus intensity in the unaided condition, while in the aided condition significant differences were found in TRF latency rather than TRF amplitude. This suggests that decreasing stimulus intensity does not necessarily impact neural tracking. Furthermore, the use of personal hearing aids significantly enhanced neural envelope tracking, particularly in challenging speech conditions that would be inaudible when unaided. Finally, we found a strong correlation between neural envelope tracking and behaviorally measured speech intelligibility for both narrated stories (Experiment 1) and movie stimuli (Experiment 2). Altogether, these findings indicate that neural envelope tracking could be a valuable tool for predicting speech intelligibility benefits derived from personal hearing aids in hearing-impaired children. Incorporating narrated stories or engaging movies expands the accessibility of these methods even in clinical settings, offering new avenues for using objective speech measures to guide pediatric audiology decision-making.
Collapse
Affiliation(s)
- Tilde Van Hirtum
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Oto-rhino-laryngology, Herestraat 49 bus 721, 3000 Leuven, Belgium
| | - Ben Somers
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Oto-rhino-laryngology, Herestraat 49 bus 721, 3000 Leuven, Belgium
| | - Benjamin Dieudonné
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Oto-rhino-laryngology, Herestraat 49 bus 721, 3000 Leuven, Belgium
| | - Eline Verschueren
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Oto-rhino-laryngology, Herestraat 49 bus 721, 3000 Leuven, Belgium
| | - Jan Wouters
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Oto-rhino-laryngology, Herestraat 49 bus 721, 3000 Leuven, Belgium
| | - Tom Francart
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Oto-rhino-laryngology, Herestraat 49 bus 721, 3000 Leuven, Belgium.
| |
Collapse
|
3
|
Easwar V, Purcell D, Wright T. Predicting Hearing aid Benefit Using Speech-Evoked Envelope Following Responses in Children With Hearing Loss. Trends Hear 2023; 27:23312165231151468. [PMID: 36946195 PMCID: PMC10034298 DOI: 10.1177/23312165231151468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 03/23/2023] Open
Abstract
Electroencephalography could serve as an objective tool to evaluate hearing aid benefit in infants who are developmentally unable to participate in hearing tests. We investigated whether speech-evoked envelope following responses (EFRs), a type of electroencephalography-based measure, could predict improved audibility with the use of a hearing aid in children with mild-to-severe permanent, mainly sensorineural, hearing loss. In 18 children, EFRs were elicited by six male-spoken band-limited phonemic stimuli--the first formants of /u/ and /i/, the second and higher formants of /u/ and /i/, and the fricatives /s/ and /∫/--presented together as /su∫i/. EFRs were recorded between the vertex and nape, when /su∫i/ was presented at 55, 65, and 75 dB SPL using insert earphones in unaided conditions and individually fit hearing aids in aided conditions. EFR amplitude and detectability improved with the use of a hearing aid, and the degree of improvement in EFR amplitude was dependent on the extent of change in behavioral thresholds between unaided and aided conditions. EFR detectability was primarily influenced by audibility; higher sensation level stimuli had an increased probability of detection. Overall EFR sensitivity in predicting audibility was significantly higher in aided (82.1%) than unaided conditions (66.5%) and did not vary as a function of stimulus or frequency. EFR specificity in ascertaining inaudibility was 90.8%. Aided improvement in EFR detectability was a significant predictor of hearing aid-facilitated change in speech discrimination accuracy. Results suggest that speech-evoked EFRs could be a useful objective tool in predicting hearing aid benefit in children with hearing loss.
Collapse
Affiliation(s)
- Vijayalakshmi Easwar
- Department of Communication Sciences and Disorders & Waisman
Center, University of
Wisconsin–Madison, Madison, USA
- National
Acoustic Laboratories, Macquarie
University, Sydney, New South Wales, Australia
| | - David Purcell
- School of Communication Sciences and Disorders,
Western
University, London, Canada
- National Centre for Audiology, Western
University, London, Canada
| | - Trevor Wright
- Department of Communication Sciences and Disorders & Waisman
Center, University of
Wisconsin–Madison, Madison, USA
| |
Collapse
|
4
|
Easwar V, Chung L. The influence of phoneme contexts on adaptation in vowel-evoked envelope following responses. Eur J Neurosci 2022; 56:4572-4582. [PMID: 35804282 PMCID: PMC9543495 DOI: 10.1111/ejn.15768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/25/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022]
Abstract
Repeated stimulus presentation leads to neural adaptation and consequent amplitude reduction in vowel-evoked envelope following responses (EFRs)-a response that reflects neural activity phase-locked to envelope periodicity. EFRs are elicited by vowels presented in isolation or in the context of other phonemes such as in syllables. While context phonemes could exert some forward influence on vowel-evoked EFRs, they may reduce the degree of adaptation. Here, we evaluated whether the properties of context phonemes between consecutive vowel stimuli influence adaptation. EFRs were elicited by the low-frequency first formant (resolved harmonics) and mid-to-high frequency second and higher formants (unresolved harmonics) of a male-spoken/i/when the presence, number, and predictability of context phonemes (/s/, /a/, /∫/, /u/) between vowel repetitions varied. Monitored over four iterations of /i/, adaptation was evident only for EFRs elicited by the unresolved harmonics. EFRs elicited by the unresolved harmonics decreased in amplitude by ~16-20 nV (10-17%) after the first presentation of/i/and remained stable thereafter. EFR adaptation was reduced by the presence of a context phoneme, but the reduction did not change with their number or predictability. The presence of a context phoneme, however, attenuated EFRs by a degree similar to that caused by adaptation (~21-23 nV). Such a trade-off in the short- and long-term influence of context phonemes suggests that the benefit of interleaving EFR-eliciting vowels with other context phonemes depends on whether the use of consonant-vowel syllables is critical to improve the validity of EFR applications.
Collapse
Affiliation(s)
- Vijayalakshmi Easwar
- Department of Communication Sciences & Disorders, University of Wisconsin-Madison, Madison, USA.,Waisman Center, University of Wisconsin-Madison, Madison, USA
| | - Lauren Chung
- Department of Communication Sciences & Disorders, University of Wisconsin-Madison, Madison, USA.,Waisman Center, University of Wisconsin-Madison, Madison, USA
| |
Collapse
|
5
|
Easwar V, Birstler J, Harrison A, Scollie S, Purcell D. The Accuracy of Envelope Following Responses in Predicting Speech Audibility. Ear Hear 2021; 41:1732-1746. [PMID: 33136646 PMCID: PMC8132745 DOI: 10.1097/aud.0000000000000892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The present study aimed to (1) evaluate the accuracy of envelope following responses (EFRs) in predicting speech audibility as a function of the statistical indicator used for objective response detection, stimulus phoneme, frequency, and level, and (2) quantify the minimum sensation level (SL; stimulus level above behavioral threshold) needed for detecting EFRs. DESIGN In 21 participants with normal hearing, EFRs were elicited by 8 band-limited phonemes in the male-spoken token /susa∫i/ (2.05 sec) presented between 20 and 65 dB SPL in 15 dB increments. Vowels in /susa∫i/ were modified to elicit two EFRs simultaneously by selectively lowering the fundamental frequency (f0) in the first formant (F1) region. The modified vowels elicited one EFR from the low-frequency F1 and another from the mid-frequency second and higher formants (F2+). Fricatives were amplitude-modulated at the average f0. EFRs were extracted from single-channel EEG recorded between the vertex (Cz) and the nape of the neck when /susa∫i/ was presented monaurally for 450 sweeps. The performance of the three statistical indicators, F-test, Hotelling's T, and phase coherence, was compared against behaviorally determined audibility (estimated SL, SL ≥0 dB = audible) using area under the receiver operating characteristics (AUROC) curve, sensitivity (the proportion of audible speech with a detectable EFR [true positive rate]), and specificity (the proportion of inaudible speech with an undetectable EFR [true negative rate]). The influence of stimulus phoneme, frequency, and level on the accuracy of EFRs in predicting speech audibility was assessed by comparing sensitivity, specificity, positive predictive value (PPV; the proportion of detected EFRs elicited by audible stimuli) and negative predictive value (NPV; the proportion of undetected EFRs elicited by inaudible stimuli). The minimum SL needed for detection was evaluated using a linear mixed-effects model with the predictor variables stimulus and EFR detection p value. RESULTS of the 3 statistical indicators were similar; however, at the type I error rate of 5%, the sensitivities of Hotelling's T (68.4%) and phase coherence (68.8%) were significantly higher than the F-test (59.5%). In contrast, the specificity of the F-test (97.3%) was significantly higher than the Hotelling's T (88.4%). When analyzed using Hotelling's T as a function of stimulus, fricatives offered higher sensitivity (88.6 to 90.6%) and NPV (57.9 to 76.0%) compared with most vowel stimuli (51.9 to 71.4% and 11.6 to 51.3%, respectively). When analyzed as a function of frequency band (F1, F2+, and fricatives aggregated as low-, mid- and high-frequencies, respectively), high-frequency stimuli offered the highest sensitivity (96.9%) and NPV (88.9%). When analyzed as a function of test level, sensitivity improved with increases in stimulus level (99.4% at 65 dB SPL). The minimum SL for EFR detection ranged between 13.4 and 21.7 dB for F1 stimuli, 7.8 to 12.2 dB for F2+ stimuli, and 2.3 to 3.9 dB for fricative stimuli. CONCLUSIONS EFR-based inference of speech audibility requires consideration of the statistical indicator used, phoneme, stimulus frequency, and stimulus level.
Collapse
Affiliation(s)
- Vijayalakshmi Easwar
- Department of Communication Sciences and Disorders & Waisman Center, University of Wisconsin-Madison, USA
- National Centre for Audiology, Western University, Canada
| | - Jen Birstler
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, USA
| | - Adrienne Harrison
- Health and Rehabilitation Sciences, Western University, Canada
- School of Communication Sciences and Disorders, Western University, Canada
| | - Susan Scollie
- National Centre for Audiology, Western University, Canada
- School of Communication Sciences and Disorders, Western University, Canada
| | - David Purcell
- National Centre for Audiology, Western University, Canada
- School of Communication Sciences and Disorders, Western University, Canada
| |
Collapse
|
6
|
Test-Retest Variability in the Characteristics of Envelope Following Responses Evoked by Speech Stimuli. Ear Hear 2021; 41:150-164. [PMID: 31136317 DOI: 10.1097/aud.0000000000000739] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The objective of the present study was to evaluate the between-session test-retest variability in the characteristics of envelope following responses (EFRs) evoked by modified natural speech stimuli in young normal hearing adults. DESIGN EFRs from 22 adults were recorded in two sessions, 1 to 12 days apart. EFRs were evoked by the token /susa∫ i/ (2.05 sec) presented at 65 dB SPL and recorded from the vertex referenced to the neck. The token /susa∫ i/, spoken by a male with an average fundamental frequency [f0] of 98.53 Hz, was of interest because of its potential utility as an objective hearing aid outcome measure. Each vowel was modified to elicit two EFRs simultaneously by lowering the f0 in the first formant while maintaining the original f0 in the higher formants. Fricatives were amplitude-modulated at 93.02 Hz and elicited one EFR each. EFRs evoked by vowels and fricatives were estimated using Fourier analyzer and discrete Fourier transform, respectively. Detection of EFRs was determined by an F-test. Test-retest variability in EFR amplitude and phase coherence were quantified using correlation, repeated-measures analysis of variance, and the repeatability coefficient. The repeatability coefficient, computed as twice the standard deviation (SD) of test-retest differences, represents the ±95% limits of test-retest variation around the mean difference. Test-retest variability of EFR amplitude and phase coherence were compared using the coefficient of variation, a normalized metric, which represents the ratio of the SD of repeat measurements to its mean. Consistency in EFR detection outcomes was assessed using the test of proportions. RESULTS EFR amplitude and phase coherence did not vary significantly between sessions, and were significantly correlated across repeat measurements. The repeatability coefficient for EFR amplitude ranged from 38.5 nV to 45.6 nV for all stimuli, except for /∫/ (71.6 nV). For any given stimulus, the test-retest differences in EFR amplitude of individual participants were not correlated with their test-retest differences in noise amplitude. However, across stimuli, higher repeatability coefficients of EFR amplitude tended to occur when the group mean noise amplitude and the repeatability coefficient of noise amplitude were higher. The test-retest variability of phase coherence was comparable to that of EFR amplitude in terms of the coefficient of variation, and the repeatability coefficient varied from 0.1 to 0.2, with the highest value of 0.2 for /∫/. Mismatches in EFR detection outcomes occurred in 11 of 176 measurements. For each stimulus, the tests of proportions revealed a significantly higher proportion of matched detection outcomes compared to mismatches. CONCLUSIONS Speech-evoked EFRs demonstrated reasonable repeatability across sessions. Of the eight stimuli, the shortest stimulus /∫/ demonstrated the largest variability in EFR amplitude and phase coherence. The test-retest variability in EFR amplitude could not be explained by test-retest differences in noise amplitude for any of the stimuli. This lack of explanation argues for other sources of variability, one possibility being the modulation of cortical contributions imposed on brainstem-generated EFRs.
Collapse
|
7
|
The Influence of Vowel Identity, Vowel Production Variability, and Consonant Environment on Envelope Following Responses. Ear Hear 2021; 42:662-672. [PMID: 33577218 DOI: 10.1097/aud.0000000000000966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The vowel-evoked envelope following response (EFR) is a useful tool for studying brainstem processing of speech in natural consonant-vowel productions. Previous work, however, demonstrates that the amplitude of EFRs is highly variable across vowels. To clarify factors contributing to the variability observed, the objectives of the present study were to evaluate: (1) the influence of vowel identity and the consonant context surrounding each vowel on EFR amplitude and (2) the effect of variations in repeated productions of a vowel on EFR amplitude while controlling for the consonant context. DESIGN In Experiment 1, EFRs were recorded in response to seven English vowels (/ij/, /Ι/, /ej/, /ε/, /æ/, /u/, and /JOURNAL/earher/04.03/00003446-202105000-00017/inline-graphic1/v/2021-04-30T105427Z/r/image-tiff/) embedded in each of four consonant contexts (/hVd/, /sVt/, /zVf/, and /JOURNAL/earher/04.03/00003446-202105000-00017/inline-graphic2/v/2021-04-30T105427Z/r/image-tiffVv/). In Experiment 2, EFRs were recorded in response to four different variants of one of the four possible vowels (/ij/, /ε/, /æ/, or /JOURNAL/earher/04.03/00003446-202105000-00017/inline-graphic3/v/2021-04-30T105427Z/r/image-tiff/), embedded in the same consonant-vowel-consonant environments used in Experiment 1. All vowels were edited to minimize formant transitions before embedding in a consonant context. Different talkers were used for the two experiments. Data from a total of 30 and 64 (16 listeners/vowel) young adults with normal hearing were included in Experiments 1 and 2, respectively. EFRs were recorded using a single-channel electrode montage between the vertex and nape of the neck while stimuli were presented monaurally. RESULTS In Experiment 1, vowel identity had a significant effect on EFR amplitude with the vowel /æ/ eliciting the highest amplitude EFRs (170 nV, on average), and the vowel /ej/ eliciting the lowest amplitude EFRs (106 nV, on average). The consonant context surrounding each vowel stimulus had no statistically significant effect on EFR amplitude. Similarly in Experiment 2, consonant context did not influence the amplitude of EFRs elicited by the vowel variants. Vowel identity significantly altered EFR amplitude with /ε/ eliciting the highest amplitude EFRs (104 nV, on average). Significant, albeit small, differences (<21 nV, on average) in EFR amplitude were evident between some variants of /ε/ and /u/. CONCLUSION Based on a comprehensive set of naturally produced vowel samples in carefully controlled consonant contexts, the present study provides additional evidence for the sensitivity of EFRs to vowel identity and variations in vowel production. The surrounding consonant context (after removal of formant transitions) has no measurable effect on EFRs, irrespective of vowel identity and variant. The sensitivity of EFRs to nuances in vowel acoustics emphasizes the need for adequate control and evaluation of stimuli proposed for clinical and research purposes.
Collapse
|
8
|
Vanheusden FJ, Kegler M, Ireland K, Georga C, Simpson DM, Reichenbach T, Bell SL. Hearing Aids Do Not Alter Cortical Entrainment to Speech at Audible Levels in Mild-to-Moderately Hearing-Impaired Subjects. Front Hum Neurosci 2020; 14:109. [PMID: 32317951 PMCID: PMC7147120 DOI: 10.3389/fnhum.2020.00109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/11/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cortical entrainment to speech correlates with speech intelligibility and attention to a speech stream in noisy environments. However, there is a lack of data on whether cortical entrainment can help in evaluating hearing aid fittings for subjects with mild to moderate hearing loss. One particular problem that may arise is that hearing aids may alter the speech stimulus during (pre-)processing steps, which might alter cortical entrainment to the speech. Here, the effect of hearing aid processing on cortical entrainment to running speech in hearing impaired subjects was investigated. METHODOLOGY Seventeen native English-speaking subjects with mild-to-moderate hearing loss participated in the study. Hearing function and hearing aid fitting were evaluated using standard clinical procedures. Participants then listened to a 25-min audiobook under aided and unaided conditions at 70 dBA sound pressure level (SPL) in quiet conditions. EEG data were collected using a 32-channel system. Cortical entrainment to speech was evaluated using decoders reconstructing the speech envelope from the EEG data. Null decoders, obtained from EEG and the time-reversed speech envelope, were used to assess the chance level reconstructions. Entrainment in the delta- (1-4 Hz) and theta- (4-8 Hz) band, as well as wideband (1-20 Hz) EEG data was investigated. RESULTS Significant cortical responses could be detected for all but one subject in all three frequency bands under both aided and unaided conditions. However, no significant differences could be found between the two conditions in the number of responses detected, nor in the strength of cortical entrainment. The results show that the relatively small change in speech input provided by the hearing aid was not sufficient to elicit a detectable change in cortical entrainment. CONCLUSION For subjects with mild to moderate hearing loss, cortical entrainment to speech in quiet at an audible level is not affected by hearing aids. These results clear the pathway for exploring the potential to use cortical entrainment to running speech for evaluating hearing aid fitting at lower speech intensities (which could be inaudible when unaided), or using speech in noise conditions.
Collapse
Affiliation(s)
- Frederique J. Vanheusden
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- Institute of Sound and Vibration Research, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom
| | - Mikolaj Kegler
- Department of Bioengineering and Centre for Neurotechnology, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Katie Ireland
- Audiology Department, Royal Berkshire NHS Foundation Trust, Reading, United Kingdom
| | - Constantina Georga
- Audiology Department, Royal Berkshire NHS Foundation Trust, Reading, United Kingdom
| | - David M. Simpson
- Institute of Sound and Vibration Research, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom
| | - Tobias Reichenbach
- Department of Bioengineering and Centre for Neurotechnology, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Steven L. Bell
- Institute of Sound and Vibration Research, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
9
|
Vanheusden FJ, Chesnaye MA, Simpson DM, Bell SL. Envelope frequency following responses are stronger for high-pass than low-pass filtered vowels. Int J Audiol 2019; 58:355-362. [DOI: 10.1080/14992027.2018.1562243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Frederique J. Vanheusden
- Institute of Sound and Vibration Research, University of Southampton, Southampton, UK
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham, UK
| | - Michael A. Chesnaye
- Institute of Sound and Vibration Research, University of Southampton, Southampton, UK
| | - David M. Simpson
- Institute of Sound and Vibration Research, University of Southampton, Southampton, UK
| | - Steven L. Bell
- Institute of Sound and Vibration Research, University of Southampton, Southampton, UK
| |
Collapse
|
10
|
Vanheusden FJ, Bell SL, Chesnaye MA, Simpson DM. Improved Detection of Vowel Envelope Frequency Following Responses Using Hotelling’s T2 Analysis. Ear Hear 2019; 40:116-127. [DOI: 10.1097/aud.0000000000000598] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Stone MA, Visram A, Harte JM, Munro KJ. A Set of Time-and-Frequency-Localized Short-Duration Speech-Like Stimuli for Assessing Hearing-Aid Performance via Cortical Auditory-Evoked Potentials. Trends Hear 2019; 23:2331216519885568. [PMID: 31858885 PMCID: PMC6967206 DOI: 10.1177/2331216519885568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 08/27/2019] [Accepted: 09/23/2019] [Indexed: 11/17/2022] Open
Abstract
Short-duration speech-like stimuli, for example, excised from running speech, can be used in the clinical setting to assess the integrity of the human auditory pathway at the level of the cortex. Modeling of the cochlear response to these stimuli demonstrated an imprecision in the location of the spectrotemporal energy, giving rise to uncertainty as to what and when of a stimulus caused any evoked electrophysiological response. This article reports the development and assessment of four short-duration, limited-bandwidth stimuli centered at low, mid, mid-high, and high frequencies, suitable for free-field delivery and, in addition, reproduction via hearing aids. The durations were determined by the British Society of Audiology recommended procedure for measuring Cortical Auditory-Evoked Potentials. The levels and bandwidths were chosen via a computational model to produce uniform cochlear excitation over a width exceeding that likely in a worst-case hearing-impaired listener. These parameters produce robustness against errors in insertion gains, and variation in frequency responses, due to transducer imperfections, room modes, and age-related variation in meatal resonances. The parameter choice predicts large spectral separation between adjacent stimuli on the cochlea. Analysis of the signals processed by examples of recent digital hearing aids mostly show similar levels of gain applied to each stimulus, independent of whether the stimulus was presented in isolation, bursts, continuous, or embedded in continuous speech. These stimuli seem to be suitable for measuring hearing-aided Cortical Auditory-Evoked Potentials and have the potential to be of benefit in the clinical setting.
Collapse
Affiliation(s)
- Michael A. Stone
- Manchester Centre for Audiology and Deafness, School of Health
Sciences, University of Manchester, UK
- Manchester University Hospitals NHS Foundation Trust, UK
| | - Anisa Visram
- Manchester Centre for Audiology and Deafness, School of Health
Sciences, University of Manchester, UK
- Manchester University Hospitals NHS Foundation Trust, UK
| | - James M. Harte
- Interacoustics Research Unit, c/o Technical University of
Denmark, Lyngby, Denmark
| | - Kevin J. Munro
- Manchester Centre for Audiology and Deafness, School of Health
Sciences, University of Manchester, UK
- Manchester University Hospitals NHS Foundation Trust, UK
| |
Collapse
|
12
|
Easwar V, Banyard A, Aiken SJ, Purcell DW. Phase‐locked responses to the vowel envelope vary in scalp‐recorded amplitude due to across‐frequency response interactions. Eur J Neurosci 2018; 48:3126-3145. [DOI: 10.1111/ejn.14161] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Vijayalakshmi Easwar
- Communication Sciences & Disorders and Waisman CenterUniversity of Wisconsin Madison Wisconsin
- National Center for AudiologyWestern University London Ontario Canada
| | - Ashlee Banyard
- Communication Sciences and DisordersWestern University London Ontario Canada
| | - Steven J. Aiken
- School of Human Communication DisordersDalhousie University Halifax Nova Scotia Canada
| | - David W. Purcell
- National Center for AudiologyWestern University London Ontario Canada
- Communication Sciences and DisordersWestern University London Ontario Canada
| |
Collapse
|
13
|
Van Dun B, Kania A, Dillon H. Cortical Auditory Evoked Potentials in (Un)aided Normal-Hearing and Hearing-Impaired Adults. Semin Hear 2016; 37:9-24. [PMID: 27587919 DOI: 10.1055/s-0035-1570333] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Cortical auditory evoked potentials (CAEPs) are influenced by the characteristics of the stimulus, including level and hearing aid gain. Previous studies have measured CAEPs aided and unaided in individuals with normal hearing. There is a significant difference between providing amplification to a person with normal hearing and a person with hearing loss. This study investigated this difference and the effects of stimulus signal-to-noise ratio (SNR) and audibility on the CAEP amplitude in a population with hearing loss. Twelve normal-hearing participants and 12 participants with a hearing loss participated in this study. Three speech sounds-/m/, /g/, and /t/-were presented in the free field. Unaided stimuli were presented at 55, 65, and 75 dB sound pressure level (SPL) and aided stimuli at 55 dB SPL with three different gains in steps of 10 dB. CAEPs were recorded and their amplitudes analyzed. Stimulus SNRs and audibility were determined. No significant effect of stimulus level or hearing aid gain was found in normal hearers. Conversely, a significant effect was found in hearing-impaired individuals. Audibility of the signal, which in some cases is determined by the signal level relative to threshold and in other cases by the SNR, is the dominant factor explaining changes in CAEP amplitude. CAEPs can potentially be used to assess the effects of hearing aid gain in hearing-impaired users.
Collapse
Affiliation(s)
- Bram Van Dun
- The HEARing CRC, Sydney, Australia; National Acoustic Laboratories, Sydney, Australia
| | | | - Harvey Dillon
- The HEARing CRC, Sydney, Australia; National Acoustic Laboratories, Sydney, Australia
| |
Collapse
|
14
|
Punch S, Van Dun B, King A, Carter L, Pearce W. Clinical Experience of Using Cortical Auditory Evoked Potentials in the Treatment of Infant Hearing Loss in Australia. Semin Hear 2016; 37:36-52. [PMID: 27587921 DOI: 10.1055/s-0035-1570331] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
This article presents the clinical protocol that is currently being used within Australian Hearing for infant hearing aid evaluation using cortical auditory evoked potentials (CAEPs). CAEP testing is performed in the free field at two stimulus levels (65 dB sound pressure level [SPL], followed by 55 or 75 dB SPL) using three brief frequency-distinct speech sounds /m/, /ɡ/, and /t/, within a standard audiological appointment of up to 90 minutes. CAEP results are used to check or guide modifications of hearing aid fittings or to confirm unaided hearing capability. A retrospective review of 83 client files evaluated whether clinical practice aligned with the clinical protocol. It showed that most children could be assessed as part of their initial fitting program when they were identified as a priority for CAEP testing. Aided CAEPs were most commonly assessed within 8 weeks of the fitting. A survey of 32 pediatric audiologists provided information about their perception of cortical testing at Australian Hearing. The results indicated that clinical CAEP testing influenced audiologists' approach to rehabilitation and was well received by parents and that they were satisfied with the technique. Three case studies were selected to illustrate how CAEP testing can be used in a clinical environment. Overall, CAEP testing has been effectively integrated into the infant fitting program.
Collapse
Affiliation(s)
| | - Bram Van Dun
- The HEARing CRC, Melbourne, Australia; National Acoustic Laboratories, Sydney, Australia
| | | | - Lyndal Carter
- The HEARing CRC, Melbourne, Australia; National Acoustic Laboratories, Sydney, Australia
| | | |
Collapse
|
15
|
How neuroscience relates to hearing aid amplification. Int J Otolaryngol 2014; 2014:641652. [PMID: 25045354 PMCID: PMC4086374 DOI: 10.1155/2014/641652] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 05/01/2014] [Accepted: 05/14/2014] [Indexed: 01/19/2023] Open
Abstract
Hearing aids are used to improve sound audibility for people with hearing loss, but the ability to make use of the amplified signal, especially in the presence of competing noise, can vary across people. Here we review how neuroscientists, clinicians, and engineers are using various types of physiological information to improve the design and use of hearing aids.
Collapse
|
16
|
Abstract
There is currently a strong interest among both audiologists and hearing researchers to find a physiological measure that can be used as a marker of how amplified sounds are processed by the brain (i.e., hearing aid fitting) or how the brain changes with exposure to amplified sounds (i.e., hearing aid acclimatization). Currently, auditory evoked potentials are used, or proposed to be used, for both of these purposes to some degree. It is clear from the literature that some of these uses are potentially useful clinically while others are quite problematic. The current state of aided cortical auditory evoked potentials will be discussed relative to their application to hearing aid fitting/verification and in understanding hearing aid acclimatization. Future areas of promise as well as current gaps in the literature will also be addressed.
Collapse
Affiliation(s)
- Curtis J Billings
- National Center for Rehabilitative Auditory Research, Portland VA Medical Center, Portland, OR, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR
| |
Collapse
|
17
|
Martinez AS, Eisenberg LS, Boothroyd A. The Acoustic Change Complex in Young Children with Hearing Loss: A Preliminary Study. Semin Hear 2013; 34:278-287. [PMID: 25328277 PMCID: PMC4197937 DOI: 10.1055/s-0033-1356640] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The acoustic change complex (ACC) is a cortical auditory evoked potential elicited in response to a change in an ongoing sound. The ACC may have promise for assessing speech perception in infants and toddlers. In this preliminary study, the ACC was elicited in adults and young children in response to changes in speech stimuli representing vowel height /u/-/a/ and vowel place /u/-/i/ contrasts. The participants were adults with normal hearing (n = 3), children with normal hearing (n = 5), and children with mild to moderately severe bilateral sensorineural hearing loss (n = 5). The children with hearing loss were hearing aid users. The ages ranged from 2 years 3 months to 6 years 3months for the children and 44 to 55 years for the adults. Robust P1-N1-P2 responses were present for the adults and P1-N2 responses were present for all but the youngest child with hearing loss. The ACC response for the vowel place contrast was less robust than that for the vowel height contrast in one child with substantial hearing loss. The findings from this preliminary study support the conclusion that the ACC can be used successfully to assess auditory resolution in most young children.
Collapse
Affiliation(s)
- Amy S. Martinez
- Division of Clinical and Translational Research, House Research Institute, Los Angeles, California
| | - Laurie S. Eisenberg
- Division of Clinical and Translational Research, House Research Institute, Los Angeles, California
| | | |
Collapse
|