1
|
Weiss JL, Decker JC, Bolano A, Krahn N. Tuning tRNAs for improved translation. Front Genet 2024; 15:1436860. [PMID: 38983271 PMCID: PMC11231383 DOI: 10.3389/fgene.2024.1436860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Transfer RNAs have been extensively explored as the molecules that translate the genetic code into proteins. At this interface of genetics and biochemistry, tRNAs direct the efficiency of every major step of translation by interacting with a multitude of binding partners. However, due to the variability of tRNA sequences and the abundance of diverse post-transcriptional modifications, a guidebook linking tRNA sequences to specific translational outcomes has yet to be elucidated. Here, we review substantial efforts that have collectively uncovered tRNA engineering principles that can be used as a guide for the tuning of translation fidelity. These principles have allowed for the development of basic research, expansion of the genetic code with non-canonical amino acids, and tRNA therapeutics.
Collapse
Affiliation(s)
- Joshua L Weiss
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - J C Decker
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Ariadna Bolano
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Natalie Krahn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
2
|
Coller J, Ignatova Z. tRNA therapeutics for genetic diseases. Nat Rev Drug Discov 2024; 23:108-125. [PMID: 38049504 DOI: 10.1038/s41573-023-00829-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 12/06/2023]
Abstract
Transfer RNAs (tRNAs) have a crucial role in protein synthesis, and in recent years, their therapeutic potential for the treatment of genetic diseases - primarily those associated with a mutation altering mRNA translation - has gained significant attention. Engineering tRNAs to readthrough nonsense mutation-associated premature termination of mRNA translation can restore protein synthesis and function. In addition, supplementation of natural tRNAs can counteract effects of missense mutations in proteins crucial for tRNA biogenesis and function in translation. This Review will present advances in the development of tRNA therapeutics with high activity and safety in vivo and discuss different formulation approaches for single or chronic treatment modalities. The field of tRNA therapeutics is still in its early stages, and a series of challenges related to tRNA efficacy and stability in vivo, delivery systems with tissue-specific tropism, and safe and efficient manufacturing need to be addressed.
Collapse
Affiliation(s)
- Jeff Coller
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
3
|
Biela A, Hammermeister A, Kaczmarczyk I, Walczak M, Koziej L, Lin TY, Glatt S. The diverse structural modes of tRNA binding and recognition. J Biol Chem 2023; 299:104966. [PMID: 37380076 PMCID: PMC10424219 DOI: 10.1016/j.jbc.2023.104966] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
tRNAs are short noncoding RNAs responsible for decoding mRNA codon triplets, delivering correct amino acids to the ribosome, and mediating polypeptide chain formation. Due to their key roles during translation, tRNAs have a highly conserved shape and large sets of tRNAs are present in all living organisms. Regardless of sequence variability, all tRNAs fold into a relatively rigid three-dimensional L-shaped structure. The conserved tertiary organization of canonical tRNA arises through the formation of two orthogonal helices, consisting of the acceptor and anticodon domains. Both elements fold independently to stabilize the overall structure of tRNAs through intramolecular interactions between the D- and T-arm. During tRNA maturation, different modifying enzymes posttranscriptionally attach chemical groups to specific nucleotides, which not only affect translation elongation rates but also restrict local folding processes and confer local flexibility when required. The characteristic structural features of tRNAs are also employed by various maturation factors and modification enzymes to assure the selection, recognition, and positioning of specific sites within the substrate tRNAs. The cellular functional repertoire of tRNAs continues to extend well beyond their role in translation, partly, due to the expanding pool of tRNA-derived fragments. Here, we aim to summarize the most recent developments in the field to understand how three-dimensional structure affects the canonical and noncanonical functions of tRNA.
Collapse
Affiliation(s)
- Anna Biela
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Igor Kaczmarczyk
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Marta Walczak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Lukasz Koziej
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ting-Yu Lin
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
4
|
Albers S, Beckert B, Matthies MC, Mandava CS, Schuster R, Seuring C, Riedner M, Sanyal S, Torda AE, Wilson DN, Ignatova Z. Repurposing tRNAs for nonsense suppression. Nat Commun 2021; 12:3850. [PMID: 34158503 PMCID: PMC8219837 DOI: 10.1038/s41467-021-24076-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
Three stop codons (UAA, UAG and UGA) terminate protein synthesis and are almost exclusively recognized by release factors. Here, we design de novo transfer RNAs (tRNAs) that efficiently decode UGA stop codons in Escherichia coli. The tRNA designs harness various functionally conserved aspects of sense-codon decoding tRNAs. Optimization within the TΨC-stem to stabilize binding to the elongation factor, displays the most potent effect in enhancing suppression activity. We determine the structure of the ribosome in a complex with the designed tRNA bound to a UGA stop codon in the A site at 2.9 Å resolution. In the context of the suppressor tRNA, the conformation of the UGA codon resembles that of a sense-codon rather than when canonical translation termination release factors are bound, suggesting conformational flexibility of the stop codons dependent on the nature of the A-site ligand. The systematic analysis, combined with structural insights, provides a rationale for targeted repurposing of tRNAs to correct devastating nonsense mutations that introduce a premature stop codon.
Collapse
Affiliation(s)
- Suki Albers
- grid.9026.d0000 0001 2287 2617Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Bertrand Beckert
- grid.9026.d0000 0001 2287 2617Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Marco C. Matthies
- grid.9026.d0000 0001 2287 2617Center for Bioinformatics, University of Hamburg, Hamburg, Germany
| | - Chandra Sekhar Mandava
- grid.8993.b0000 0004 1936 9457Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Raphael Schuster
- grid.9026.d0000 0001 2287 2617Institute of Organic Chemistry, University of Hamburg, Hamburg, Germany
| | | | - Maria Riedner
- grid.9026.d0000 0001 2287 2617Institute of Organic Chemistry, University of Hamburg, Hamburg, Germany
| | - Suparna Sanyal
- grid.8993.b0000 0004 1936 9457Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Andrew E. Torda
- grid.9026.d0000 0001 2287 2617Center for Bioinformatics, University of Hamburg, Hamburg, Germany
| | - Daniel N. Wilson
- grid.9026.d0000 0001 2287 2617Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Zoya Ignatova
- grid.9026.d0000 0001 2287 2617Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
5
|
Abstract
A nonsense suppressor tRNA (sup-tRNA) allows a natural or non-natural amino acid to be assigned to a nonsense codon in mRNA. Sup-tRNAs were utilized initially for studying tRNA functions but lately are used more for protein engineering and gene regulation. In the latter application, a sup-tRNA that is aminoacylated with a natural amino acid by the corresponding aminoacyl-tRNA synthetase is used to express a full-length natural protein from its mutated gene with a nonsense codon in the middle. This type of sup-tRNA has recently been artificially evolved to develop biosensors. In these biosensors, an analyte induces the processing of an engineered premature sup-tRNA into a mature sup-tRNA, which suppresses the corresponding nonsense codon incorporated into a gene, encoding an easily detectable reporter protein. This review introduces sup-tRNA-based biosensors that the author's group has developed by utilizing bacterial and eukaryotic cell-free translation systems.
Collapse
|
6
|
Exner MP, Köhling S, Rivollier J, Gosling S, Srivastava P, Palyancheva ZI, Herdewijn P, Heck MP, Rademann J, Budisa N. Incorporation of Amino Acids with Long-Chain Terminal Olefins into Proteins. Molecules 2016; 21:287. [PMID: 26938510 PMCID: PMC6272937 DOI: 10.3390/molecules21030287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 01/05/2023] Open
Abstract
The increasing need for site-specific protein decorations that mimic natural posttranslational modifications requires access to a variety of noncanonical amino acids with moieties enabling bioorthogonal conjugation chemistry. Here we present the incorporation of long-chain olefinic amino acids into model proteins with rational variants of pyrrolysyl-tRNA synthetase (PylRS). Nε-heptenoyl lysine was incorporated for the first time using the known promiscuous variant PylRS(Y306A/Y384F), and Nε-pentenoyl lysine was incorporated in significant yields with the novel variant PylRS(C348A/Y384F). This is the only example of rational modification at position C348 to enlarge the enzyme's binding pocket. Furthermore, we demonstrate the feasibility of our chosen amino acids in the thiol-ene conjugation reaction with a thiolated polysaccharide.
Collapse
Affiliation(s)
- Matthias P Exner
- Institute of Chemistry, Technische Universität Berlin, Mueller-Breslau-Strasse 10, 10623 Berlin, Germany.
| | - Sebastian Köhling
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| | - Julie Rivollier
- Service de Chimie Bioorganique et de Marquage, iBiTecS, CEA, 91191 Gif-sur-Yvette, France.
| | - Sandrine Gosling
- Service de Chimie Bioorganique et de Marquage, iBiTecS, CEA, 91191 Gif-sur-Yvette, France.
| | - Puneet Srivastava
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | - Zheni I Palyancheva
- Institute of Chemistry, Technische Universität Berlin, Mueller-Breslau-Strasse 10, 10623 Berlin, Germany.
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | - Marie-Pierre Heck
- Service de Chimie Bioorganique et de Marquage, iBiTecS, CEA, 91191 Gif-sur-Yvette, France.
| | - Jörg Rademann
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| | - Nediljko Budisa
- Institute of Chemistry, Technische Universität Berlin, Mueller-Breslau-Strasse 10, 10623 Berlin, Germany.
| |
Collapse
|
7
|
Ogawa A, Namba Y, Gakumasawa M. Rational optimization of amber suppressor tRNAs toward efficient incorporation of a non-natural amino acid into protein in a eukaryotic wheat germ extract. Org Biomol Chem 2016; 14:2671-8. [DOI: 10.1039/c5ob02533h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Amber suppressor tRNAs (sup-tRNAs) were rationally optimized toward efficient incorporation of a non-natural amino acid (AcPhe) into protein in a eukaryotic wheat germ extract.
Collapse
Affiliation(s)
| | - Yuki Namba
- Proteo-Science Center
- Ehime University
- Matsuyama
- Japan
| | | |
Collapse
|
8
|
Hong SH, Ntai I, Haimovich AD, Kelleher NL, Isaacs FJ, Jewett MC. Cell-free protein synthesis from a release factor 1 deficient Escherichia coli activates efficient and multiple site-specific nonstandard amino acid incorporation. ACS Synth Biol 2014; 3:398-409. [PMID: 24328168 PMCID: PMC4065633 DOI: 10.1021/sb400140t] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
Site-specific incorporation of nonstandard
amino acids (NSAAs)
into proteins enables the creation of biopolymers, proteins, and enzymes
with new chemical properties, new structures, and new functions. To
achieve this, amber (TAG codon) suppression has been widely applied.
However, the suppression efficiency is limited due to the competition
with translation termination by release factor 1 (RF1), which leads
to truncated products. Recently, we constructed a genomically recoded Escherichia coli strain lacking RF1 where 13 occurrences
of the amber stop codon have been reassigned to the synonymous TAA
codon (rEc.E13.ΔprfA). Here, we assessed and
characterized cell-free protein synthesis (CFPS) in crude S30 cell
lysates derived from this strain. We observed the synthesis of 190
± 20 μg/mL of modified soluble superfolder green fluorescent
protein (sfGFP) containing a single p-propargyloxy-l-phenylalanine (pPaF) or p-acetyl-l-phenylalanine. As compared to the parent rEc.E13 strain with RF1, this results in a modified sfGFP synthesis improvement
of more than 250%. Beyond introducing a single NSAA, we further demonstrated
benefits of CFPS from the RF1-deficient strains for incorporating
pPaF at two- and five-sites per sfGFP protein. Finally, we compared
our crude S30 extract system to the PURE translation system lacking
RF1. We observed that our S30 extract based approach is more cost-effective
and high yielding than the PURE translation system lacking RF1, ∼1000
times on a milligram protein produced/$ basis. Looking forward, using
RF1-deficient strains for extract-based CFPS will aid in the synthesis
of proteins and biopolymers with site-specifically incorporated NSAAs.
Collapse
Affiliation(s)
| | | | - Adrian D. Haimovich
- Department
of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, United States of America
- Systems Biology
Institute, Yale University, West Haven, Connecticut 06516, United States of America
| | - Neil L. Kelleher
- Member,
Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States of America
| | - Farren J. Isaacs
- Department
of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, United States of America
- Systems Biology
Institute, Yale University, West Haven, Connecticut 06516, United States of America
| | - Michael C. Jewett
- Member,
Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States of America
- Institute
of Bionanotechnology in Medicine, Northwestern University, Chicago, Illinois 60611, United States of America
| |
Collapse
|