1
|
Valentin BC, Philippe ON, Melman M, Henry MM, Salvius BA, Baptiste LSJ. Ethnomedical knowledge of plants used in alternative medicine to treat hemorrhoidal diseases in Lubumbashi, Haut-Katanga province, Southern Democratic Republic of Congo. BMC Complement Med Ther 2024; 24:365. [PMID: 39394139 PMCID: PMC11468376 DOI: 10.1186/s12906-024-04646-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/17/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND A variety of medicinal plants are used in traditional medicine in Lubumbashi for the management of hemorrhoidal diseases. However, no investigation has been conducted to gather the knowledge required for this type of management in the region. The present study was conducted to inventory the plants used in Lubumbashi to treat hemorrhoidal diseases and to relate their ethnomedical characteristics. METHODS This study was conducted between March 2022 and February 2023 by interviews using semi-structured questionnaire with households (n = 1520), herbalists (n = 25), and traditional healers: THs (n = 59). RESULTS The 1,604 respondents (sex ratio M/F = 0.9; mean age: 56 ± 3 years; experience: 12 ± 3 years) provided information on 100 taxa, 84 of which are used against internal hemorrhoids, Phyllanthus amarus being the most cited (Citation Index, CI: 0.76). Most of them are trees (38%) or shrubs (32%), belonging to 90 genera and 45 families dominated by the Fabaceae (10%) and Asteraceae (9%). They are indicated in 76 other pathologies, dominated by gastrointestinal disorders (GID), wounds and sexually transmitted infections (CI > 0.57). From these 100 taxa, 117 anti-hemorrhoidal formulations were derived, 11 of which combined more than one plant. In all these recipes, the leaf is the most commonly used part (> 60%) and the liniment (> 45%) is the most popular form of application. For the first time, this study reports 14 taxa as plants used in the treatment of hemorrhoids. Among these taxa, Ficus stuhlmannii, Ficus laurifolia, and Ocimum centraliafricanum are listed as medicinal plants for the first time. Khaya nyasica, and Syzygium cordatum, each with 11 uses, have the highest traditional medicinal value. CONCLUSION The findings of this study indicate that a significant number of medicinal plants are used in traditional medicine in Lubumbashi for the treatment of hemorrhoidal diseases. Some of these plants are endemic to the biodiversity area, while others are shared with other cultures and regions. A series of pharmacological studies is currently underway with the objective of validating the anti-hemorrhoidal properties of these plants and in order to identify phytochemical compounds responsible of this activity.
Collapse
Affiliation(s)
- Bashige Chiribagula Valentin
- Department of Pharmacology Laboratory of Therapeutic Chemistry and Analysis of Natural Substances Faculty of Pharmaceutical Sciences, University of Lubumbashi (UNILU), 27, Av. Kato, Commune Kampemba, Lubumbashi - DR, Congo.
| | - Okusa Ndjolo Philippe
- Department of Pharmacology Laboratory of Therapeutic Chemistry and Analysis of Natural Substances Faculty of Pharmaceutical Sciences, University of Lubumbashi (UNILU), 27, Av. Kato, Commune Kampemba, Lubumbashi - DR, Congo
| | - Muhona Melman
- Department of Pharmacology Laboratory of Therapeutic Chemistry and Analysis of Natural Substances Faculty of Pharmaceutical Sciences, University of Lubumbashi (UNILU), 27, Av. Kato, Commune Kampemba, Lubumbashi - DR, Congo
| | - Manya Mboni Henry
- Department of Pharmacology Laboratory of Therapeutic Chemistry and Analysis of Natural Substances Faculty of Pharmaceutical Sciences, University of Lubumbashi (UNILU), 27, Av. Kato, Commune Kampemba, Lubumbashi - DR, Congo
| | - Bakari Amuri Salvius
- Department of Pharmacology- Laboratory of Pharmacognosy - Faculty of Pharmaceutical Sciences - , University of Lubumbashi (UNILU), 27, Av Kato, Commune Kampemba, Lubumbashi - DR, Congo
| | - Lumbu Simbi Jean Baptiste
- University of Lubumbashi (UNILU, Commune of Lubumbashi, N°1 Maternity Avenue, Lubumbashi - DR, Congo
| |
Collapse
|
2
|
Kuevi DNO, Keiser J, Häberli C, Owusu-Senyah AK, Ahiabu MK. In Vitro Antischistosomal Activity of Bridelia ferruginea, Clausena anisata, Khaya senegalensis, and Vernonia amygdalina. J Trop Med 2024; 2024:8074291. [PMID: 39281066 PMCID: PMC11401701 DOI: 10.1155/2024/8074291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/17/2024] [Accepted: 03/10/2024] [Indexed: 09/18/2024] Open
Abstract
Background Schistosomiasis is caused by parasitic flatworms and the disease is endemic to most countries in sub-Saharan Africa including Ghana. The current therapeutic agent for managing this disease solely relies on praziquantel. The continual dependence on this single available drug could lead to possible drug resistance. This study seeks to evaluate the antischistosomal activity of the following Ghanaian medicinal plants: Khaya senegalensis, Vernonia amygdalina, Clausena anisata, and Bridelia ferruginea. Methodology. Two concentrations (100 μg/mL and 50 μg/mL) of each extract were tested in a 96-well plate containing 30 newly transformed schistosomula (NTS). Moreover, six worms of both sexes of adult Schistosoma mansoni were exposed to the extracts diluted in the RPMI medium. The assay was performed in a 24-well plate. The parasitic worms were examined using an inverted optical microscope. Results At 100 μg/mL and 50 μg/mL, all extracts performed better and showed strong activity (p < 0.001) against NTS; thus, 98.08%, 100%, 80.77%, and 100% for Clausena, Vernonia, Bridelia, and Khaya, respectively, when compared to praziquantel. Strong activity was recorded when the extracts underwent testing against Schistosoma mansoni adults at 100 μg/mL; 96.35%, 100%, and 94.55% for Vernonia, Bridelia, and Khaya, respectively, except for Clausena which exhibited weak activity, i.e., 56.02%. There was no significant difference between Vernonia, Bridelia, and Khaya when compared to praziquantel. Conclusion At 100 μg/mL, Khaya senegalensis, Vernonia amygdalina, and Bridelia ferruginea extracts demonstrated strong activity against both schistosomula and adult Schistosoma mansoni. These data can serve as baseline information in the quest to find alternative therapeutic agents to treat schistosomiasis.
Collapse
Affiliation(s)
- Deryl Nii Okantey Kuevi
- Council for Scientific and Industrial Research (CSIR), Water Research Institute, Biomedical and Public Health Research Unit, P.O. Box AH 38, Accra, Ghana
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Cécile Häberli
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Abena Konadu Owusu-Senyah
- Council for Scientific and Industrial Research (CSIR), Water Research Institute, Biomedical and Public Health Research Unit, P.O. Box AH 38, Accra, Ghana
| | - Mawutor Kwame Ahiabu
- Council for Scientific and Industrial Research (CSIR), Water Research Institute, Biomedical and Public Health Research Unit, P.O. Box AH 38, Accra, Ghana
| |
Collapse
|
3
|
Omolaso BO, Adesanwo JK, Ishola AA, Adegoke AG, Akingbule FO, Ipadeola YA, Adewole KE. Antidiarrheal activity of Bridelia ferruginea bark methanolic extract involves modulation ATPases in mice and inhibition of muscarinic acetylcholine receptor (M3) and prostaglandin E2 receptor 3 (EP 3) in silico. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:757-771. [PMID: 34727589 DOI: 10.1515/jcim-2021-0240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/21/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Diarrhea, an abnormal state in which the individual has about three or more daily bowel movements, is now considered one of the most challenging global public health problems. Using plant products, such as Bridelia ferruginea is an alternative treatment option. The objective of this study was to investigate the antidiarrheal activity of B. ferruginea bark methanolic extract (BfME) and the mechanisms involved. METHODS BfME antidiarrheal activity was evaluated in mice model of castor oil-induced diarrhea and enteropooling. To evaluate motility, gastrointestinal transit time was carried out using phenol red meal, while intestinal activities of selected ATPases were also evaluated. Furthermore, the active components in BfME were detected by GC-MS analysis, while molecular docking of the most abundant compounds with muscarinic acetylcholine receptor (M3) and prostaglandin E2 receptor 3 (EP3) were conducted. RESULTS BfME at 400 and 800 mg/kg showed antidiarrheal activity by delaying onset of diarrhea, reduced gastrointestinal transit and increased intestinal activities of Na+ K+-ATPase, Ca2+ Mg2+-ATPase and Mg2+-ATPase. Molecular docking revealed that γ-sitosterol, α-amyrin, and stigmasterol have outstanding binding affinity for M3 and EP3. CONCLUSIONS In view of these results, the observed antidiarrheal activity possibly occurs via the activation of ATPases activities and inhibition of M3 and EP3.
Collapse
Affiliation(s)
- Blessing Olugbamila Omolaso
- Department of Physiology, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo City, Nigeria
| | | | | | - Adeoti Gbemisola Adegoke
- Department of Physiology, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo City, Nigeria
| | - Francis O Akingbule
- Department of Physiology, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo City, Nigeria
| | - Yetunde Ayoka Ipadeola
- Department of Physiology, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo City, Nigeria
| | - Kayode Ezekiel Adewole
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo City, Ondo State, Nigeria
| |
Collapse
|
4
|
Omotuyi O, Oyinloye B, Agboola S, Agbebi AE, Afolabi EO, Femi-Oyewo M. Bridelia ferruginea phytocompounds interact with SARS-COV-2 drug targets: Experimental validation of corilagin contribution. SCIENTIFIC AFRICAN 2023; 22:e01920. [DOI: 10.1016/j.sciaf.2023.e01920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
5
|
Ansari P, Akther S, Hannan JMA, Seidel V, Nujat NJ, Abdel-Wahab YHA. Pharmacologically Active Phytomolecules Isolated from Traditional Antidiabetic Plants and Their Therapeutic Role for the Management of Diabetes Mellitus. Molecules 2022; 27:molecules27134278. [PMID: 35807526 PMCID: PMC9268530 DOI: 10.3390/molecules27134278] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 01/09/2023] Open
Abstract
Diabetes mellitus is a chronic complication that affects people of all ages. The increased prevalence of diabetes worldwide has led to the development of several synthetic drugs to tackle this health problem. Such drugs, although effective as antihyperglycemic agents, are accompanied by various side effects, costly, and inaccessible to the majority of people living in underdeveloped countries. Medicinal plants have been used traditionally throughout the ages to treat various ailments due to their availability and safe nature. Medicinal plants are a rich source of phytochemicals that possess several health benefits. As diabetes continues to become prevalent, health care practitioners are considering plant-based medicines as a potential source of antidiabetic drugs due to their high potency and fewer side effects. To better understand the mechanism of action of medicinal plants, their active phytoconstituents are being isolated and investigated thoroughly. In this review article, we have focused on pharmacologically active phytomolecules isolated from medicinal plants presenting antidiabetic activity and the role they play in the treatment and management of diabetes. These natural compounds may represent as good candidates for a novel therapeutic approach and/or effective and alternative therapies for diabetes.
Collapse
Affiliation(s)
- Prawej Ansari
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh; (S.A.); (J.M.A.H.); (N.J.N.)
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK;
- Correspondence: ; Tel.: +880-1323-879720
| | - Samia Akther
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh; (S.A.); (J.M.A.H.); (N.J.N.)
| | - J. M. A. Hannan
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh; (S.A.); (J.M.A.H.); (N.J.N.)
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Nusrat Jahan Nujat
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh; (S.A.); (J.M.A.H.); (N.J.N.)
| | | |
Collapse
|
6
|
Oyebode OA, Erukainure OL, Chuturgoon AA, Ghazi T, Naidoo P, Chukwuma CI, Islam MS. Bridelia ferruginea Benth. (Euphorbiaceae) mitigates oxidative imbalance and lipotoxicity, with concomitant modulation of insulin signaling pathways via GLUT4 upregulation in hepatic tissues of diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114816. [PMID: 34763044 DOI: 10.1016/j.jep.2021.114816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/24/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bridelia ferruginea Benth. (Euphorbiaceae) is among the medicinal plants commonly used for the management of type 2 diabetes (T2D) and its complications. AIM OF THE STUDY The hepato-therapeutic effect of the butanol fraction of Bridelia ferruginea leaves was investigated in diabetic rats. METHODS The butanol fraction of B. ferruginea was given to type 2 diabetic rats at both low and high doses (150 and 300 mg/kg bodyweight, respectively), while metformin and glibenclamide served as the standard anti-diabetic drugs. A normal toxicological group was administered a high dose of the fraction. At the end of the experimental period, the rats were sacrificed, and their livers and psoas muscle collected. The liver was assayed for oxidative stress markers, liver glycogen content, lipid metabolite profile (using GC-MS) and their metabolic pathways were analyzed using the MetaboAnalyst 5.0 online server. The expression of GLUT4 was also assayed in the liver and muscle as well as the identification of signaling pathways associated with GLUT4 expression using the Enrichr online server. In silico molecular docking was used to investigate the molecular interactions of some postulated compound found in B. ferruginea with GLUT4. The ability of the fraction to stimulate muscle glucose uptake was determined in isolated rat psoas muscle ex vivo. RESULTS Treatment with the high dose of fraction caused an inhibition of lipid peroxidation as well as the elevation of catalase, SOD, glutathione reductase and glutathione peroxidase activities in the rat liver. There was an increased expression of GLUT4 in livers and muscles of diabetic rats following treatment with B. ferruginea. Treatment with the fraction also caused inactivation of diabetes-activated pathways and changes in the distribution of the hepatic lipid metabolites. Molecular docking analysis revealed strong molecular interactions of pyrogallol and sitosterol with GLUT4. CONCLUSIONS These data illustrate the hepato-protective effect of B. ferruginea in diabetic rats which compare favorably with the tested anti-diabetic drugs (metformin and glibenclamide).
Collapse
Affiliation(s)
- Olajumoke A Oyebode
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban, 4000, South Africa; Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Ochuko L Erukainure
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban, 4000, South Africa; Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal (Howard College Campus), Durban, 4000, South Africa
| | - Terisha Ghazi
- Discipline of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal (Howard College Campus), Durban, 4000, South Africa
| | - Pragalathan Naidoo
- Discipline of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal (Howard College Campus), Durban, 4000, South Africa
| | - Chika I Chukwuma
- Center for Quality of Health and Living, Faculty of Health Sciences, Central University of Technology, Bloemfontein, 9301, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban, 4000, South Africa.
| |
Collapse
|
7
|
Pharmacological Potential and Chemical Characterization of Bridelia ferruginea Benth.-A Native Tropical African Medicinal Plant. Antibiotics (Basel) 2021; 10:antibiotics10020223. [PMID: 33672329 PMCID: PMC7926895 DOI: 10.3390/antibiotics10020223] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/19/2022] Open
Abstract
To avail the possible pharmacological actions of Brideliaferruginea Benth., the present investigation was designed to quantitatively analyze the total flavonoid and phenolic contents and assess the various antioxidant and enzyme inhibition properties of leaf and stem bark extracts (ethyl acetate, water and methanolic) of B. ferruginea. Anti-proliferative effect was also investigated against human colon cancer cells (HCT116) as well as the antimicrobial potential against multiple bacterial and fungal (yeasts and dermatophytes) strains. The methanolic and water extracts of the stem bark demonstrated the highest phenolic content (193.58 ± 0.98 and 187.84 ± 1.88 mg/g, respectively), while the leaf extracts showed comparatively higher flavonoid contents (24.37-42.31 mg/g). Overall, the methanolic extracts were found to possess the most significant antioxidant potency. Compared to the other extracts, methanolic extracts of the B. ferruginea were revealed to be most potent inhibitors of acetyl- and butyryl-cholinesterases, tyrosinase α-amylase, except α-glucosidase. Only the ethyl acetate extracts were found to inhibit glucosidase. Additionally, the stem bark methanolic extract also showed potent inhibitory activity against E. coli and gram-positive bacteria (MIC (minimum inhibitory concentration): 2.48-62.99 µg/mL), as well as all the tested fungi (MIC: 4.96-62.99 µg/mL). In conclusion, B. ferruginea can be regarded as a promising source of bioactive compounds displaying multifunctional pharmacological activities and thus is a potential candidate for further investigations in the endeavor to develop botanical formulations for pharmaceutical and cosmeceutical industries.
Collapse
|
8
|
Oyebode O, Zuma L, Lucky Erukainure O, Koorbanally N, Islam MS. Bridelia ferruginea inhibits key carbohydrate digesting enzyme and intestinal glucose absorption and modulates glucose metabolism in diabetic rats. Arch Physiol Biochem 2020; 129:671-681. [PMID: 33370536 DOI: 10.1080/13813455.2020.1861026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The antidiabetic potentials of the dichloromethene, ethyl acetate, butanol and aqueous fractions of Bridelia ferruginea leaves were investigated using in vitro, ex vivo and in vivo models. In vitro and ex vivo antidiabetic activities revealed the butanol (BFBF) to be the most active of the fractions, and thus selected for in vivo study. Diabetes was induced using the fructose-streptozotocin model. Treatments with BFBF significantly reduced blood glucose level and improved glucose tolerance, serum insulin level and sensitivity as well as suppressed hyperlipidaemia and serum nephropathy markers. Histopathological analysis revealed the ability of BFBF to protect and regenerate pancreatic β-cells. BFBF significantly elevated glutathione level, catalase and superoxide dismutase activities, while depleting MDA level in serums and kidney of diabetic rats. Phenols, steroids, terpenoids, aliphatic and aromatic compounds were identified in the fractions following GC-MS analysis. Overall, results from this study propose that BFBF possess potent antidiabetic activity.
Collapse
Affiliation(s)
- Olajumoke Oyebode
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Lindiwe Zuma
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ochuko Lucky Erukainure
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Neil Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
9
|
Jeong YH, Oh YC, Pak ME, Li W, Go Y, Lee JJ. Pu'er tea water extract protects against cognitive impairment in a mouse model of lipopolysaccharide-induced neuroinflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153338. [PMID: 32992081 DOI: 10.1016/j.phymed.2020.153338] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/30/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Pu'er tea, a type of post-fermented tea made from Camellia sinensis leaves, has long been widely used in East Asian countries. It is mainly produced in southern China and is effective in preventing obesity due to its ability to break down fat. However, the effects of Pu'er tea on cognitive impairment or neuroinflammation by endotoxin have not yet been studied. PURPOSE Here, we assessed the inhibitory activity of Pu'er tea hot water extract (PTW) on neuroinflammation and cognitive impairment and explored its mechanism. STUDY DESIGN The ability of PTW to inhibit cognitive impairment was investigated in a mouse model of lipopolysaccharide (LPS)-induced neuroinflammation and murine microglia BV2 cells. METHODS We examined whether oral administration of PTW prevented cognitive impairment and LPS-induced neuroinflammation using behavioral tests, Nissl staining, immunohistochemistry, western blotting, real-time reverse transcription-polymerase chain reaction (real-time RT-PCR), Griess assay, and enzyme-linked immunosorbent assay (ELISA). RESULTS First, Morris water maze (MWM) and passive avoidance (PA) tests demonstrated that oral administration of PTW effectively attenuated LPS-induced spatial memory loss and inhibited neuronal damage of mouse brains. Histopathological analysis showed that PTW repressed LPS-induced expression of the activation markers ionized calcium-binding adaptor molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP). Furthermore, PTW inhibited the expression of amyloidogenesis proteins such as amyloid-β precursor protein (APP), C99, and β-secretase-1 (BACE-1); production of inflammatory proteins such as Iba-1, GFAP, inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX)-2; activation of inflammatory pathways; and expression of inflammatory mediator mRNAs in hippocampal tissue. In cultured microglia, PTW treatment inhibited the generation of various inflammatory factors activated by LPS. CONCLUSION Our results in vivo and in vitro demonstrate that PTW effectively prevents cognitive impairment caused by neuroinflammation and is, therefore, a potential candidate for the development of a therapeutic agent for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yun Hee Jeong
- Korean medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70, Cheomdanro, Dong-gu, Daegu, 41062, Republic of Korea
| | - You-Chang Oh
- Korean medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70, Cheomdanro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Malk Eun Pak
- Korean medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70, Cheomdanro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Wei Li
- Korean medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70, Cheomdanro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Younghoon Go
- Korean medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70, Cheomdanro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Jung-Jin Lee
- Department of R&D Center, Myungmoon Bio Co., 28 Jeyakgongdan 2 gil, Hyangnam-eup, Hwaseong-si, Kyeonggi-do, 18622, Republic of Korea.
| |
Collapse
|
10
|
Banhasasim-Tang Attenuates Lipopolysaccharide-Induced Cognitive Impairment by Suppressing Neuroinflammation in Mice. Nutrients 2020; 12:nu12072019. [PMID: 32645984 PMCID: PMC7400939 DOI: 10.3390/nu12072019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/18/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
Banhasasim-tang (BHS) is an herbal medicine that has been widely used in East Asia to treat various symptoms associated with upper abdomen swelling. BHS has not been studied previously for neuroinflammation or cognitive disorder. Here, we use a lipopolysaccharide (LPS) model to investigate the effects and mechanisms of BHS in neuroinflammation and cognitive impairment of mice. We used a mouse model of LPS-induced cognitive impairment and neuroinflammation and examined whether administration of BHS prevents these deficits via Morris water maze test, passive avoidance test, histopathological analysis, Western blotting, and real-time reverse transcription polymerase chain reaction (RT-qPCR). We found via behavioral tests that BHS treatment effectively prevented LPS-induced memory loss and neuronal damage in mice. Histopathological analysis of mouse brains revealed that BHS inhibited LPS-induced expression of microglial and astrocyte activation markers. Furthermore, BHS inhibits the production of markers related to neurodegeneration, amyloidogenesis, and inflammation, and mRNA expression of inflammatory mediators in mouse brain tissue. Additionally, BHS pretreatment effectively inhibited generation of inflammatory factors and pathways in BV2 microglial cells stimulated by LPS. These observations indicate that BHS is effective in preventing cognitive impairment caused by neuroinflammation and has strong potential as a candidate treatment for neuronal inflammatory diseases.
Collapse
|
11
|
Gargouri B, Boukholda K, Kumar A, Benazzouz A, Fetoui H, Fiebich BL, Bouchard M. Bifenthrin insecticide promotes oxidative stress and increases inflammatory mediators in human neuroblastoma cells through NF-kappaB pathway. Toxicol In Vitro 2020; 65:104792. [PMID: 32061760 DOI: 10.1016/j.tiv.2020.104792] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/28/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
The extensive application of bifenthrin (BF) insecticide in agriculture has raised serious concerns with regard to increased risks of developing neurodegenerative diseases. Recently, our group showed that BF exposure in rodent models induced oxidative stress and inflammation markers in various regions of the brain (frontal cortex, striatum and hippocampus) and this was associated with behavioral changes. This study aimed to confirm such inflammatory and oxidative stress in an in vitro cell culture model of SK-N-SH human neuroblastoma cells. Markers of oxidative stress (ROS, NO, MDA, H2O2), antioxidant enzyme activities (CAT, GPx, SOD) and inflammatory response (TNF-α, IL-6, PGE2) were analyzed in SK-N-SH cells after 24 h of exposure to different concentrations of BF (1-20 μM). Protein synthesis and mRNA expression of the enzymes implicated in the synthesis of PGE2 were also measured (COX-2, mPGES-1) as well as nuclear factor κappaB (NF-κBp65) and antioxidant nuclear erythroid-2 like factor-2 (Nrf-2). Cell viability was analyzed by MTT-tetrazolio (MTT) and lactate dehydrogenase (LDH) assays. Exposure of SK-N-SH cells to BF resulted in a concentration-dependent reduction in the number of viable cells (reduction of MTT and increase in LDH activity). There was also a BF concentration-dependent increase in oxidative stress markers (ROS release, NO, MDA and H2O2) and decrease in the activity of antioxidant enzymes (CAT and GPx activities). There was further a concentration-dependent increase in pro-inflammatory cytokines (TNF-α and IL-6) and inflammatory mediator PGE2, increase in protein synthesis and mRNA expression of inflammatory markers (COX-2, mPGES-1 and NF-κBp65) and decrease in protein synthesis and mRNA expression of antioxidant Nrf-2. Our data shows that BF induces various oxidative stress and inflammatory markers in SK-N-SH human neuroblastoma cells as well as the activation of NF-κBp65 signaling pathway. This is in line with prior results in brain regions of rodents exposed in vivo to BF showing increased oxidative stress in response to BF exposure, occurring in pro-inflammatory conditions and likely activating programmed cell death.
Collapse
Affiliation(s)
- Brahim Gargouri
- Neurochemistry and Neuroimmunology Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Haupt strasse 5, 79104 Freiburg, Germany; Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
| | - Khadija Boukholda
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
| | - Asit Kumar
- Department of Neurology, Richard T Johnson Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Abdelhamid Benazzouz
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Hamadi Fetoui
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
| | - Bernd L Fiebich
- Neurochemistry and Neuroimmunology Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Haupt strasse 5, 79104 Freiburg, Germany.
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Toxicological Risk Assessment and Management, University of Montreal, Roger-Gaudry Building, U424, P.O. Box 6128, Main Station, Montreal, Quebec H3C 3J7, Canada.
| |
Collapse
|
12
|
Afolayan M, Srivedavyasasri R, Asekun OT, Familoni OB, Ross SA. Chemical and biological studies on Bridelia ferruginea grown in Nigeria. Nat Prod Res 2018; 33:287-291. [PMID: 29457749 DOI: 10.1080/14786419.2018.1440225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Phytochemical investigation of the methanolic extract of dried leaves of Bridelia ferruginea led to the isolation and identification of fourteen compounds (1-14): compound 1 [mixture of palmitic, stearic and oleic acids], stearyl monoester of 2-O-β-ᴅ-glucosylglycerol (2), 6β-hydroxy-(20R)-24-ethylcholest-4-en-3-one (3a), 6β-hydroxy-(20R)-24-ethylcholest-4,22-dien-3-one (3b), lutein (4), vomifoliol (5), corilagin (6), kaempferide-3-O-β-ᴅ-glucoside (7), myricetin (8), isomericitrin (9), isoquercetin (10), myricitrin (11), quercitrin (12), rutin (13), and β-sitosterol glucoside (14). The total extract exhibited moderate activity towards CB2 receptor and 90% inhibition against leishmanial pathogen Trypanosoma brucei. Compound 4 exhibited 73% displacement in CB2 receptor with IC50 56.47 μM, and 93% inhibition towards T. brucei with IC50 4.16 μM. Compound 11 showed 99% inhibition towards Escherichia coli with IC50 1.123 μM.
Collapse
Affiliation(s)
- Michael Afolayan
- a National Center for Natural Product Research , University of Mississippi , University , MS , USA.,b Department of Chemistry , University of Lagos , Lagos , Nigeria.,c Chemistry Advanced Research Center , Sheda Science and Technology Complex , Garki-Abuja , Nigeria
| | | | | | | | - Samir A Ross
- a National Center for Natural Product Research , University of Mississippi , University , MS , USA.,d Department of BioMolecular Sciences, School of Pharmacy , University of Mississippi , University , MS , USA
| |
Collapse
|
13
|
Geng Y, Zhu S, Cheng P, Lu ZM, Xu HY, Shi JS, Xu ZH. Bioassay-guided fractionation of ethyl acetate extract from Armillaria mellea attenuates inflammatory response in lipopolysaccharide (LPS) stimulated BV-2 microglia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 26:55-61. [PMID: 28257665 DOI: 10.1016/j.phymed.2017.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/08/2016] [Accepted: 01/07/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Armillaria mellea (A. mellea) is a traditional Chinese medicinal and edible mushroom, which is proved to possess a lot of biological activities, including anti-oxidation, immunopotentiation, anti-vertigo and anti-aging activities. However, little information is available in regard to its neuroprotection activity in inflammation-mediated neurodegenerative diseases. PURPOSE We have found that A. mellea has an anti-inflammatory activity in LPS-induced RAW264.7 cells in our previous study. The objective of this study is to investigate the anti-neuroinflammatory mechanism of a bioassay-guided fractionation (Fr.2) and its active components/compounds. METHODS Compounds were isolated by preparative high performance liquid chromatography (pre-HPLC) and their structures were established by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopic analyses. The anti-neuroinflammatory effect of Fr.2 and each compounds were investigated in lipopolysaccharide (LPS)-stimulated murine microglia cell lineBV-2. RESULTS We demonstrated that Fr.2 significantly decreased the production of inflammation mediator nitric oxide (NO) and inflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and interleukin-1beta (IL-1β) in a dose-dependent manner (10, 30, 100µg/ml). In addition, Fr.2 markedly down-regulated the phosphorylation levels of nuclear factor kappa B p65 (NF-κB p65), inhibitory κB-α (IκB-α) and c-Jun N-terminal kinases (JNKs) pathways. Sevens compounds were isolated from Fr.2, among them, three compounds, 5-hydroxymethylfurfural (CP1), vanillic acid (CP4) and syringate (CP5) were reported for the first time in A. mellea. NO and inflammatory cytokines (TNF-α, IL-6, IL-1β) secretion indicated that daidzein (CP6) and genistein (CP7) showed a more outstanding anti-inflammation potential at non-toxic concentrations (10, 30, 100µM) than the other five compounds. CONCLUSIONS In conclusion, Fr.2 may have therapeutic potential for neurodegenerative diseases by inhibiting inflammatory mediators and suppress inflammation pathway in activated microglia. Daidzein and genistein may serve as the effective anti-inflammation compounds of Fr.2.
Collapse
Affiliation(s)
- Yan Geng
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China
| | - Shuiling Zhu
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China
| | - Peng Cheng
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China
| | - Zhen-Ming Lu
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China
| | - Hong-Yu Xu
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China
| | - Jin-Song Shi
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China
| | - Zheng-Hong Xu
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
14
|
Gbekley HE, Katawa G, Karou SD, Anani SK, Tchadjobo T, Ameyapoh Y, Batawila K, Simpore J. ETHNOBOTANICAL STUDY OF PLANTS USED TO TREAT ASTHMA IN THE MARITIME REGION IN TOGO. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2016; 14:196-212. [PMID: 28480398 PMCID: PMC5411872 DOI: 10.21010/ajtcam.v14i1.22] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Asthma is one of the most common chronic diseases in modern society and it is evident that its incidence and severity are increasing, however very little is known about the plants used in the management of the disease. This study therefore aimed to document the plants usage in the Togolese traditional medicine to treat asthma. METHODOLOGY From January to June 2015, an ethnobotanical survey was conducted using a semi-structured questionnaire with traditional healers (THs) in the southern region of Togo. The importance of the plants species was assessed by the calculated use values. RESULTS In Total, 121 THs (92 males and 29 females) were interviewed and 98 plants species belonging to 54 families were identified as curing asthma. The most represented families were: Leguminosae with 7 species followed by Euphorbiaceae and Rutaceae contributing with 6 and 5 species respectively. Based on the calculated use values the most important species were Carcica papaya L., Cataranthus roseus L., Eucalyptus camaldulensis Dehnh., Piper guineense Thonn., Eucalyptus citriodora Hook., Eucalyptus globules Labill. and Euphorbia hirta L. The leaves and the root were the parts predominantly used to prepare the formulations, mainly decoctions, administrated by oral route. Clinical manifestations such as wheezing (91.74%), difficulty as speaking or coughing (73.55%), dyspnea (66.94%), dry cough (52.89%), sweating and increased heart rate (52.07%) were used by TH to diagnose the disease. CONCLUSION This study showed initial evidence of the use of plant materials by Togolese TH to heal asthma. These results could be a starting point for laboratory screenings.
Collapse
Affiliation(s)
- Holaly E. Gbekley
- Ecole Supérieure des Techniques Biologiques et Alimentaires (ESTBA-UL), Université de Lomé, Togo
| | - Gnatoulma Katawa
- Ecole Supérieure des Techniques Biologiques et Alimentaires (ESTBA-UL), Université de Lomé, Togo
| | - Simplice D. Karou
- Ecole Supérieure des Techniques Biologiques et Alimentaires (ESTBA-UL), Université de Lomé, Togo
- Centre dee cherche Biomoléculaire Pietro Annigoni (CERBA/LABIOGENE), Ouagadougou, Burkina Faso
| | - SKokou Anani
- Ecole Supérieure des Techniques Biologiques et Alimentaires (ESTBA-UL), Université de Lomé, Togo
| | - Tchacondo Tchadjobo
- Ecole Supérieure des Techniques Biologiques et Alimentaires (ESTBA-UL), Université de Lomé, Togo
| | - Yaovi Ameyapoh
- Ecole Supérieure des Techniques Biologiques et Alimentaires (ESTBA-UL), Université de Lomé, Togo
| | - Komlan Batawila
- Laboratoire de Biologie et Ecologie Végétales, Faculté des Sciences, Université de Lomé
| | - Jacques Simpore
- Centre dee cherche Biomoléculaire Pietro Annigoni (CERBA/LABIOGENE), Ouagadougou, Burkina Faso
| |
Collapse
|
15
|
Popiolek-Barczyk K, Mika J. Targeting the Microglial Signaling Pathways: New Insights in the Modulation of Neuropathic Pain. Curr Med Chem 2016; 23:2908-2928. [PMID: 27281131 PMCID: PMC5427777 DOI: 10.2174/0929867323666160607120124] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/23/2016] [Accepted: 06/06/2016] [Indexed: 12/30/2022]
Abstract
The microglia, once thought only to be supporting cells of the central nervous system (CNS), are now recognized to play essential roles in many pathologies. Many studies within the last decades indicated that the neuro-immune interaction underlies the generation and maintenance of neuropathic pain. Through a large number of receptors and signaling pathways, the microglial cells communicate with neurons, astrocytes and other cells, including those of the immune system. A disturbance or loss of CNS homeostasis causes rapid responses of the microglia, which undergo a multistage activation process. The activated microglia change their cell shapes and gene expression profiles, which induce proliferation, migration, and the production of pro- or antinociceptive factors. The cells release a large number of mediators that can act in a manner detrimental or beneficial to the surrounding cells and can indirectly alter the nociceptive signals. This review discusses the most important microglial intracellular signaling cascades (MAPKs, NF-kB, JAK/STAT, PI3K/Akt) that are essential for neuropathic pain development and maintenance. Our objective was to identify new molecular targets that may result in the development of powerful tools to control the signaling associated with neuropathic pain.
Collapse
Affiliation(s)
| | - Joanna Mika
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Str., 31-343 Krakow, Poland.
| |
Collapse
|
16
|
Okorji UP, Olajide OA. A semi-synthetic derivative of artemisinin, artesunate inhibits prostaglandin E2 production in LPS/IFNγ-activated BV2 microglia. Bioorg Med Chem 2014; 22:4726-34. [DOI: 10.1016/j.bmc.2014.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/02/2014] [Accepted: 07/05/2014] [Indexed: 12/13/2022]
|