1
|
Mikhailov VF, Shulenina LV. Regulation of Gene Activity Is One of the Mechanisms for Changing Radiosensitivity. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022110140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
2
|
Sudhanva MS, Hariharasudhan G, Jun S, Seo G, Kamalakannan R, Kim HH, Lee JH. MicroRNA-145 Impairs Classical Non-Homologous End-Joining in Response to Ionizing Radiation-Induced DNA Double-Strand Breaks via Targeting DNA-PKcs. Cells 2022; 11:1509. [DOI: https:/doi.org/10.3390/cells11091509 academic] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023] Open
Abstract
DNA double-strand breaks (DSBs) are one of the most lethal types of DNA damage due to the fact that unrepaired or mis-repaired DSBs lead to genomic instability or chromosomal aberrations, thereby causing cell death or tumorigenesis. The classical non-homologous end-joining pathway (c-NHEJ) is the major repair mechanism for rejoining DSBs, and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is a critical factor in this pathway; however, regulation of DNA-PKcs expression remains unknown. In this study, we demonstrate that miR-145 directly suppresses DNA-PKcs by binding to the 3′-UTR and inhibiting translation, thereby causing an accumulation of DNA damage, impairing c-NHEJ, and rendering cells hypersensitive to ionizing radiation (IR). Of note, miR-145-mediated suppression of DNA damage repair and enhanced IR sensitivity were both reversed by either inhibiting miR-145 or overexpressing DNA-PKcs. In addition, we show that the levels of Akt1 phosphorylation in cancer cells are correlated with miR-145 suppression and DNA-PKcs upregulation. Furthermore, the overexpression of miR-145 in Akt1-suppressed cells inhibited c-NHEJ by downregulating DNA-PKcs. These results reveal a novel miRNA-mediated regulation of DNA repair and identify miR-145 as an important regulator of c-NHEJ.
Collapse
Affiliation(s)
- Muddenahalli Srinivasa Sudhanva
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Gurusamy Hariharasudhan
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Korea
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Semo Jun
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Gwanwoo Seo
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Korea
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Radhakrishnan Kamalakannan
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Hyun Hee Kim
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Jung-Hee Lee
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Korea
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Korea
| |
Collapse
|
3
|
MicroRNA-145 Impairs Classical Non-Homologous End-Joining in Response to Ionizing Radiation-Induced DNA Double-Strand Breaks via Targeting DNA-PKcs. Cells 2022; 11:cells11091509. [PMID: 35563814 PMCID: PMC9102532 DOI: 10.3390/cells11091509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
DNA double-strand breaks (DSBs) are one of the most lethal types of DNA damage due to the fact that unrepaired or mis-repaired DSBs lead to genomic instability or chromosomal aberrations, thereby causing cell death or tumorigenesis. The classical non-homologous end-joining pathway (c-NHEJ) is the major repair mechanism for rejoining DSBs, and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is a critical factor in this pathway; however, regulation of DNA-PKcs expression remains unknown. In this study, we demonstrate that miR-145 directly suppresses DNA-PKcs by binding to the 3′-UTR and inhibiting translation, thereby causing an accumulation of DNA damage, impairing c-NHEJ, and rendering cells hypersensitive to ionizing radiation (IR). Of note, miR-145-mediated suppression of DNA damage repair and enhanced IR sensitivity were both reversed by either inhibiting miR-145 or overexpressing DNA-PKcs. In addition, we show that the levels of Akt1 phosphorylation in cancer cells are correlated with miR-145 suppression and DNA-PKcs upregulation. Furthermore, the overexpression of miR-145 in Akt1-suppressed cells inhibited c-NHEJ by downregulating DNA-PKcs. These results reveal a novel miRNA-mediated regulation of DNA repair and identify miR-145 as an important regulator of c-NHEJ.
Collapse
|
4
|
Targeting Glucose Metabolism of Cancer Cells with Dichloroacetate to Radiosensitize High-Grade Gliomas. Int J Mol Sci 2021; 22:7265. [PMID: 34298883 PMCID: PMC8305417 DOI: 10.3390/ijms22147265;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
As the cornerstone of high-grade glioma (HGG) treatment, radiotherapy temporarily controls tumor cells via inducing oxidative stress and subsequent DNA breaks. However, almost all HGGs recur within months. Therefore, it is important to understand the underlying mechanisms of radioresistance, so that novel strategies can be developed to improve the effectiveness of radiotherapy. While currently poorly understood, radioresistance appears to be predominantly driven by altered metabolism and hypoxia. Glucose is a central macronutrient, and its metabolism is rewired in HGG cells, increasing glycolytic flux to produce energy and essential metabolic intermediates, known as the Warburg effect. This altered metabolism in HGG cells not only supports cell proliferation and invasiveness, but it also contributes significantly to radioresistance. Several metabolic drugs have been used as a novel approach to improve the radiosensitivity of HGGs, including dichloroacetate (DCA), a small molecule used to treat children with congenital mitochondrial disorders. DCA reverses the Warburg effect by inhibiting pyruvate dehydrogenase kinases, which subsequently activates mitochondrial oxidative phosphorylation at the expense of glycolysis. This effect is thought to block the growth advantage of HGGs and improve the radiosensitivity of HGG cells. This review highlights the main features of altered glucose metabolism in HGG cells as a contributor to radioresistance and describes the mechanism of action of DCA. Furthermore, we will summarize recent advances in DCA's pre-clinical and clinical studies as a radiosensitizer and address how these scientific findings can be translated into clinical practice to improve the management of HGG patients.
Collapse
|
5
|
Cook KM, Shen H, McKelvey KJ, Gee HE, Hau E. Targeting Glucose Metabolism of Cancer Cells with Dichloroacetate to Radiosensitize High-Grade Gliomas. Int J Mol Sci 2021; 22:ijms22147265. [PMID: 34298883 PMCID: PMC8305417 DOI: 10.3390/ijms22147265] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
As the cornerstone of high-grade glioma (HGG) treatment, radiotherapy temporarily controls tumor cells via inducing oxidative stress and subsequent DNA breaks. However, almost all HGGs recur within months. Therefore, it is important to understand the underlying mechanisms of radioresistance, so that novel strategies can be developed to improve the effectiveness of radiotherapy. While currently poorly understood, radioresistance appears to be predominantly driven by altered metabolism and hypoxia. Glucose is a central macronutrient, and its metabolism is rewired in HGG cells, increasing glycolytic flux to produce energy and essential metabolic intermediates, known as the Warburg effect. This altered metabolism in HGG cells not only supports cell proliferation and invasiveness, but it also contributes significantly to radioresistance. Several metabolic drugs have been used as a novel approach to improve the radiosensitivity of HGGs, including dichloroacetate (DCA), a small molecule used to treat children with congenital mitochondrial disorders. DCA reverses the Warburg effect by inhibiting pyruvate dehydrogenase kinases, which subsequently activates mitochondrial oxidative phosphorylation at the expense of glycolysis. This effect is thought to block the growth advantage of HGGs and improve the radiosensitivity of HGG cells. This review highlights the main features of altered glucose metabolism in HGG cells as a contributor to radioresistance and describes the mechanism of action of DCA. Furthermore, we will summarize recent advances in DCA’s pre-clinical and clinical studies as a radiosensitizer and address how these scientific findings can be translated into clinical practice to improve the management of HGG patients.
Collapse
Affiliation(s)
- Kristina M. Cook
- Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia; (H.S.); (K.J.M.); (H.E.G.); (E.H.)
- Correspondence: ; Tel.: +61-286274858
| | - Han Shen
- Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia; (H.S.); (K.J.M.); (H.E.G.); (E.H.)
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead 2145, Australia
| | - Kelly J. McKelvey
- Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia; (H.S.); (K.J.M.); (H.E.G.); (E.H.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, University of Sydney, St. Leonards 2065, Australia
| | - Harriet E. Gee
- Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia; (H.S.); (K.J.M.); (H.E.G.); (E.H.)
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead 2145, Australia
- Sydney West Radiation Oncology Network, University of Sydney, Sydney 2006, Australia
- Children’s Medical Research Institute, Westmead 2145, Australia
| | - Eric Hau
- Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia; (H.S.); (K.J.M.); (H.E.G.); (E.H.)
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead 2145, Australia
- Sydney West Radiation Oncology Network, University of Sydney, Sydney 2006, Australia
| |
Collapse
|
6
|
Alkhalil A, Clifford JL, Ball R, Day A, Chan R, Carney BC, Miller SA, Campbell R, Kumar R, Gautam A, Hammamieh R, Moffatt LT, Shupp JW. Blood RNA Integrity is a Direct and Simple Reporter of Radiation Exposure and Prognosis: A Pilot Study. Radiat Res 2020; 193:543-551. [PMID: 32282289 DOI: 10.1667/rr15527.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/09/2020] [Indexed: 11/03/2022]
Abstract
In the event of a mass casualty radiation scenario, rapid assessment of patients' health and triage is required for optimal resource utilization. Identifying the level and extent of exposure as well as prioritization of care is extremely challenging under such disaster conditions. Blood-based biomarkers, such as RNA integrity numbers (RIN), could help healthcare personnel quickly and efficiently determine the extent and effect of multiple injuries on patients' health. Evaluation of the effect of different radiation doses, alone or in combination with burn injury, on total RNA integrity over multiple time points was performed. Total RNA integrity was tallied in blood samples for potential application as a marker of radiation exposure and survival. Groups of aged mice (3-6 mice/group, 13-18 months old) received 0.5, 1, 5, 10 or 20 Gy ionizing radiation. Two additional mouse groups received low-dose irradiation (0.5 or 1 Gy) with a 15% total body surface area (TBSA) burn injury. Animals were euthanized at 2 or 12 h and at day 1, 2, 3, 7 or 14 postirradiation, or when injury-mediated mortality occurred. Total RNA was isolated from blood. The quality of RNA was evaluated and RNA RIN were obtained. Analysis of RIN indicated that blood showed the clearest radiation effect. There was a time- and radiation-dose-dependent reduction in RIN that was first detectable at 12 h postirradiation for all doses in animals receiving irradiation alone. This effect was reversible in lower-dose groups (i.e., 0.5, 1 and 5 Gy) that survived to the end of the study (14 days). In contrast, the effect persisted for 10 and 20 Gy groups, which showed suppression of RIN values <4.5 with high mortalities. Radiation doses of 20 Gy were lethal and required euthanasia by day 6. A low RIN (<2.5) at any time point was associated with 100% mortality. Combined radiation-burn injury produced significantly increased mortality such that no dually-injured animals survived beyond day 3, and no radiation dose >1 Gy resulted in survival past day 1. More modest suppression of RIN was observed in the surviving dually challenged mice, and no statistically significant changes were identified in RIN values of burn-only mice at any time point. In this study of an animal model, a proof of concept is presented for a simple and accurate method of assessing radiation dose exposure in blood which potentially predicts lethality. RIN assessment of blood-derived RNA could form the basis for a clinical decision-support tool to guide healthcare providers under the strenuous conditions of a radiation-based mass casualty event.
Collapse
Affiliation(s)
- Abdulnaser Alkhalil
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC 20010
| | - John L Clifford
- Integrative Systems Biology Program, U.S. Army Center for Environmental Health Research, Fort Detrick, Maryland 21702
| | - Robert Ball
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC 20010.,The Burn Center, MedStar Washington Hospital Center, Washington, DC 20010
| | - Anna Day
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC 20010
| | - Rosanna Chan
- Department of Radiology, MedStar Washington Hospital Center, Washington, DC 20010
| | - Bonnie C Carney
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC 20010.,Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC 20010
| | - Stacy Ann Miller
- Integrative Systems Biology, The Oak Ridge Institute for Science and Education, Fort Detrick, Maryland 21702-5000
| | - Ross Campbell
- Integrative Systems Biology Program, U.S. Army Center for Environmental Health Research, Fort Detrick, Maryland 21702.,Advanced Biomedical Computational Science, Frederick National Lab for Cancer Research/Advanced Biomedical Computational, Frederick, Maryland, 21702
| | - Raina Kumar
- Integrative Systems Biology Program, U.S. Army Center for Environmental Health Research, Fort Detrick, Maryland 21702.,Advanced Biomedical Computational Science, Frederick National Lab for Cancer Research/Advanced Biomedical Computational, Frederick, Maryland, 21702
| | - Aarti Gautam
- Integrative Systems Biology Program, U.S. Army Center for Environmental Health Research, Fort Detrick, Maryland 21702
| | - Rasha Hammamieh
- Integrative Systems Biology Program, U.S. Army Center for Environmental Health Research, Fort Detrick, Maryland 21702
| | - Lauren T Moffatt
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC 20010.,Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC 20010.,Department of Surgery, Georgetown University School of Medicine, Washington, DC 20010
| | - Jeffrey W Shupp
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC 20010.,The Burn Center, MedStar Washington Hospital Center, Washington, DC 20010.,Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC 20010.,Department of Surgery, Georgetown University School of Medicine, Washington, DC 20010
| |
Collapse
|
7
|
Kim JH. Chromatin Remodeling and Epigenetic Regulation in Plant DNA Damage Repair. Int J Mol Sci 2019; 20:ijms20174093. [PMID: 31443358 PMCID: PMC6747262 DOI: 10.3390/ijms20174093] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022] Open
Abstract
DNA damage response (DDR) in eukaryotic cells is initiated in the chromatin context. DNA damage and repair depend on or have influence on the chromatin dynamics associated with genome stability. Epigenetic modifiers, such as chromatin remodelers, histone modifiers, DNA (de-)methylation enzymes, and noncoding RNAs regulate DDR signaling and DNA repair by affecting chromatin dynamics. In recent years, significant progress has been made in the understanding of plant DDR and DNA repair. SUPPRESSOR OF GAMMA RESPONSE1, RETINOBLASTOMA RELATED1 (RBR1)/E2FA, and NAC103 have been proven to be key players in the mediation of DDR signaling in plants, while plant-specific chromatin remodelers, such as DECREASED DNA METHYLATION1, contribute to chromatin dynamics for DNA repair. There is accumulating evidence that plant epigenetic modifiers are involved in DDR and DNA repair. In this review, I examine how DDR and DNA repair machineries are concertedly regulated in Arabidopsis thaliana by a variety of epigenetic modifiers directing chromatin remodeling and epigenetic modification. This review will aid in updating our knowledge on DDR and DNA repair in plants.
Collapse
Affiliation(s)
- Jin-Hong Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 56212, Korea.
| |
Collapse
|
8
|
Tang YT, Huang YY, Li JH, Qin SH, Xu Y, An TX, Liu CC, Wang Q, Zheng L. Alterations in exosomal miRNA profile upon epithelial-mesenchymal transition in human lung cancer cell lines. BMC Genomics 2018; 19:802. [PMID: 30400814 PMCID: PMC6219194 DOI: 10.1186/s12864-018-5143-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is regarded as a critical event during tumor metastasis. Recent studies have revealed changes and the contributions of proteins in/on exosomes during EMT. Besides proteins, microRNA (miRNA) is another important functional component of exosomes. We hypothesized that the miRNA profile of exosomes may change following EMT and these exosomal miRNAs may in return promote EMT, migration and invasion of cancer cells. RESULTS The small RNA profile of exosomes was altered following EMT. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the specific miRNAs of M-exosomes have the potential to drive signal transduction networks in EMT and cancer progression. Co-culture experiments confirmed that M-exosomes can enter epithelial cells and promote migration, invasion and expression of mesenchymal markers in the recipient cells. CONCLUSION Our results reveal changes in the function and miRNA profile of exosomes upon EMT. M-exosomes can promote transfer of the malignant (mesenchymal) phenotype to epithelial recipient cells. Further, the miRNAs specifically expressed in M-exosomes are associated with EMT and metastasis, and may serve as new biomarkers for EMT-like processes in lung cancer.
Collapse
Affiliation(s)
- Yue-Ting Tang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Guangzhou, 510515 Guangdong China
- Department of Clinical Laboratory, Zhongnan Hospital, Wuhan University, Wuhan, Hubei China
| | - Yi-Yao Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Guangzhou, 510515 Guangdong China
| | - Jing-Huan Li
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire UK
| | - Si-Hua Qin
- Department of Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Yong Xu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Guangzhou, 510515 Guangdong China
| | - Tai-Xue An
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Guangzhou, 510515 Guangdong China
| | - Chun-Chen Liu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Guangzhou, 510515 Guangdong China
| | - Qian Wang
- Department of Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Guangzhou, 510515 Guangdong China
| |
Collapse
|
9
|
Mallik S, Zhao Z. Towards integrated oncogenic marker recognition through mutual information-based statistically significant feature extraction: an association rule mining based study on cancer expression and methylation profiles. QUANTITATIVE BIOLOGY 2017; 5:302-327. [PMID: 30221015 DOI: 10.1007/s40484-017-0119-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Marker detection is an important task in complex disease studies. Here we provide an association rule mining (ARM) based approach for identifying integrated markers through mutual information (MI) based statistically significant feature extraction, and apply it to acute myeloid leukemia (AML) and prostate carcinoma (PC) gene expression and methylation profiles. Methods We first collect the genes having both expression and methylation values in AML as well as PC. Next, we run Jarque-Bera normality test on the expression/methylation data to divide the whole dataset into two parts: one that ollows normal distribution and the other that does not follow normal distribution. Thus, we have now four parts of the dataset: normally distributed expression data, normally distributed methylation data, non-normally distributed expression data, and non-normally distributed methylated data. A feature-extraction technique, "mRMR" is then utilized on each part. This results in a list of top-ranked genes. Next, we apply Welch t-test (parametric test) and Shrink t-test (non-parametric test) on the expression/methylation data for the top selected normally distributed genes and non-normally distributed genes, respectively. We then use a recent weighted ARM method, "RANWAR" to combine all/specific resultant genes to generate top oncogenic rules along with respective integrated markers. Finally, we perform literature search as well as KEGG pathway and Gene-Ontology (GO) analyses using Enrichr database for in silico validation of the prioritized oncogenes as the markers and labeling the markers as existing or novel. Results The novel markers of AML are {ABCB11↑∪KRT17↓} (i.e., ABCB11 as up-regulated, & KRT17 as down-regulated), and {AP1S1-∪KRT17↓∪NEIL2-∪DYDC1↓}) (i.e., AP1S1 and NEIL2 both as hypo-methylated, & KRT17 and DYDC1 both as down-regulated). The novel marker of PC is {UBIAD1¶∪APBA2‡∪C4orf31‡} (i.e., UBIAD1 as up-regulated and hypo-methylated, & APBA2 and C4orf31 both as down-regulated and hyper-methylated). Conclusion The identified novel markers might have critical roles in AML as well as PC. The approach can be applied to other complex disease.
Collapse
Affiliation(s)
- Saurav Mallik
- Computer Science & Engineering, Aliah University, Newtown, Newtown 700156, India
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
10
|
Pedroza-Torres A, Fernández-Retana J, Peralta-Zaragoza O, Jacobo-Herrera N, Cantú de Leon D, Cerna-Cortés JF, Lopez-Camarillo C, Pérez-Plasencia C. A microRNA expression signature for clinical response in locally advanced cervical cancer. Gynecol Oncol 2016; 142:557-565. [PMID: 27423381 DOI: 10.1016/j.ygyno.2016.07.093] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/07/2016] [Accepted: 07/06/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Nearly 50% of patients who are diagnosed with locally advanced cervical cancer have an unfavorable pathological response to conventional treatment. MicroRNAs (miRNAs) are potential biomarkers in cervical cancer; however, their role in identifying patients who do not respond to conventional treatment remains poorly investigated. Here, we identify a set of miRNAs that can be used as molecular markers to predict the pathological response in locally advanced cervical cancer patients receiving radiation and chemotherapy treatment. METHODS Forty-one patients diagnosed with locally advanced cervical cancer were invited to participate in this study and enrolled after they signed an informed consent. Two patient cohorts were randomized for miRNA expression profiling, a discovery cohort (n=10) and a validation cohort (n=31); profiling was performed by means of a miScript miRNA PCR Array. After a median clinical follow-up of 45months, statistical analysis was performed to identify miRNAs that could discriminate non-responders from complete pathological responders to conventional treatment. RESULTS miRNA expression profiling identified 101 miRNAs that showed significant differences between non-responders and complete pathological responders (p<0.05). Seven differentially expressed miRNAs were selected, and their expression patterns were confirmed in the validation phase; thus, miR-31-3p, -3676, -125a-5p, -100-5p, -125b-5p, and -200a-5p and miR-342 were significantly associated with clinical response. Expression of this miRNA signature above the median level was a significant predictor of non-response to standard treatment (p<0.001). CONCLUSIONS These seven validated miRNA signatures could be used as molecular biomarkers of chemo- and radio-resistance in locally advanced cervical cancer patients.
Collapse
Affiliation(s)
- Abraham Pedroza-Torres
- Instituto Nacional de Cancerología, Laboratorio de Genómica, Ciudad de México, Mexico; Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biologicas, Departmanento de Microbiología, Ciudad de México, Mexico
| | | | - Oscar Peralta-Zaragoza
- Direccion de Infecciones Crónicas y Cáncer, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Ciudad de México, Mexico
| | - David Cantú de Leon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Jorge F Cerna-Cortés
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biologicas, Departmanento de Microbiología, Ciudad de México, Mexico
| | - Cesar Lopez-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México., Mexico
| | - Carlos Pérez-Plasencia
- Instituto Nacional de Cancerología, Laboratorio de Genómica, Ciudad de México, Mexico; Universidad Nacional Autónoma de México UNAM, FES-Iztacala, UBIMED, Tlalnepantla, Estado de México, Mexico.
| |
Collapse
|
11
|
Williams AEG, Choi K, Chan AL, Lee YJ, Reeves WH, Bubb MR, Stewart CM, Cha S. Sjögren's syndrome-associated microRNAs in CD14(+) monocytes unveils targeted TGFβ signaling. Arthritis Res Ther 2016; 18:95. [PMID: 27142093 PMCID: PMC4855899 DOI: 10.1186/s13075-016-0987-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/05/2016] [Indexed: 12/30/2022] Open
Abstract
Background Sjögren’s syndrome (SjS) monocytes have a pro-inflammatory phenotype, which may influence SjS pathogenesis. MicroRNAs (miRNAs) are small endogenously expressed molecules that can inhibit protein expression of their targeted genes and have important functions in regulating cell signaling responses. We profiled miRNAs in SjS monocytes to identify a SjS-specific miRNA profile and determine the potential roles of miRNAs in SjS pathogenesis. Methods Total RNA was extracted from healthy control (HC, n = 10), SjS (n = 18), systemic lupus erythematosus (SLE, n = 10), and rheumatoid arthritis (RA, n = 10) peripheral blood CD14+ monocytes for miRNA microarray analysis. To validate select miRNAs from the microarray analysis, the original cohort and a new cohort of monocyte RNA samples from HC (n = 9), SjS (n = 12), SLE (n = 8), and RA (n = 9) patients were evaluated by quantitative reverse transcription (RT)-PCR. Functional predictions of differentially expressed miRNAs were determined through miRNA target prediction database analyses. Statistical analyses performed included one-way analysis of variance with Bonferroni post tests, linear regression, and receiver operating characteristic curve analyses. Results MiRNAs were predominantly upregulated in SjS monocytes in comparison with controls. Quantitative RT-PCR confirmations supported co-regulation of miR-34b-3p, miR-4701-5p, miR-609, miR-300, miR-3162-3p, and miR-877-3p in SjS monocytes (13/30, 43.3 %) in comparison with SLE (1/17, 5.8 %) and RA (1/18, 5.6 %). MiRNA-target pathway predictions identified SjS-associated miRNAs appear to preferentially target the canonical TGFβ signaling pathway as opposed to pro-inflammatory interleukin-12 and Toll-like receptor/NFkB pathways. Conclusions Our results underscore a novel underlying molecular mechanism where SjS-associated miRNAs may collectively suppress TGFβ signaling as opposed to pro-inflammatory interleukin-12 and Toll-like receptor/NFκB pathways in SjS pathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-0987-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adrienne E G Williams
- Departments of Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, P.O. Box 100414, Gainesville, FL, 32610, USA
| | - Kevin Choi
- Departments of Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, P.O. Box 100414, Gainesville, FL, 32610, USA
| | - Annie L Chan
- Department of Rheumatology and Clinical Immunology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Yun Jong Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Westley H Reeves
- Department of Rheumatology and Clinical Immunology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Michael R Bubb
- Department of Rheumatology and Clinical Immunology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Carol M Stewart
- Departments of Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, P.O. Box 100414, Gainesville, FL, 32610, USA
| | - Seunghee Cha
- Departments of Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, P.O. Box 100414, Gainesville, FL, 32610, USA.
| |
Collapse
|
12
|
Tabe Y, Hatanaka Y, Nakashiro M, Sekihara K, Yamamoto S, Matsushita H, Kazuno S, Fujimura T, Ikegami T, Nakanaga K, Matsumoto H, Ueno T, Aoki J, Yokomizo T, Konopleva M, Andreeff M, Miida T, Iwabuchi K, Sasai K. Integrative genomic and proteomic analyses identifies glycerol-3-phosphate acyltransferase as a target of low-dose ionizing radiation in EBV infected-B cells. Int J Radiat Biol 2015; 92:24-34. [DOI: 10.3109/09553002.2015.1106021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
13
|
Islam A, Ghimbovschi S, Zhai M, Swift JM. An Exploration of Molecular Correlates Relevant to Radiation Combined Skin-Burn Trauma. PLoS One 2015; 10:e0134827. [PMID: 26247844 PMCID: PMC4527694 DOI: 10.1371/journal.pone.0134827] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/14/2015] [Indexed: 12/17/2022] Open
Abstract
Background Exposure to high dose radiation in combination with physical injuries such as burn or wound trauma can produce a more harmful set of medical complications requiring specialist interventions. Currently these interventions are unavailable as are the precise biomarkers needed to help both accurately assess and treat such conditions. In the present study, we tried to identify and explore the possible role of serum exosome microRNA (miRNA) signatures as potential biomarkers for radiation combined burn injury (RCBI). Methodology Female B6D2F1/J mice were assigned to four experimental groups (n = 6): sham control (SHAM), burn injury (BURN), radiation injury (RI) and combined radiation skin burn injury (CI). We performed serum multiplex cytokine analysis and serum exosome miRNA expression profiling to determine novel miRNA signatures and important biological pathways associated with radiation combined skin-burn trauma. Principal Findings Serum cytokines, IL-5 and MCP-1, were significantly induced only in CI mice (p<0.05). From 890 differentially expressed miRNAs identified, microarray analysis showed 47 distinct miRNA seed sequences significantly associated with CI mice compared to SHAM control mice (fold change ≥ 1.2, p<0.05). Furthermore, only two major miRNA seed sequences (miR-690 and miR-223) were validated to be differentially expressed for CI mice specifically (fold change ≥ 1.5, p<0.05). Conclusions Serum exosome miRNA signature data of adult mice, following RCBI, provides new insights into the molecular and biochemical pathways associated with radiation combined skin-burn trauma in vivo.
Collapse
Affiliation(s)
- Aminul Islam
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland, United States of America
- * E-mail:
| | - Svetlana Ghimbovschi
- Children’s National Medical Center, Department of Integrative Systems Biology, Washington DC, United States of America
| | - Min Zhai
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland, United States of America
| | - Joshua M. Swift
- Naval Medical Research Center, Undersea Medicine Department, Silver Spring, Maryland, United States of America
| |
Collapse
|
14
|
High dose ionizing radiation regulates micro RNA and gene expression changes in human peripheral blood mononuclear cells. BMC Genomics 2014; 15:814. [PMID: 25257395 PMCID: PMC4182888 DOI: 10.1186/1471-2164-15-814] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 09/22/2014] [Indexed: 12/15/2022] Open
Abstract
Background High dose ionizing radiation (IR) induces potent toxic cell effects mediated by either direct DNA damage or the production of reactive oxygen species (ROS). IR-induced modulations in multiple biological processes have been proposed to be partly regulated by radiosensitive microRNA (miRNA). In order to gain new insights into the role of miRNAs in the regulation of biological processes after IR, we have investigated changes in mRNA and miRNA expression after high dose IR. Results IR induced changes in the mRNA and miRNA profiles of human peripheral blood mononuclear cells (PBMCs). When comparing non-irradiated and irradiated samples, we detected a time-dependent increase in differentially expressed mRNAs and miRNAs, with the highest differences detectable 20 hours after exposure. Gene ontology analysis revealed that very early events (up to 4 hours) after irradiation were specifically associated with p53 signaling and apoptotic pathways, whereas a large number of diverse cellular processes were deregulated after 20 hours. Transcription factor analysis of all up-regulated genes confirmed the importance of p53 in the early post-irradiation phase. When analyzing miRNA expression, we found 177 miRNAs that were significantly regulated in the late post-irradiation phase. Integrating miRNA and target gene expression data, we found a significant negative correlation between miRNA-mRNA and identified hepatic leukemia factor (HLF) as a transcription factor down-regulated in the response to IR. These regulated miRNAs and the HLF target genes were involved in modulating radio-responsive pathways, such as apoptosis, the MAKP signaling pathway, endocytosis, and cytokine-cytokine interactions. Conclusion Using a large dataset of mRNA and miRNA expression profiles, we describe the interplay of mRNAs and miRNAs in the regulation of gene expression in response to IR at a posttranscriptional level and their involvement in the modulation of radiation-induced biological pathways. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-814) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Chaudhry MA. Small Nucleolar RNA Host Genes and Long Non-Coding RNA Responses in Directly Irradiated and Bystander Cells. Cancer Biother Radiopharm 2014; 29:135-41. [DOI: 10.1089/cbr.2013.1574] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- M. Ahmad Chaudhry
- Department of Medical Laboratory and Radiation Sciences, University of Vermont, Burlington, Vermont
| |
Collapse
|
16
|
Chaudhry MA. Radiation-induced microRNA: Discovery, functional analysis, and cancer radiotherapy. J Cell Biochem 2014; 115:436-49. [DOI: 10.1002/jcb.24694] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 12/26/2022]
Affiliation(s)
- M. Ahmad Chaudhry
- Department of Medical Laboratory and Radiation Sciences; University of Vermont; Burlington Vermont 05405
| |
Collapse
|
17
|
Jacobs LA, Bewicke-Copley F, Poolman MG, Pink RC, Mulcahy LA, Baker I, Beaman EM, Brooks T, Caley DP, Cowling W, Currie JMS, Horsburgh J, Kenehan L, Keyes E, Leite D, Massa D, McDermott-Rouse A, Samuel P, Wood H, Kadhim M, Carter DRF. Meta-analysis using a novel database, miRStress, reveals miRNAs that are frequently associated with the radiation and hypoxia stress-responses. PLoS One 2013; 8:e80844. [PMID: 24244721 PMCID: PMC3828287 DOI: 10.1371/journal.pone.0080844] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/12/2013] [Indexed: 01/08/2023] Open
Abstract
Organisms are often exposed to environmental pressures that affect homeostasis, so it is important to understand the biological basis of stress-response. Various biological mechanisms have evolved to help cells cope with potentially cytotoxic changes in their environment. miRNAs are small non-coding RNAs which are able to regulate mRNA stability. It has been suggested that miRNAs may tip the balance between continued cytorepair and induction of apoptosis in response to stress. There is a wealth of data in the literature showing the effect of environmental stress on miRNAs, but it is scattered in a large number of disparate publications. Meta-analyses of this data would produce added insight into the molecular mechanisms of stress-response. To facilitate this we created and manually curated the miRStress database, which describes the changes in miRNA levels following an array of stress types in eukaryotic cells. Here we describe this database and validate the miRStress tool for analysing miRNAs that are regulated by stress. To validate the database we performed a cross-species analysis to identify miRNAs that respond to radiation. The analysis tool confirms miR-21 and miR-34a as frequently deregulated in response to radiation, but also identifies novel candidates as potentially important players in this stress response, including miR-15b, miR-19b, and miR-106a. Similarly, we used the miRStress tool to analyse hypoxia-responsive miRNAs. The most frequently deregulated miRNAs were miR-210 and miR-21, as expected. Several other miRNAs were also found to be associated with hypoxia, including miR-181b, miR-26a/b, miR-106a, miR-213 and miR-192. Therefore the miRStress tool has identified miRNAs with hitherto unknown or under-appreciated roles in the response to specific stress types. The miRStress tool, which can be used to uncover new insight into the biological roles of miRNAs, and also has the potential to unearth potential biomarkers for therapeutic response, is freely available at http://mudshark.brookes.ac.uk/MirStress.
Collapse
Affiliation(s)
- Laura Ann Jacobs
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Findlay Bewicke-Copley
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Mark Graham Poolman
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Ryan Charles Pink
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Laura Ann Mulcahy
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Isabel Baker
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Ellie-May Beaman
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Travis Brooks
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Daniel Paul Caley
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - William Cowling
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | | | - Jessica Horsburgh
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Lottie Kenehan
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Emma Keyes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Daniel Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Davide Massa
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Adam McDermott-Rouse
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Priya Samuel
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Hannah Wood
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Munira Kadhim
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | | |
Collapse
|
18
|
Seo H, Kim W, Lee J, Youn B. Network-based approaches for anticancer therapy (Review). Int J Oncol 2013; 43:1737-44. [PMID: 24085339 DOI: 10.3892/ijo.2013.2114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/23/2013] [Indexed: 12/16/2022] Open
Abstract
Cancer is a complex disease resulting from alterations of multiple signaling networks. Cancer networks have been identified as scale-free networks and may contain a functionally important key player called a hub that is linked to a large number of interactors. Since a hub can serve as a biological marker in a given network, targeting the hub could be an effective strategy for enhancing the efficacy of cancer treatment. Chemotherapies and radiotherapies are generally used to treat tumors not amenable to resection, and target single or multiple molecules associated with hubs. However, these therapies may unexpectedly induce the resistance of cancer cells to drugs and radiation. Cancer cells can overcome therapy-induced damage via the activation of back-up signaling pathways and flexible modulation of affected networks. These activities are considered to be the main reasons for chemoresistance and radioresistance, and subsequent failure of cancer therapies. Much effort is required to identify the key molecules that control the modulation of signaling networks in response to drugs and radiation. Network-based therapy that affects network flexibility, including rewired network structures and hub molecules in these networks, could minimize the occurrence of side-effects and be a promising strategy for enhancing the therapeutic efficacy of cancer treatments. This review is intended to offer an overview of current research efforts including ones focused on cancer-associated complex networks, their modulation in response to cancer therapy, and further strategies targeting networks that may improve cancer treatment efficacy.
Collapse
Affiliation(s)
- Hyunjeong Seo
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | |
Collapse
|
19
|
Chaudhry MA, Omaruddin RA, Brumbaugh CD, Tariq MA, Pourmand N. Identification of radiation-induced microRNA transcriptome by next-generation massively parallel sequencing. JOURNAL OF RADIATION RESEARCH 2013; 54:808-822. [PMID: 23447695 PMCID: PMC3766286 DOI: 10.1093/jrr/rrt014] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 05/29/2023]
Abstract
Gene regulation in cells exposed to ionizing radiation (IR) occurs at the transcriptional and post-transcriptional levels. Recent studies have suggested that micro-RNA (miRNA) play a significant role in post-transcriptional gene regulation in irradiated cells. miRNA are RNA molecules 18-24 nucleotides in length that are involved in negatively regulating the stability or translation of target messenger RNA. Previous studies from our laboratory have shown that the expression of various miRNA is altered in IR-treated cells. In the present study we monitored genome-wide expression changes of miRNA transcriptome by massively parallel sequencing of human cells irradiated with X-rays. The baseline expression of 402 miRNA indicated a wide range of modulation without exposure to IR. Differences in the expression of many miRNA were observed in a time-dependent fashion following radiation treatment. The Short Time-series Expression Miner (STEM) clustering tool was used to characterize 190 miRNA to six statistically significant temporal expression profiles. miR-19b and miR-93 were induced and miR-222, miR-92a, and miR-941 were repressed after radiation treatment. miR-142-3p, miR-142-5p, miR-107, miR-106b, miR-191, miR-21, miR-26a, miR-182, miR-16, miR-146a, miR-22 and miR-30e exhibited two peaks of induction: one at 8 h and the other at 24 h post-irradiation. miR-378, miR-let-7a, miR-let-7g, miR-let-7f, miR-103b, miR-486-3p, miR-423-5p, miR-4448, miR-3607-5p, miR-20b, miR-130b, miR-155, miR-181, miR-30d and miR-378c were induced only at the 8-h time-point. This catalogue of the inventory of miRNA that are modulated as a response to radiation exposure will be useful for explaining the mechanisms of gene regulation under conditions of stress.
Collapse
Affiliation(s)
- M. Ahmad Chaudhry
- Department of Medical Laboratory and Radiation Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Romaica A. Omaruddin
- Department of Medical Laboratory and Radiation Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Christopher D. Brumbaugh
- Department of Biomolecular Engineering, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Muhammad A. Tariq
- Department of Biomolecular Engineering, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Nader Pourmand
- Department of Biomolecular Engineering, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
20
|
Expression pattern of small nucleolar RNA host genes and long non-coding RNA in X-rays-treated lymphoblastoid cells. Int J Mol Sci 2013; 14:9099-110. [PMID: 23698766 PMCID: PMC3676775 DOI: 10.3390/ijms14059099] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 01/02/2023] Open
Abstract
A wide variety of biological effects are induced in cells that are exposed to ionizing radiation. The expression changes of coding mRNA and non-coding micro-RNA have been implicated in irradiated cells. The involvement of other classes of non-coding RNAs (ncRNA), such as small nucleolar RNAs (snoRNAs), long ncRNAs (lncRNAs), and PIWI-interacting RNAs (piRNAs) in cells recovering from radiation-induced damage has not been examined. Thus, we investigated whether these ncRNA were undergoing changes in cells exposed to ionizing radiation. The modulation of ncRNAs expression was determined in human TK6 (p53 positive) and WTK1 (p53 negative) cells. The snoRNA host genes SNHG1, SNHG6, and SNHG11 were induced in TK6 cells. In WTK1 cells, SNHG1 was induced but SNHG6, and SNHG11 were repressed. SNHG7 was repressed in TK6 cells and was upregulated in WTK1 cells. The lncRNA MALAT1 and SOX2OT were induced in both TK6 and WTK1 cells and SRA1 was induced in TK6 cells only. Interestingly, the MIAT and PIWIL1 were not expressed in TK6 cells before or after the ionizing radiation treatment. The MIAT and PIWIL1 were upregulated in WTK1 cells. This data provides evidence that altered ncRNA expression is a part of the complex stress response operating in radiation-treated cells and this response depends on functional p53.
Collapse
|
21
|
Halimi M, Asghari SM, Sariri R, Moslemi D, Parsian H. Cellular Response to Ionizing Radiation: A MicroRNA Story. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2012; 1:178-84. [PMID: 24551775 PMCID: PMC3920513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/03/2013] [Indexed: 10/25/2022]
Abstract
MicroRNAs (miRNAs) represent a class of small non-coding RNA molecules that regulate gene expression at the post-transcriptional level. They play a crucial role in diverse cellular pathways. Ionizing radiation (IR) is one of the most important treatment protocols for patients that suffer from cancer and affects directly or indirectly cellular integration. Recently it has been discovered that microRNA-mediated gene regulation interferes with radio-related pathways in ionizing radiation. Here, we review the recent discoveries about miRNAs in cellular response to IR. Thoroughly understanding the mechanism of miRNAs in radiation response, it will be possible to design new strategies for improving radiotherapy efficiency and ultimately cancer treatment.
Collapse
Affiliation(s)
- Mohammad Halimi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - S. Mohsen Asghari
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Reyhaneh Sariri
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Dariush Moslemi
- Department of Radiation oncology, Babol University of Medical Sciences, Babol, Iran.
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran.,Department of Biochemistry and Biophysics, Babol University of Medical Sciences, Babol, Iran.,Corresponding author: Babol University of Medical Sciences, Ganjafrooz Ave, Babol, Iran.
| |
Collapse
|