1
|
Jaiswal S, Singh B, Dhingra I, Joshi A, Kodgire P. Bioremediation and bioscavenging for elimination of organophosphorus threats: An approach using enzymatic advancements. ENVIRONMENTAL RESEARCH 2024; 252:118888. [PMID: 38599448 DOI: 10.1016/j.envres.2024.118888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/06/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Organophosphorus compounds (OP) are highly toxic pesticides and nerve agents widely used in agriculture and chemical warfare. The extensive use of these chemicals has severe environmental implications, such as contamination of soil, water bodies, and food chains, thus endangering ecosystems and biodiversity. Plants absorb pesticide residues, which then enter the food chain and accumulate in the body fat of both humans and animals. Numerous human cases of OP poisoning have been linked to both acute and long-term exposure to these toxic OP compounds. These compounds inhibit the action of the acetylcholinesterase enzyme (AChE) by phosphorylation, which prevents the breakdown of acetylcholine (ACh) neurotransmitter into choline and acetate. Thus, it becomes vital to cleanse the environment from these chemicals utilizing various physical, chemical, and biological methods. Biological methods encompassing bioremediation using immobilized microbes and enzymes have emerged as environment-friendly and cost-effective approaches for pesticide removal. Cell/enzyme immobilized systems offer higher stability, reusability, and ease of product recovery, making them ideal tools for OP bioremediation. Interestingly, enzymatic bioscavengers (stoichiometric, pseudo-catalytic, and catalytic) play a vital role in detoxifying pesticides from the human body. Catalytic bioscavenging enzymes such as Organophosphate Hydrolase, Organophosphorus acid anhydrolase, and Paraoxonase 1 show high degradation efficiency within the animal body as well as in the environment. Moreover, these enzymes can also be employed to decontaminate pesticides from food, ensuring food safety and thus minimizing human exposure. This review aims to provide insights to potential collaborators in research organizations, government bodies, and industries to bring advancements in the field of bioremediation and bioscavenging technologies for the mitigation of OP-induced health hazards.
Collapse
Affiliation(s)
- Surbhi Jaiswal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Brijeshwar Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Isha Dhingra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India.
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India.
| |
Collapse
|
2
|
Qing R, Hao S, Smorodina E, Jin D, Zalevsky A, Zhang S. Protein Design: From the Aspect of Water Solubility and Stability. Chem Rev 2022; 122:14085-14179. [PMID: 35921495 PMCID: PMC9523718 DOI: 10.1021/acs.chemrev.1c00757] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Water solubility and structural stability are key merits for proteins defined by the primary sequence and 3D-conformation. Their manipulation represents important aspects of the protein design field that relies on the accurate placement of amino acids and molecular interactions, guided by underlying physiochemical principles. Emulated designer proteins with well-defined properties both fuel the knowledge-base for more precise computational design models and are used in various biomedical and nanotechnological applications. The continuous developments in protein science, increasing computing power, new algorithms, and characterization techniques provide sophisticated toolkits for solubility design beyond guess work. In this review, we summarize recent advances in the protein design field with respect to water solubility and structural stability. After introducing fundamental design rules, we discuss the transmembrane protein solubilization and de novo transmembrane protein design. Traditional strategies to enhance protein solubility and structural stability are introduced. The designs of stable protein complexes and high-order assemblies are covered. Computational methodologies behind these endeavors, including structure prediction programs, machine learning algorithms, and specialty software dedicated to the evaluation of protein solubility and aggregation, are discussed. The findings and opportunities for Cryo-EM are presented. This review provides an overview of significant progress and prospects in accurate protein design for solubility and stability.
Collapse
Affiliation(s)
- Rui Qing
- State
Key Laboratory of Microbial Metabolism, School of Life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shilei Hao
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Eva Smorodina
- Department
of Immunology, University of Oslo and Oslo
University Hospital, Oslo 0424, Norway
| | - David Jin
- Avalon GloboCare
Corp., Freehold, New Jersey 07728, United States
| | - Arthur Zalevsky
- Laboratory
of Bioinformatics Approaches in Combinatorial Chemistry and Biology, Shemyakin−Ovchinnikov Institute of Bioorganic
Chemistry RAS, Moscow 117997, Russia
| | - Shuguang Zhang
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Gałczyński K, Bełtowski J, Nowakowski Ł, Vasilevska D, Rechberger T, Semczuk A. Serum paraoxonase 1 activity and protein N-homocysteinylation in primary human endometrial cancer. Tumour Biol 2018; 40:1010428318797869. [PMID: 30178714 DOI: 10.1177/1010428318797869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Paraoxonase 1 plays an important role in protection from oxidative stress and also decomposes homocysteine thiolactone, the toxic metabolite of homocysteine. A limited number of reports evaluated the role of paraoxonase 1 in women affected by female genital tract neoplasms, including endometrial cancer. This study aimed to analyze the paraoxonase activity in the group of endometrial cancer patients (n = 48) who underwent primary surgery and to compare the data available with a well-matched control group (n = 30). Due to the role of paraoxonase 1 in the metabolism of homocysteine (Hcy) thiolactone, the amount of Hcy-thiolactone as well as total serum Hcy concentrations was also measured. Serum paraoxonase 1 activity toward synthetic substrates, paraoxon and phenyl acetate, in the study group was significantly lower compared to the control one. The mean paraoxonase 1 activity toward homocysteine thiolactone tended to be lower in the endometrial cancer group but this difference was not significant. There was no relationship between endometrial cancer and Q192R polymorphism of PON1 assessed by the dual substrate method. No differences in paraoxonase 1 activity between endometrial cancer subgroups according to clinico-pathological features were detected. Total serum homocysteine and protein-bound homocysteine thiolactone did not differ between control and cancer groups. In conclusion, reduced paraoxonase 1 activity suggests diminished important antioxidant mechanisms during the development of primary endometrial cancers in humans. PON1 Q192R polymorphism is not associated with the risk of endometrial cancer. Despite lower paraoxonase 1 activity, homocysteine concentration, and protein N-homocysteinylation in endometrial cancers do not differ from matched controls.
Collapse
Affiliation(s)
| | - Jerzy Bełtowski
- 2 Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Łukasz Nowakowski
- 1 IInd Department of Gynecology, Medical University of Lublin, Lublin, Poland
| | - Danuta Vasilevska
- 3 Centre of Obstetrics and Gynecology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Tomasz Rechberger
- 1 IInd Department of Gynecology, Medical University of Lublin, Lublin, Poland
| | - Andrzej Semczuk
- 1 IInd Department of Gynecology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
4
|
Li XC, Wang C, Mulchandani A, Ge X. Engineering Soluble Human Paraoxonase 2 for Quorum Quenching. ACS Chem Biol 2016; 11:3122-3131. [PMID: 27623343 DOI: 10.1021/acschembio.6b00527] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many pathogenic bacteria utilize quorum sensing (QS) systems to regulate the expression of their virulence genes and promote the formation of biofilm, which renders pathogens with extreme resistance to conventional antibiotic treatments. As a novel approach for attenuating antibiotic resistance and in turn fighting chronic infections, enzymatic inactivation of QS signaling molecules, such as N-acyl homoserine lactones (AHLs), holds great promises. Instead of using bacterial lactonases that can evoke immune response when administered, we focus on the human paraoxonase 2 (huPON2). However, insolubility when heterologously overexpressed hinders its application as anti-infection therapeutics. In this study, huPON2 was engineered for soluble expression with minimal introduction of foreign sequences. On the basis of structure modeling, degenerate linkers were exploited for the removal of hydrophobic helices of huPON2 without disrupting its folding structure and thus retaining its enzymatic function. High soluble expression levels were achieved with a yield of 76 mg of fully human PON2 variants per liter of culture media. Particularly, two clones, D2 and E3, showed significant quorum quenching (QQ) bioactivities and effectively impeded Pseudomonas aeruginosa swimming and swarming motilities, signs of an early stage of biofilm formation. In addition, by correlating QQ with luminescence signal readouts, quantitative analysis of QQ toward natural or non-natural AHL-regulator combinations suggested that D2 and E3 exhibited strong lactone hydrolysis activities toward five AHLs of different side chain lengths and modifications widely utilized by a variety of biomedically important pathogens.
Collapse
Affiliation(s)
- Xin Cathy Li
- Department of Biochemistry and Molecular Biology, ‡Department of Chemical
and Environmental
Engineering, University of California Riverside, 900 University Ave., Riverside, California 92521, United States
| | - Christopher Wang
- Department of Biochemistry and Molecular Biology, ‡Department of Chemical
and Environmental
Engineering, University of California Riverside, 900 University Ave., Riverside, California 92521, United States
| | - Ashok Mulchandani
- Department of Biochemistry and Molecular Biology, ‡Department of Chemical
and Environmental
Engineering, University of California Riverside, 900 University Ave., Riverside, California 92521, United States
| | - Xin Ge
- Department of Biochemistry and Molecular Biology, ‡Department of Chemical
and Environmental
Engineering, University of California Riverside, 900 University Ave., Riverside, California 92521, United States
| |
Collapse
|
5
|
Escribano D, Tvarijonaviciute A, Tecles F, Cerón JJ. Serum paraoxonase type-1 activity in pigs: Assay validation and evolution after an induced experimental inflammation. Vet Immunol Immunopathol 2015; 163:210-5. [DOI: 10.1016/j.vetimm.2014.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/24/2014] [Accepted: 12/03/2014] [Indexed: 01/07/2023]
|
6
|
Human paraoxonase 1 as a pharmacologic agent: limitations and perspectives. ScientificWorldJournal 2014; 2014:854391. [PMID: 25386619 PMCID: PMC4217237 DOI: 10.1155/2014/854391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 08/13/2014] [Accepted: 08/27/2014] [Indexed: 01/02/2023] Open
Abstract
Human PON1 (h-PON1) is a multifaceted enzyme and can hydrolyze (and inactivate) a wide range of substrates. The enzyme shows anti-inflammatory, antioxidative, antiatherogenic, ant-diabetic, antimicrobial, and organophosphate (OP)-detoxifying properties. However, there are certain limitations regarding large-scale production and use of h-PON1 as a therapeutic candidate. These include difficulties in producing recombinant h-PON1 (rh-PON1) using microbial expression system, low hydrolytic activity of wild-type h-PON1 towards certain substrates, and low storage stability of the purified enzyme. This review summarizes the work done in our laboratory to address these limitations. Our results show that (a) optimized polynucleotide sequence encoding rh-PON1 can express the protein in an active form in E. coli and can be used to generate variant of the enzyme having enhanced hydrolytic activity, (b) in vitro refolding of rh-PON1 enzyme can dramatically increase the yield of an active enzyme, (c) common excipients can be used to stabilize purified rh-PON1 enzyme when stored under different storage conditions, and (d) variants of rh-PON1 enzyme impart significant protection against OP-poisoning in human blood (ex vivo) and mouse (in vivo) model of OP-poisoning. The rh-PON1 variants and their process of production discussed here will help to develop h-PON1 as a therapeutic candidate.
Collapse
|
7
|
Kim DS, Marsillach J, Furlong CE, Jarvik GP. Pharmacogenetics of paraoxonase activity: elucidating the role of high-density lipoprotein in disease. Pharmacogenomics 2014; 14:1495-515. [PMID: 24024900 DOI: 10.2217/pgs.13.147] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PON1 is a key component of high-density lipoproteins (HDLs) and is at least partially responsible for HDL's antioxidant/atheroprotective properties. PON1 is also associated with numerous human diseases, including cardiovascular disease, Parkinson's disease and cancer. In addition, PON1 metabolizes a broad variety of substrates, including toxic organophosphorous compounds, statin adducts, glucocorticoids, the likely atherogenic L-homocysteine thiolactone and the quorum-sensing factor of Pseudomonas aeruginosa. Numerous cardiovascular and antidiabetic pharmacologic agents, dietary macronutrients, lifestyle factors and antioxidant supplements affect PON1 expression and enzyme activity levels. Owing to the importance of PON1 to HDL function and its individual association with diverse human diseases, pharmacogenomic interactions between PON1 and the various factors that alter its expression and activity may represent an important therapeutic target for future investigation.
Collapse
Affiliation(s)
- Daniel Seung Kim
- Departments of Genome Sciences & Medicine (Division of Medical Genetics), University of Washington School of Medicine, Box 357720, University of Washington, Seattle, WA 98195-7720, USA
| | | | | | | |
Collapse
|
8
|
Bajaj P, Tripathy RK, Aggarwal G, Pande AH. Characterization of human paraoxonase 1 variants suggest that His residues at 115 and 134 positions are not always needed for the lactonase/arylesterase activities of the enzyme. Protein Sci 2013; 22:1799-807. [PMID: 24123308 DOI: 10.1002/pro.2380] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 12/12/2022]
Abstract
Human paraoxonase 1 (h-PON1) hydrolyzes variety of substrates and the hydrolytic activities of enzyme can be broadly grouped into three categories; arylesterase, phosphotriesterase, and lactonase. Current models of the catalytic mechanism of h-PON1 suggest that catalytic residues H115 and H134 mediate the lactonase and arylesterase activities of the enzyme. H-PON1 is a strong candidate for the development of catalytic bioscavenger for organophosphate poisoning in humans. Recently, Gupta et al. (Nat. Chem. Biol. 2011. 7, 120) identified amino acid substitutions that significantly increased the activity of chimeric-PON1 variant (4E9) against some organophosphate nerve agents. In this study we have examined the effect of these (L69G/S111T/H115W/H134R/R192K/F222S/T332S) and other substitutions (H115W/H134R and H115W/H134R/R192K) on the hydrolytic activities of recombinant h-PON1 (rh-PON1) variants. Our results show that the substitutions resulted in a significant increase in the organophosphatase activity of all the three variants of rh-PON1 enzyme while had a variable effect on the lactonase/arylesterase activities. The results suggest that H residues at positions 115 and 134 are not always needed for the lactonase/arylesterase activities of h-PON1 and force a reconsideration of the current model(s) of the catalytic mechanism of h-PON1.
Collapse
Affiliation(s)
- Priyanka Bajaj
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar (Mohali) 160062, Punjab, India
| | | | | | | |
Collapse
|
9
|
Hodgins SM, Kasten SA, Harrison J, Otto TC, Oliver ZP, Rezk P, Reeves TE, Chilukuri N, Cerasoli DM. Assessing protection against OP pesticides and nerve agents provided by wild-type HuPON1 purified from Trichoplusia ni larvae or induced via adenoviral infection. Chem Biol Interact 2013; 203:177-80. [DOI: 10.1016/j.cbi.2012.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/04/2012] [Accepted: 10/09/2012] [Indexed: 11/28/2022]
|