1
|
Yu C, Wang F, Zhang X, Bai C, Lv G. The possible mechanisms of trans fatty acid effects on digestive disorders based on computational toxicology: a case study of elaidic acid. Toxicol Mech Methods 2025:1-12. [PMID: 40357882 DOI: 10.1080/15376516.2025.2503873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/30/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025]
Abstract
Trans fatty acids (TFAs) are potential health risk factors generated during food processing, and their mechanisms of association with digestive diseases remain incompletely elucidated. This study focused on elaidic acid (EA), integrating computational toxicology and molecular docking to systematically analyze its molecular mechanisms in regulating functional dyspepsia (FD), gastric cancer (GC), nonalcoholic fatty liver disease (NAFLD), and colorectal cancer (CRC) through multi-target networks. Protein Interaction Networks were constructed by screening EA and disease-intersecting targets, enriching and analyzing key pathways, and validating the binding ability of core targets. Results showed that EA shared 22, 67, 56, and 72 common targets with FD, GC, NAFLD, and CRC, respectively. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated that EA acts through pathways including lipid metabolism dysregulation, inflammatory response, and chemical carcinogenesis-receptor activation. Molecular docking confirmed binding affinities between EA and core targets. The present study suggests that EA may promote the progression of digestive diseases through a multi-target-multi-pathway model, providing a new perspective for the study of the toxicity mechanism of TFA and food safety prevention and control.
Collapse
Affiliation(s)
- Chenyang Yu
- The Second School of Clinical Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Fule Wang
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xinfang Zhang
- The Second School of Clinical Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Changchuan Bai
- Department of Traditional Chinese Medicine, Dalian Hospital of Traditional Chinese Medicine, Dalian, Liaoning, China
| | - Guanhua Lv
- Department of Spleen, Gastroenterology and Hepatology, The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Duan H, Gao L, Asikaer A, Liu L, Huang K, Shen Y. Prognostic Model Construction of Disulfidptosis-Related Genes and Targeted Anticancer Drug Research in Pancreatic Cancer. Mol Biotechnol 2025; 67:1463-1482. [PMID: 38575817 DOI: 10.1007/s12033-024-01131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/19/2024] [Indexed: 04/06/2024]
Abstract
Pancreatic cancer stands as one of the most lethal malignancies, characterized by delayed diagnosis, high mortality rates, limited treatment efficacy, and poor prognosis. Disulfidptosis, a recently unveiled modality of cell demise induced by disulfide stress, has emerged as a critical player intricately associated with the onset and progression of various cancer types. It has emerged as a promising candidate biomarker for cancer diagnosis, prognosis assessment, and treatment strategies. In this study, we have effectively established a prognostic risk model for pancreatic cancer by incorporating multiple differentially expressed long non-coding RNAs (DElncRNAs) closely linked to disulfide-driven cell death. Our investigation delved into the nuanced relationship between the DElncRNA-based predictive model for disulfide-driven cell death and the therapeutic responses to anticancer agents. Our findings illuminate that the high-risk subgroup exhibits heightened susceptibility to the small molecule compound AZD1208, positioning it as a prospective therapeutic agent for pancreatic cancer. Finally, we have elucidated the underlying mechanistic potential of AZD1208 in ameliorating pancreatic cancer through its targeted inhibition of the peroxisome proliferator-activated receptor-γ (PPARG) protein, employing an array of comprehensive analytical methods, including molecular docking and molecular dynamics (MD) simulations. This study explores disulfidptosis-related genes, paving the way for the development of targeted therapies for pancreatic cancer and emphasizing their significance in the field of oncology. Furthermore, through computational biology approaches, the drug AZD1208 was identified as a potential treatment targeting the PPARG protein for pancreatic cancer. This discovery opens new avenues for exploring targets and screening drugs for pancreatic cancer.
Collapse
Affiliation(s)
- Hongtao Duan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Li Gao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Aiminuer Asikaer
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Lingzhi Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Kuilong Huang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Yan Shen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China.
| |
Collapse
|
3
|
Dharamsaktu D, Bharti JN, Elhence P, Rao M, Vishnoi JR, Soni SC, Rustagi N. Expression of Peroxisome Proliferator-Activated Receptor γ in Human Colorectal Carcinoma and Its Correlation with Clinicopathological Characteristics. Indian J Surg Oncol 2025; 16:685-690. [PMID: 40337037 PMCID: PMC12052650 DOI: 10.1007/s13193-024-02122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/18/2024] [Indexed: 05/09/2025] Open
Abstract
Peroxisome proliferator activator receptor γ (PPAR γ) activation may be responsible for inhibiting the growth of cancer cell lines, and drugs that activate PPAR γ may have therapeutic benefits. Therefore, a mutation in peroxisome proliferator activator receptor γ can produce carcinogenesis. This present study aims to assess the expression of PPAR γ by immunohistochemistry in colorectal carcinoma and its correlation with clinicopathological characteristics. Most of the cases were elderly males, and pelvic pain and bleeding were the predominant symptoms. Colon carcinoma was more common than rectal carcinoma. The adenocarcinoma NOS and mucinous carcinoma were the common histological types, and 40% cases showed lymph node metastasis. The PPAR γ expression was present in 61.8% of the patients, and it showed a significant correlation with lymph node metastasis and tumor location (p = 0.05 and p = 0.04). The overall survival was slightly higher but non-significant in patients with positive PPAR γ expression than negative ones (p = 0.7). The multivariate analysis revealed that nodal metastasis, lymphovascular invasion, and tumor-infiltrating lymphocytes were the independent prognostic factors for colorectal carcinoma. The PPAR γ expression showed a significant correlation with lymph node metastasis and tumor location. Thus, we hypothesized that the PPAR γ expression might affect the overall survival in colorectal cancer. However, more studies with larger sample size are required to understand the nature of colorectal cancer expressing PPAR γ which might benefit the patient therapeutically in future.
Collapse
Affiliation(s)
- Deepsikha Dharamsaktu
- Department of Pathology, All India Institute of Medical Science, Jodhpur, Rajasthan India
| | - Jyotsna Naresh Bharti
- Department of Pathology, All India Institute of Medical Sciences, Mangalagiri, Guntur, India
| | - Poonam Elhence
- Department of Pathology, All India Institute of Medical Science, Jodhpur, Rajasthan India
| | - Meenakshi Rao
- Department of Pathology, All India Institute of Medical Science, Jodhpur, Rajasthan India
| | - Jeewan Ram Vishnoi
- Department of Surgical Oncology, All India Institute of Medical Science, Jodhpur, Rajasthan India
| | - Subash Chandra Soni
- Department of Surgical Gastroenterology, All India Institute of Medical Science, Jodhpur, Rajasthan India
| | - Neeti Rustagi
- Department of Community Medicine and Family Medicine, All India Institute of Medical Science, Jodhpur, Rajasthan India
| |
Collapse
|
4
|
Babaeenezhad E, Khosravi P, Moradi Sarabi M. Dietary polyunsaturated fatty acids affect PPARγ promoter methylation status and regulate the PPARγ/COX2 pathway in some colorectal cancer cell lines. GENES & NUTRITION 2025; 20:2. [PMID: 40038577 DOI: 10.1186/s12263-025-00764-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Promoter methylation silencing of peroxisome proliferator-activated receptor gamma (PPARγ) and dysregulation of the PPARγ/COX2 axis contribute to colorectal cancer (CRC) pathogenesis. This study investigated for the first time the effects of dietary polyunsaturated fatty acids (PUFAs) on promoter methylation of PPARγ and the PPARγ/COX2 axis in five CRC cell lines. METHODS Five CRC cell lines (SW742, HCT116, Caco2, LS180, and HT29/219) were treated with 100 µM of eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) or linoleic acid (LA). The methylation patterns of the four regions within the PPARγ promoter were determined using methylation-specific PCR (MSP). Additionally, the mRNA expression levels of PPARγ and COX2 were examined using RT-qPCR. RESULTS Our results showed that M3 segment within the PPARγ promoter was hemimethylated in SW742 cells, whereas other cell lines remained unmethylated in this region. The M4 region was hemimethylated in all the CRC cell lines. Of all PUFAs, DHA demethylated the M3 region of the PPARγ promoter in SW742 cells and the M4 region in Caco2 cells. Functionally, these changes were accompanied by significant upregulation of PPARγ in SW742 (9.22-fold; p = 0.01) and Caco2 cells (8.87-fold; p = 0.04). Additionally, COX2 expression was significantly downregulated in all CRC cell lines after exposure to PUFAs (p < 0.05). CONCLUSIONS This study demonstrated that PUFAs, particularly DHA, altered PPARγ promoter methylation and expression, as well as modulated the PPARγ/COX2 axis in CRC cells in a cell type-dependent manner. DHA was more effective than the other PUFAs in regulating PPARγ promoter methylation. Our results highlight the potential clinical use of PUFAs in CRC treatment.
Collapse
Affiliation(s)
- Esmaeel Babaeenezhad
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department Clinical Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Peyman Khosravi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department Clinical Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mostafa Moradi Sarabi
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
- Department Clinical Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
5
|
Zheng X, Jing J, Yuan M, Liu N, Song Y. Contribution of gene polymorphisms on 3p25 to salivary gland carcinoma, ameloblastoma, and odontogenic keratocyst in the Chinese Han population. Oral Surg Oral Med Oral Pathol Oral Radiol 2023; 136:220-230. [PMID: 37495273 DOI: 10.1016/j.oooo.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/30/2023] [Accepted: 05/10/2023] [Indexed: 07/28/2023]
Abstract
OBJECTIVE This study aimed to investigate the contribution of gene polymorphisms in 3p25 to salivary gland carcinoma (SGC), ameloblastoma (AM), and odontogenic keratocyst (OKC) in the Chinese Han population. STUDY DESIGN Sixteen tag-single nucleotide polymorphisms (SNPs) within 5 genes (SYN2, TIMP4, PPARG, RAF1, and IQSEC1) in 3p25 were genotyped in 411 individuals with or without SGC, AM, and OKC. Genotype, clinical phenotype, and bioinformatics analyses were performed to evaluate the function of candidate SNPs. RESULTS SYN2-rs3773364, TIMP4-rs3755724, PPARG-rs10865710, and PPARG-rs1175544 were related to decreased SGC susceptibility, whereas IQSEC1-rs2600322 and IQSEC1-rs2686742 decreased and increased AM risk, respectively. Stratification analysis revealed that the significance of the identified SNPs was stronger in females or individuals younger than 46 years in SGC. PPARG-rs10865710 and PPARG-rs1175544 were associated with lower lymph node metastasis. SYN2-rs3773364 and PPARG-rs1175544 were associated with favorable SGC patient survival. Functional assessments linked PPARG-rs1175544 to PPARG expression regulation. Linkage disequilibrium analysis revealed a haplotype (SYN2-rs3773364-A, TIMP4-rs3817004-A, and TIMP4-rs3755724-C) associated with decreased susceptibility to SGC. Generalized multifactor dimensionality reduction analysis indicated the gene-gene interactions among IQSEC1, TIMP4, and PPARG in SGC, AM, and OKC progression. CONCLUSIONS These variants play important roles in the progression of SGC, AM, and OKC in the Chinese Han population and may be considered biomarkers for early diagnosis and prognosis prediction.
Collapse
Affiliation(s)
- Xueqing Zheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiaojiao Jing
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Pediatric Dentistry, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Minyan Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Nianke Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaling Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Babaeenezhad E, Moradi Sarabi M, Rajabibazl M, Oraee-Yazdani S, Karima S. Global and Regional DNA methylation silencing of PPARγ Associated with Glioblastoma Multiforme Pathogenesis. Mol Biol Rep 2023; 50:589-597. [PMID: 36355265 DOI: 10.1007/s11033-022-08051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND The relationship between peroxisome proliferator-activated receptor gamma (PPARγ) expression level and epigenetic modifications occurring in glioblastoma multiforme (GBM) pathogenesis is largely unknown. Herein, we examine the association of PPARγ expression with its promoter and genomic global DNA methylation status, as well as DNA methyltransferases (DNMTs) gene expression in GBM patients. METHODS We examined the patterns of promoter methylation and PPARγ expression in 26 GBM tissues and 13 adjacent non-tumor tissues by methylation-specific PCR (MSP), real-time PCR, and ELISA, respectively. Also, we examined the genomic global 5-methyl cytosine levels and DNMTs gene expression using ELISA and real-time PCR methods, respectively. RESULTS We found that hypermethylation on a specific region of the PPARγ promoter is significantly associated with the downregulation of the PPARγ gene and protein level in GBM patients. Interestingly, the amount of 5-methyl cytosine level was significantly reduced in GBM patients and positively correlated with PPARγ protein expression. Furthermore, the expression level of DNMT1, DNMT3A, and 3B were upregulated in GBM patients and the average expression level of all three DNMTs was positively correlated with tumor area. Also, we found that tumors from cortical regions exhibited a higher global DNA hypomethylation and PPARγ hypermethylation was related to the increase in GBM risk. CONCLUSION Our study demonstrated that global DNA methylation and PPARγ epigenetic silencing is associated with the GBM risk. Our data provide a novel molecular mechanistic insight into epigenetic silencing of PPARγ in GBM patients that may be relevant as a key tumor marker for GBM pathogenesis.
Collapse
Affiliation(s)
- Esmaeel Babaeenezhad
- Department of Clinical Biochemistry, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Moradi Sarabi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran. .,Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeed Oraee-Yazdani
- Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Chatziantoniou A, Zaravinos A. Signatures of Co-Deregulated Genes and Their Transcriptional Regulators in Lung Cancer. Int J Mol Sci 2022; 23:10933. [PMID: 36142846 PMCID: PMC9504879 DOI: 10.3390/ijms231810933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
Despite the significant progress made towards comprehending the deregulated signatures in lung cancer, these vary from study to study. We reanalyzed 25 studies from the Gene Expression Omnibus (GEO) to detect and annotate co-deregulated signatures in lung cancer and in single-gene or single-drug perturbation experiments. We aimed to decipher the networks that these co-deregulated genes (co-DEGs) form along with their upstream regulators. Differential expression and upstream regulators were computed using Characteristic Direction and Systems Biology tools, including GEO2Enrichr and X2K. Co-deregulated gene expression profiles were further validated across different molecular and immune subtypes in lung adenocarcinoma (TCGA-LUAD) and lung adenocarcinoma (TCGA-LUSC) datasets, as well as using immunohistochemistry data from the Human Protein Atlas, before being subjected to subsequent GO and KEGG enrichment analysis. The functional alterations of the co-upregulated genes in lung cancer were mostly related to immune response regulating the cell surface signaling pathway, in contrast to the co-downregulated genes, which were related to S-nitrosylation. Networks of hub proteins across the co-DEGs consisted of overlapping TFs (SOX2, MYC, KAT2A) and kinases (MAPK14, CSNK2A1 and CDKs). Furthermore, using Connectivity Map we highlighted putative repurposing drugs, including valproic acid, betonicine and astemizole. Similarly, we analyzed the co-DEG signatures in single-gene and single-drug perturbation experiments in lung cancer cell lines. In summary, we identified critical co-DEGs in lung cancer providing an innovative framework for their potential use in developing personalized therapeutic strategies.
Collapse
Affiliation(s)
- Angeliki Chatziantoniou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| |
Collapse
|
8
|
Saliani M, Jalal R, Javadmanesh A. Differential expression analysis of genes and long non-coding RNAs associated with KRAS mutation in colorectal cancer cells. Sci Rep 2022; 12:7965. [PMID: 35562390 PMCID: PMC9106686 DOI: 10.1038/s41598-022-11697-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/13/2022] [Indexed: 02/07/2023] Open
Abstract
KRAS mutation is responsible for 40–50% of colorectal cancers (CRCs). RNA-seq data and bioinformatics methods were used to analyze the transcriptional profiles of KRAS mutant (mtKRAS) in comparison with the wild-type (wtKRAS) cell lines, followed by in-silico and quantitative real-time PCR (qPCR) validations. Gene set enrichment analysis showed overrepresentation of KRAS signaling as an oncogenic signature in mtKRAS. Gene ontology and pathway analyses on 600 differentially-expressed genes (DEGs) indicated their major involvement in the cancer-associated signal transduction pathways. Significant hub genes were identified through analyzing PPI network, with the highest node degree for PTPRC. The evaluation of the interaction between co-expressed DEGs and lncRNAs revealed 12 differentially-expressed lncRNAs which potentially regulate the genes majorly enriched in Rap1 and RAS signaling pathways. The results of the qPCR showed the overexpression of PPARG and PTGS2, and downregulation of PTPRC in mtKRAS cells compared to the wtKRAS one, which confirming the outputs of RNA-seq analysis. Further, significant upregualtion of miR-23b was observed in wtKRAS cells. The comparison between the expression level of hub genes and TFs with expression data of CRC tissue samples deposited in TCGA databank confirmed them as distinct biomarkers for the discrimination of normal and tumor patient samples. Survival analysis revealed the significant prognostic value for some of the hub genes, TFs, and lncRNAs. The results of the present study can extend the vision on the molecular mechanisms involved in KRAS-driven CRC pathogenesis.
Collapse
Affiliation(s)
- Mahsa Saliani
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | - Razieh Jalal
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran. .,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.
| | - Ali Javadmanesh
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.,Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| |
Collapse
|
9
|
de Assis JV, Coutinho LA, Oyeyemi IT, Oyeyemi OT, Grenfell RFEQ. Diagnostic and therapeutic biomarkers in colorectal cancer: a review. Am J Cancer Res 2022; 12:661-680. [PMID: 35261794 PMCID: PMC8900002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023] Open
Abstract
Colorectal cancer (CRC) is a public health concern and the second most common type of cancer among men and women causing a significant mortality. Biomarkers closely linked to the disease morbidity could holds potential as diagnostic and/or prognostic biomarker for the disease. This review provides an overview of recent advances in the search for colorectal cancer biomarkers through genomics and proteomics according to clinical function and application. Specifically, a number of biomarkers were identified and discussed. Emphasis was placed on their clinical applications relative to the diagnosis and prognosis of CRC. The discovery of more sensitive and specific markers for CRC is an urgent need, and the study of molecular targets is extremely important in this process, as they will allow for a better understanding of colorectal carcinogenesis, identification and validation of potential genetic signatures.
Collapse
Affiliation(s)
- Jéssica Vieira de Assis
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
| | - Lucélia Antunes Coutinho
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
| | | | - Oyetunde Timothy Oyeyemi
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
- Department of Biological Sciences, University of Medical SciencesOndo, Ondo State, Nigeria
| | - Rafaella Fortini e Queiroz Grenfell
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
- Department of Infectious Diseases, College of Veterinary Medicine, University of GeorgiaAthens, Georgia, United States of America
| |
Collapse
|
10
|
Saxena A, Mathur N, Tiwari P, Mathur SK. Whole transcriptome RNA-seq reveals key regulatory factors involved in type 2 diabetes pathology in peripheral fat of Asian Indians. Sci Rep 2021; 11:10632. [PMID: 34017037 PMCID: PMC8137704 DOI: 10.1038/s41598-021-90148-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/06/2021] [Indexed: 01/04/2023] Open
Abstract
The prevalence of Type 2 Diabetes has reached an epidemic proportion particularly in south Asian countries. We have earlier shown that the anatomical fat distribution, termed 'thin fat phenotype' in this population indeed plays a major role for their T2D-predisposition it is indeed the sick fat or adiposopathy, which is the root cause of metabolic syndrome and diabetes and affects both-peripheral, as well as visceral adipose tissue compartments. In present study, we have attempted to unravel the altered regulatory mechanisms at the level of transcription factors, and miRNAs those may likely accounts to T2D pathophysiology in femoral subcutaneous adipose tissue. We prioritized transcription factors and protein kinases as likely upstream regulators of obtained differentially expressed genes in this RNA-seq study. An inferred network of these upstream regulators was then derived and the role of TFs and miRNAs in T2D pathophysiology was explored. In conclusions, this RNS-Seq study finds that peripheral subcutaneous adipose tissue among Asian Indians show pathology characterized by altered lipid, glucose and protein metabolism, adipogenesis defect and inflammation. A network of regulatory transcription factors, protein kinases and microRNAs have been imputed which converge on the process of adipogenesis. As the majority of these genes also showed altered expression in diabetics and some of them are also circulatory, therefore they deserve further investigation for potential clinical diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Aditya Saxena
- Department of Computer Engineering and Applications, Institute of Engineering and Technology, GLA University, Mathura, 281406, India
| | - Nitish Mathur
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur, 302004, India
| | - Pradeep Tiwari
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur, 302004, India
- Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur, 303007, India
| | - Sandeep Kumar Mathur
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur, 302004, India.
| |
Collapse
|
11
|
AbdelMassih AF, Ashraf A, Ismail HA, AbdelAzeim B, Barsoum IH, Girgis S, Afdal G, AbdelAzeim N, Afdal P, Menshawey E, Menshawey R, Badr K, Arsanyous M. Effect of pioglitazone, as antidiabetic agent, on atheroma regression in type 2 diabetic patients: a systematic review and meta-analysis. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-021-00096-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Pioglitazone’s role in the induction of atheroma regression in diabetics was suggested by several RCT. The aim of our study was to evaluate this role through a systematic review of all RCT conducted on this subject.
Methods
Literature was searched for relevant studies. We included all RCT that compared pioglitazone versus other antidiabetic agents. Mean differences of either AV or CIMT, HbA1C, HDL, and LDL between the two groups were used to assess the effect of pioglitazone versus alternative therapies.
Results
Six RCT were included with a total of 1180 patients. Pioglitazone was significantly superior to glimepiride and gliclazide in improving IMT. No significant difference was observed in overall AV, HbA1C, and LDL.
Conclusion
The latter findings confirm that anti-atheroma action of pioglitazone is not achieved through its antiglycemic or antidyslipidemia effects, but probably through a DNA-mediated effect, and may lead to its repurposing for reversal of organ fibrosis.
Collapse
|
12
|
Caioni G, Viscido A, d’Angelo M, Panella G, Castelli V, Merola C, Frieri G, Latella G, Cimini A, Benedetti E. Inflammatory Bowel Disease: New Insights into the Interplay between Environmental Factors and PPARγ. Int J Mol Sci 2021; 22:985. [PMID: 33498177 PMCID: PMC7863964 DOI: 10.3390/ijms22030985] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
The pathophysiological processes of inflammatory bowel diseases (IBDs), i.e., Crohn's disease (CD) and ulcerative colitis (UC), are still not completely understood. The exact etiology remains unknown, but it is well established that the pathogenesis of the inflammatory lesions is due to a dysregulation of the gut immune system resulting in over-production of pro-inflammatory cytokines. Increasing evidence underlines the involvement of both environmental and genetic factors. Regarding the environment, the microbiota seems to play a crucial role. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that exert pleiotropic effects on glucose homeostasis, lipid metabolism, inflammatory/immune processes, cell proliferation, and fibrosis. Furthermore, PPARs modulate interactions with several environmental factors, including microbiota. A significantly impaired PPARγ expression was observed in UC patients' colonic epithelial cells, suggesting that the disruption of PPARγ signaling may represent a critical step of the IBD pathogenesis. This paper will focus on the role of PPARγ in the interaction between environmental factors and IBD, and it will analyze the most suitable in vitro and in vivo models available to better study these relationships.
Collapse
Affiliation(s)
- Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Angelo Viscido
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Gloria Panella
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy;
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Carmine Merola
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy;
| | - Giuseppe Frieri
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| |
Collapse
|
13
|
Wilson HE, Stanton DA, Rellick S, Geldenhuys W, Pistilli EE. Breast cancer-associated skeletal muscle mitochondrial dysfunction and lipid accumulation is reversed by PPARG. Am J Physiol Cell Physiol 2021; 320:C577-C590. [PMID: 33439777 DOI: 10.1152/ajpcell.00264.2020] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The peroxisome proliferator-activated receptors (PPARs) have been previously implicated in the pathophysiology of skeletal muscle dysfunction in women with breast cancer (BC) and animal models of BC. This study investigated alterations induced in skeletal muscle by BC-derived factors in an in vitro conditioned media (CM) system and tested the hypothesis that BC cells secrete a factor that represses PPAR-γ (PPARG) expression and its transcriptional activity, leading to downregulation of PPARG target genes involved in mitochondrial function and other metabolic pathways. We found that BC-derived factors repress PPAR-mediated transcriptional activity without altering protein expression of PPARG. Furthermore, we show that BC-derived factors induce significant alterations in skeletal muscle mitochondrial function and lipid accumulation, which are rescued with exogenous expression of PPARG. The PPARG agonist drug rosiglitazone was able to rescue BC-induced lipid accumulation but did not rescue effects of BC-derived factors on PPAR-mediated transcription or mitochondrial function. These data suggest that BC-derived factors alter lipid accumulation and mitochondrial function via different mechanisms that are both related to PPARG signaling, with mitochondrial dysfunction likely being altered via repression of PPAR-mediated transcription, and lipid accumulation being altered via transcription-independent functions of PPARG.
Collapse
Affiliation(s)
- Hannah E Wilson
- MD/PhD Medical Scientist Program, West Virginia University School of Medicine, Morgantown, West Virginia.,Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - David A Stanton
- Department of Human Performance, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Stephanie Rellick
- Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Werner Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, West Virginia
| | - Emidio E Pistilli
- Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Human Performance, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia.,West Virginia Clinical and Translational Sciences Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
14
|
Biondo LA, Teixeira AAS, de O. S. Ferreira KC, Neto JCR. Pharmacological Strategies for Insulin Sensitivity in Obesity and Cancer: Thiazolidinediones and Metformin. Curr Pharm Des 2020; 26:932-945. [PMID: 31969093 DOI: 10.2174/1381612826666200122124116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/21/2019] [Indexed: 12/19/2022]
Abstract
Background:
Chronic diseases, such as obesity and cancer, have high prevalence rates. Both diseases
have hyperinsulinemia, hyperglycemia, high levels of IGF-1 and inflammatory cytokines in common. Therefore,
these can be considered triggers for cancer development and growth. In addition, low-grade inflammation that
modulates the activation of immune cells, cellular metabolism, and production of cytokines and chemokines are
common in obesity, cancer, and insulin resistance. Pharmacological strategies are necessary when a change in
lifestyle does not improve glycemic homeostasis. In this regard, thiazolidinediones (TZD) possess multiple molecular
targets and regulate PPARγ in obesity and cancer related to insulin resistance, while metformin acts
through the AMPK pathway.
Objective:
The aim of this study was to review TZD and metformin as pharmacological treatments for insulin
resistance associated with obesity and cancer.
Conclusions:
Thiazolidinediones restored adiponectin secretion and leptin sensitivity, reduced lipid droplets in
hepatocytes and orexigen peptides in the hypothalamus. In cancer cells, TZD reduced proliferation, production of
reactive oxygen species, and inflammation by acting through the mTOR and NFκB pathways. Metformin has
similar effects, though these are AMPK-dependent. In addition, both drugs can be efficient against certain side
effects caused by chemotherapy.
Collapse
Affiliation(s)
- Luana A. Biondo
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Alexandre A. S. Teixeira
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Karen C. de O. S. Ferreira
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Jose C. R. Neto
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
15
|
Yaghoubizadeh M, Pishkar L, Basati G. Aberrant Expression of Peroxisome Proliferator-Activated Receptors in Colorectal Cancer and Their Association with Cancer Progression and Prognosis. Gastrointest Tumors 2020; 7:11-20. [PMID: 32399461 PMCID: PMC7206611 DOI: 10.1159/000503995] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Peroxisome proliferator-activated receptors (PPARs), PPARα, PPARγ, and PPARδ, are nuclear ligand-activated transcription factors which presumably contribute to a broad range of pathophysiological processes, such as tumorigenesis. Nevertheless, their exact role as tumor suppressors or promoters is not straightforward in colorectal cancer (CRC). Therefore, expression values of these PPARs and their relation with tumor progression and prognosis were examined in CRC patients. METHODS In this work, the relative expression values of the PPARs were measured by real-time polymerase chain reaction in 100 CRC tumor tissues paired with adjacent normal tissues. After that, the association between relative expression values of the PPARs in tumor tissues and the cancer progression-related clinicopathological characteristics as well as overall survival of patients were assessed. RESULTS While PPARα and PPARδ seemed to be overexpressed, PPARγ was suppressed in CRC tumor tissues compared with paired adjacent normal tissues (p = 0.0001). The relative expressions of PPARα and PPARδ were negatively associated with tumor size, tumor grade, TNM stage, metastasis, lymphatic invasion, and decreased overall survival time (p < 0.05). The same associations, but in reverse direction, were found for PPARγ. CONCLUSIONS It was found that PPARα and PPARδ were overexpressed while PPARγ was suppressed in CRC tumor tissues, and these deregulations are associated with cancer progression and poor prognosis.
Collapse
Affiliation(s)
- Musa Yaghoubizadeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Leila Pishkar
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Gholam Basati
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
- *Gholam Basati, Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Banganjab Street, Ilam 693917143 (Iran), E-Mail
| |
Collapse
|
16
|
Pereira B, Amaral AL, Dias A, Mendes N, Muncan V, Silva AR, Thibert C, Radu AG, David L, Máximo V, van den Brink GR, Billaud M, Almeida R. MEX3A regulates Lgr5 + stem cell maintenance in the developing intestinal epithelium. EMBO Rep 2020; 21:e48938. [PMID: 32052574 PMCID: PMC7132344 DOI: 10.15252/embr.201948938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Intestinal stem cells (ISCs) fuel the lifelong self‐renewal of the intestinal tract and are paramount for epithelial repair. In this context, the Wnt pathway component LGR5 is the most consensual ISC marker to date. Still, the effort to better understand ISC identity and regulation remains a challenge. We have generated a Mex3a knockout mouse model and show that this RNA‐binding protein is crucial for the maintenance of the Lgr5+ISC pool, as its absence disrupts epithelial turnover during postnatal development and stereotypical organoid maturation ex vivo. Transcriptomic profiling of intestinal crypts reveals that Mex3a deletion induces the peroxisome proliferator‐activated receptor (PPAR) pathway, along with a decrease in Wnt signalling and loss of the Lgr5+ stem cell signature. Furthermore, we identify PPARγ activity as a molecular intermediate of MEX3A‐mediated regulation. We also show that high PPARγ signalling impairs Lgr5+ISC function, thus uncovering a new layer of post‐transcriptional regulation that critically contributes to intestinal homeostasis.
Collapse
Affiliation(s)
- Bruno Pereira
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Ana L Amaral
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Alexandre Dias
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Nuno Mendes
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Vanesa Muncan
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Tytgat Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Ana R Silva
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Chantal Thibert
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Anca G Radu
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Leonor David
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,FMUP-Faculty of Medicine, University of Porto, Porto, Portugal
| | - Valdemar Máximo
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,FMUP-Faculty of Medicine, University of Porto, Porto, Portugal
| | - Gijs R van den Brink
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Tytgat Institute, University of Amsterdam, Amsterdam, The Netherlands.,Medicines Research Center, GSK, Stevenage, UK
| | - Marc Billaud
- Clinical and Experimental Model of Lymphomagenesis, INSERM U1052, CNRS UMR5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Raquel Almeida
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,FMUP-Faculty of Medicine, University of Porto, Porto, Portugal.,Biology Department, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
17
|
Ljubic B, Pavlovski M, Alshehri J, Roychoudhury S, Bajic V, Van Neste C, Obradovic Z. Comorbidity network analysis and genetics of colorectal cancer. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
18
|
Moradi Sarabi M, Mohammadrezaei Khorramabadi R, Zare Z, Eftekhar E. Polyunsaturated fatty acids and DNA methylation in colorectal cancer. World J Clin Cases 2019; 7:4172-4185. [PMID: 31911898 PMCID: PMC6940323 DOI: 10.12998/wjcc.v7.i24.4172] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/27/2019] [Accepted: 12/13/2019] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) has been designated a major global problem, especially due to its high prevalence in developed countries. CRC mostly occurs sporadically (75%-80%), and only 20%-25% of patients have a family history. Several processes are involved in the development of CRC such as a combination of genetic and epigenetic alterations. Epigenetic changes, including DNA methylation play a vital role in the progression of CRC. Complex interactions between susceptibility genes and environmental factors, such as a diet and sedentary lifestyle, lead to the development of CRC. Clinical and experimental studies have confirmed the beneficial effects of dietary polyunsaturated fatty acids (PUFAs) in preventing CRC. From a mechanistic viewpoint, it has been suggested that PUFAs are pleiotropic agents that alter chromatin remodeling, membrane structure and downstream cell signaling. Moreover, PUFAs can alter the epigenome via modulation of DNA methylation. In this review, we summarize recent investigations linking PUFAs and DNA methylation-associated CRC risk.
Collapse
Affiliation(s)
- Mostafa Moradi Sarabi
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad 381251698, Iran
| | - Reza Mohammadrezaei Khorramabadi
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad 381251698, Iran
| | - Zohre Zare
- Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad 381251698, Iran
| | - Ebrahim Eftekhar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas 7919915519, Iran
| |
Collapse
|
19
|
Dhaini HR, Daher Z. Genetic polymorphisms of PPAR genes and human cancers: evidence for gene-environment interactions. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:146-179. [PMID: 31045458 DOI: 10.1080/10590501.2019.1593011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear transcription factors that play a role in lipid metabolism, cell proliferation, terminal differentiation, apoptosis, and inflammation. Although several cancer models have been suggested to explain PPARs' involvement in tumorigenesis, however, their role is still unclear. In this review, we examined associations of the different PPARs, polymorphisms and various types of cancer with a focus on gene-environment interactions. Reviewed evidence suggests that functional genetic variants of the different PPARs may modulate the relationship between environmental exposure and cancer risk. In addition, this report unveils the scarcity of reliable quantitative environmental exposure data when examining these interactions, and the current gaps in studying gene-environment interactions in many types of cancer, particularly colorectal, prostate, and bladder cancers.
Collapse
Affiliation(s)
- Hassan R Dhaini
- a Department of Environmental Health, American University of Beirut , Lebanon
| | - Zeina Daher
- b Faculty of Public Health I, Lebanese University , Beirut , Lebanon
| |
Collapse
|
20
|
Castellano-Castillo D, Moreno-Indias I, Sanchez-Alcoholado L, Ramos-Molina B, Alcaide-Torres J, Morcillo S, Ocaña-Wilhelmi L, Tinahones F, Queipo-Ortuño MI, Cardona F. Altered Adipose Tissue DNA Methylation Status in Metabolic Syndrome: Relationships Between Global DNA Methylation and Specific Methylation at Adipogenic, Lipid Metabolism and Inflammatory Candidate Genes and Metabolic Variables. J Clin Med 2019; 8:jcm8010087. [PMID: 30642114 PMCID: PMC6352101 DOI: 10.3390/jcm8010087] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 02/07/2023] Open
Abstract
Metabolic syndrome (MetS) has been postulated to increase the risk for type 2 diabetes, cardiovascular disease and cancer. Adipose tissue (AT) plays an important role in metabolic homeostasis, and AT dysfunction has an active role in metabolic diseases. MetS is closely related to lifestyle and environmental factors. Epigenetics has emerged as an interesting landscape to evaluate the possible interconnection between AT and metabolic disease, since it can be modulated by environmental factors and metabolic status. The aim of this study was to determine whether MetS has an impact on the global DNA methylation pattern and the DNA methylation of several genes related to adipogenesis (PPARG, PPARA), lipid metabolism (RXRA, SREBF2, SREBF1, SCD, LPL, LXRb), and inflammation (LRP1 C3, LEP and TNF) in visceral adipose tissue. LPL and TNF DNA methylation values were significantly different in the control-case comparisons, with higher and lower methylation respectively in the MetS group. Negative correlations were found between global DNA methylation (measured by LINE-1 methylation levels) and the metabolic deterioration and glucose levels. There were associations among variables of MetS, BMI, and HOMA-IR with DNA methylation at several CpG positions for the studied genes. In particular, there was a strong positive association between serum triglyceride levels (TG) with PPARA and LPL methylation levels. TNF methylation was negatively associated with the metabolic worsening and could be an important factor in preventing MetS occurrence according to logistic regression analysis. Therefore, global DNA methylation and methylation at specific genes related to adipogenesis, lipid metabolism and inflammation are related to the etiology of MetS and might explain in part some of the features associated to metabolic disorders.
Collapse
Affiliation(s)
- Daniel Castellano-Castillo
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| | - Isabel Moreno-Indias
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| | - Lidia Sanchez-Alcoholado
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| | - Bruno Ramos-Molina
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| | - Juan Alcaide-Torres
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| | - Sonsoles Morcillo
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| | - Luis Ocaña-Wilhelmi
- Unidad de Cirugía Metabólica, Hospital Clínico Virgen de la Victoria, 29010 Málaga, Spain.
| | - Francisco Tinahones
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| | - María Isabel Queipo-Ortuño
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
- Unidad de Gestión Clínica de Oncología Médica del Hospital Virgen de la Victoria, 29010 Málaga, Spain.
| | - Fernando Cardona
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| |
Collapse
|
21
|
Castellano-Castillo D, Morcillo S, Clemente-Postigo M, Crujeiras AB, Fernandez-García JC, Torres E, Tinahones FJ, Macias-Gonzalez M. Adipose tissue inflammation and VDR expression and methylation in colorectal cancer. Clin Epigenetics 2018; 10:60. [PMID: 29719581 PMCID: PMC5921388 DOI: 10.1186/s13148-018-0493-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 04/12/2018] [Indexed: 12/16/2022] Open
Abstract
Background Lack of vitamin D (VD) has been associated with colorectal cancer (CRC). VD has anti-inflammatory effects and regulates several cellular pathways by means of its receptor, including epigenetic modifications. Adipose tissue dysfunction has been related to low-grade inflammation, which is related to diseases like cancer. The aim of this study was to explore the relationship between serum 25-hydroxyvitamin D (25(OH)D), adipose tissue gene expression of VD receptor (VDR), pro-inflammatory markers, and the epigenetic factor DNA methyltransferase 3a (DNMT3A) as well as VDR promoter methylation in CRC. Methods Blood and visceral adipose tissue from 57 CRC and 50 healthy control subjects were collected. CRC subjects had lower serum 25(OH)D levels and higher VDR gene expression, and these were negatively correlated in the CRC group. Results Adipose tissue NFκB1, IL6, and IL1B gene expression were higher in the CRC subjects than in the control subjects. 25(OH)D correlated negatively with NFκB1 and CRP. In turn, CRP correlated positively with NFκB1, IL6, IL1B, and VDR gene expression as well as NFκB1 that correlated positively with IL6 and IL1B. DNMT3A mRNA was negatively correlated with serum 25(OH)D and positively correlated with VDR DNA methylation. VDR DNA methylation at position 4 had lower levels in the CRC group. Global NFκB1 methylation at dinucleotide 3 was lower in the CRC group. Conclusion Our results suggest that adipose tissue may be a key factor in CRC development. The low 25(OH)D levels and high adipose tissue VDR expression in CRC may, at least in part, mediate this relationship by modifying adipose tissue DNA methylation and promoting inflammation. Electronic supplementary material The online version of this article (10.1186/s13148-018-0493-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Castellano-Castillo
- 11Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Sonsoles Morcillo
- 2CIBER Fisiopatología de la Obesidad y Nutrición (CB06/03), Madrid, Spain
| | - Mercedes Clemente-Postigo
- 11Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain.,2CIBER Fisiopatología de la Obesidad y Nutrición (CB06/03), Madrid, Spain
| | - Ana Belén Crujeiras
- 3Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela University (USC), Santiago de Compostela, Spain.,4CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain
| | - Jose Carlos Fernandez-García
- 11Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain.,2CIBER Fisiopatología de la Obesidad y Nutrición (CB06/03), Madrid, Spain
| | - Esperanza Torres
- 5Unidad de Gestión Clínica de Oncología Intercentros Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Francisco José Tinahones
- 11Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain.,2CIBER Fisiopatología de la Obesidad y Nutrición (CB06/03), Madrid, Spain
| | - Manuel Macias-Gonzalez
- 11Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain.,2CIBER Fisiopatología de la Obesidad y Nutrición (CB06/03), Madrid, Spain
| |
Collapse
|
22
|
Zafari V, Hashemzadeh S, Hosseinpour Feizi M, Pouladi N, Rostami Zadeh L, Sakhinia E. mRNA expression of nuclear factor of activated T-cells, cytoplasmic 2 (NFATc2) and peroxisome proliferator-activated receptor gamma (PPARG) transcription factors in colorectal carcinoma. Bosn J Basic Med Sci 2017; 17:255-261. [PMID: 28504924 DOI: 10.17305/bjbms.2017.1886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/17/2017] [Accepted: 02/24/2017] [Indexed: 02/06/2023] Open
Abstract
Transcription factors are involved in cell cycle and apoptosis regulation and thus have a key role in the carcinogenesis of different tumors. Nuclear factor of activated T-cells, cytoplasmic 2 (NFATc2) and peroxisome proliferator-activated receptor gamma (PPARG) transcription factors are important in the carcinogenesis of colorectal cancer (CRC). In this study, we examined whether the expression of NFATc2 and PPARG genes is significantly altered during the carcinogenesis of CRC. A total of 47 tumor samples and matched normal tissue margins were collected during surgery from patients with CRC. In addition, three CRC cell lines (HCT119, SW480, and HT29) and healthy cell line were used. After total RNA extraction and cDNA synthesis, mRNA expression levels of NFATc2 and PPARG were examined by real-time polymerase chain reaction. The results showed that NFATc2 is overexpressed in the tumor tissues compared with normal tissue margins (p ≤ 0.05). However, the mRNA expression levels of PPARG were not significantly different between the tumor tissues and tissue margins. Our results indicate that NFATc2 may be used as an early diagnostic or predictive biomarker for CRC as well as a therapeutic target, providing that upcoming studies confirm these results.
Collapse
Affiliation(s)
- Venus Zafari
- Department of Biochemistry and Clinical Laboratories, Division of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Tuberculosis and Lung Disease Research Center of Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | | | | | | | | |
Collapse
|
23
|
Deciphering the Roles of Thiazolidinediones and PPAR γ in Bladder Cancer. PPAR Res 2017; 2017:4810672. [PMID: 28348577 PMCID: PMC5350343 DOI: 10.1155/2017/4810672] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/12/2017] [Indexed: 12/17/2022] Open
Abstract
The use of thiazolidinedione (TZD) therapy in type II diabetic patients has proven useful in the lowering of blood glucose levels. However, recent investigations have shown that there may be potential health concerns associated, including the risk of developing bladder cancer as well as complications in the cardiovasculature. TZDs are ligands for the nuclear receptor PPARγ, and activation causes lipid uptake and insulin sensitization, both of which are critical processes for diabetic patients whose bodies are unable to utilize insulin effectively. Several studies have shown that PPARγ/TZDs decrease IGF-1 levels and, thus, reduce cancer growth in carcinomas such as the pancreas, colon, liver, and prostate. However, other studies have shed light on the potential of the receptor as a biomarker for uroepithelial carcinomas, particularly due to its stimulatory effect on migration of bladder cancer cells. Furthermore, PPARγ may provide the tumor-promoting microenvironment by de novo synthesis of nutrients that are needed for bladder cancer development. In this review, we closely examine the TZD class of drugs and their effects on PPARγ in patient studies along with additional molecular factors that are positive modulators, such as protein phosphatase 5 (PP5), which may have considerable implications for bladder cancer therapy.
Collapse
|
24
|
Commonalities in the Association between PPARG and Vitamin D Related with Obesity and Carcinogenesis. PPAR Res 2016; 2016:2308249. [PMID: 27579030 PMCID: PMC4992792 DOI: 10.1155/2016/2308249] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/15/2016] [Indexed: 02/07/2023] Open
Abstract
The PPAR nuclear receptor family has acquired great relevance in the last decade, which is formed by three different isoforms (PPARα, PPARβ/δ, and PPAR ϒ). Those nuclear receptors are members of the steroid receptor superfamily which take part in essential metabolic and life-sustaining actions. Specifically, PPARG has been implicated in the regulation of processes concerning metabolism, inflammation, atherosclerosis, cell differentiation, and proliferation. Thus, a considerable amount of literature has emerged in the last ten years linking PPARG signalling with metabolic conditions such as obesity and diabetes, cardiovascular disease, and, more recently, cancer. This review paper, at crossroads of basic sciences, preclinical, and clinical data, intends to analyse the last research concerning PPARG signalling in obesity and cancer. Afterwards, possible links between four interrelated actors will be established: PPARG, the vitamin D/VDR system, obesity, and cancer, opening up the door to further investigation and new hypothesis in this fascinating area of research.
Collapse
|
25
|
Milone MR, Pucci B, Colangelo T, Lombardi R, Iannelli F, Colantuoni V, Sabatino L, Budillon A. Proteomic characterization of peroxisome proliferator-activated receptor-γ (PPARγ) overexpressing or silenced colorectal cancer cells unveils a novel protein network associated with an aggressive phenotype. Mol Oncol 2016; 10:1344-62. [PMID: 27499265 DOI: 10.1016/j.molonc.2016.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/19/2016] [Indexed: 01/06/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) is a transcription factor of the nuclear hormone receptor superfamily implicated in a wide range of processes, including tumorigenesis. Its role in colorectal cancer (CRC) is still debated; most reports support that PPARγ reduced expression is associated with poor prognosis. We employed 2-Dimensional Differential InGel Electrophoresis (2-D DIGE) followed by Liquid Chromatography (LC)-tandem Mass Spectrometry (MS/MS) to identify differentially expressed proteins and the molecular pathways underlying PPARγ expression in CRC progression. We identified several differentially expressed proteins in HT29 and HCT116 CRC cells and derived clones either silenced or overexpressing PPARγ, respectively. In Ingenuity Pathway Analysis (IPA) they showed reciprocal relation with PPARγ and a strong relationship with networks linked to cell death, growth and survival. Interestingly, five of the identified proteins, ezrin (EZR), isoform C of prelamin-A/C (LMNA), alpha-enolase (ENOA), prohibitin (PHB) and RuvB-like 2 (RUVBL2) were shared by the two cell models with opposite expression levels, suggesting a possible regulation by PPARγ. mRNA and western blot analysis were undertaken to obtain a technical validation and confirm the expression trend observed by 2-D DIGE data. We associated EZR upregulation with increased cell surface localization in PPARγ-overexpressing cells by flow cytometry and immunofluorescence staining. We also correlated EZR and PPARγ expression in our series of CRC specimens and the expression profiling of all five proteins levels in the publicly available colon cancer genomic data from Oncomine and Cancer Genome Atlas (TCGA) colon adenocarcinoma (COAD) datasets. In summary, we identified a panel of proteins correlated with PPARγ expression that could be associated with CRC unveiling new pathways to be investigated for the selection of novel potential prognostic/predictive biomarkers and/or therapeutic targets.
Collapse
Affiliation(s)
- Maria Rita Milone
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Biagio Pucci
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Tommaso Colangelo
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Rita Lombardi
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Federica Iannelli
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Vittorio Colantuoni
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Lina Sabatino
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy.
| | - Alfredo Budillon
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy; Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy.
| |
Collapse
|
26
|
Ruan J, Zhang Y, Yuan J, Xin L, Xia J, Liu N, Mu Y, Chen Y, Yang S, Li K. A long-term high-fat, high-sucrose diet in Bama minipigs promotes lipid deposition and amyotrophy by up-regulating the myostatin pathway. Mol Cell Endocrinol 2016; 425:123-32. [PMID: 26850224 DOI: 10.1016/j.mce.2016.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 01/08/2023]
Abstract
Skeletal muscle is as an important regulator of blood glucose and glycolipid metabolism and is closely related to motor ability. The underlying mechanisms by which dietary ectopic lipids in skeletal muscle prevents muscle growth remain elusive. We utilized miniature Bama swine as a model to mimic human obesity using prolonged dietary induction. After 23 months on a high-fat, high-sucrose diet, metabolic disorders were induced in the animals, which exhibited increased body weight, extensive lipid deposition in the skeletal muscle and amyotrophy. Microarray profiles demonstrated the up-regulation of genes related to fat deposition and muscle growth inhibition. We outline a clear potential pathway that in combination with increased 11β-hydroxysteroid dehydrogenase type 1, promotes expression of a major inhibitor, myostatin, by converting corticosterone to cortisol, which leads to the growth inhibition of skeletal muscle. This research provides new insights into the treatment of muscle diseases induced by obesity.
Collapse
Affiliation(s)
- Jinxue Ruan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China; Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun, 130012, PR China
| | - Yuanyuan Zhang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Jing Yuan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China; College of Animal Science, Yangtz University, Jinzhou, 434023, Hubei, PR China
| | - Leilei Xin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Jihan Xia
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Nan Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China; Agricutural Genomes Institute at Shenzhen, CAAS, Shenzhen, 518120, PR China
| | - Yulian Mu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Shulin Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China.
| | - Kui Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China; Agricutural Genomes Institute at Shenzhen, CAAS, Shenzhen, 518120, PR China
| |
Collapse
|
27
|
Sabatino L, Pancione M, Votino C, Colangelo T, Lupo A, Novellino E, Lavecchia A, Colantuoni V. Emerging role of the β-catenin-PPARγ axis in the pathogenesis of colorectal cancer. World J Gastroenterol 2014; 20:7137-7151. [PMID: 24966585 PMCID: PMC4064060 DOI: 10.3748/wjg.v20.i23.7137] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/15/2014] [Accepted: 05/05/2014] [Indexed: 02/06/2023] Open
Abstract
Multiple lines of evidence indicate that Wnt/β-catenin signaling plays a fundamental role in colorectal cancer (CRC) initiation and progression. Recent genome-wide data have confirmed that in CRC this pathway is one of the most frequently modified by genetic or epigenetic alterations affecting almost 90% of Wnt/β-catenin gene members. A major challenge is thus learning how the corrupted coordination of this pathway is tied to other signalings to enhance cell growth. Peroxisome proliferator activated receptor γ (PPARγ) is emerging as a growth-limiting and differentiation-promoting factor. In tumorigenesis it exerts a tumor suppressor role and is potentially linked with the Wnt/β-catenin pathway. Based on these results, the identification of new selective PPARγ modulators with inhibitory effects on the Wnt/β-catenin pathway is becoming an interesting perspective. Should, in fact, these molecules display such properties, new research avenues would be opened aimed at developing new molecular targeted drugs. Herein, we review the basic principles and present new hypotheses underlying the crosstalk between Wnt/β-catenin and PPARγ signaling. Furthermore, we discuss the advances in our understanding as to how their altered regulation can culminate in colon cancer and the efforts aimed at designing novel PPARγ agonists endowed with Wnt/β-catenin inhibitory effects to be used as therapeutic and/or preventive agents.
Collapse
|
28
|
Ferrara G, Pancione M, Votino C, Quaglino P, Tomasini C, Santucci M, Pimpinelli N, Cusano F, Sabatino L, Colantuoni V. A specific DNA methylation profile correlates with a high risk of disease progression in stage I classical (Alibert-Bazin type) mycosis fungoides. Br J Dermatol 2014; 170:1266-75. [PMID: 24641245 DOI: 10.1111/bjd.12717] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mycosis fungoides (MF) is the most common type of cutaneous T-cell lymphoma; in its classical presentation it evolves slowly, but it can have an aggressive course in a subset of patients. OBJECTIVES To investigate the impact of epigenetic mechanisms on the progression of early stage MF. METHODS We analysed DNA methylation at 12 different loci and long interspersed nucleotide elements-1 (LINE-1), as a surrogate marker of global methylation, on tissue samples from 41 patients with stage I MF followed up for at least 12 years or until disease progression. The methylation profiles were also analysed in two T-cell lymphoma cell lines and correlated with gene expression. RESULTS The selected loci were methylated in a tumour-specific manner; concomitant hypermethylation of at least four loci was more frequent in cases progressing within 1-3 and 3-6 years than in late-progressive or non-progressive cases. LINE-1 methylation was significantly lower in rapidly progressive MF at 3 years (61%, P < 0·001) than in those at 12 years (67%). PPARG, SOCS1 and NEUROG1 methylation showed remarkable differences among the prognostic groups, but only PPARG was a significant predictor of disease progression within 6 years, after adjustment for patients' age or gender. Strikingly, a methylation profile similar to progressive cases was found in highly proliferative Sézary-derived HUT78 cells but not in MF-derived HUT102 cells. Exposure to a DNA demethylating agent restored sensitivity to apoptosis and cell cycle arrest. CONCLUSIONS Epigenetic silencing of specific biomarkers can predict the risk of disease progression in early-stage MF, providing insights into its pathogenesis, prognosis and therapy.
Collapse
Affiliation(s)
- G Ferrara
- Department of Oncology, Pathology Unit, "Gaetano Rummo" General Hospital, Benevento, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhao YZ, Liu XL, Shen GM, Ma YN, Zhang FL, Chen MT, Zhao HL, Yu J, Zhang JW. Hypoxia induces peroxisome proliferator-activated receptor γ expression via HIF-1-dependent mechanisms in HepG2 cell line. Arch Biochem Biophys 2013; 543:40-7. [PMID: 24374034 DOI: 10.1016/j.abb.2013.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 12/09/2013] [Accepted: 12/16/2013] [Indexed: 01/22/2023]
Abstract
Hypoxia-inducible factor-1 (HIF-1) can activate expression of a broad range of genes in response to hypoxia. It has been shown that the levels of peroxisome proliferator-activated receptor γ (PPARγ) are influenced by changes in oxygen tension, and PPARγ plays a critical role in metabolism regulation and cancers. In this research, we observed an increased PPARγ mRNA and protein levels in company with increased HIF-1 protein levels in HepG2 cells in hypoxia as compared with in normoxia. Enforced expression of HIF-1α induced PPARγ1 and PPARγ2 expression, while knockdown of HIF-1α by small interference RNA deduced PPARγ1 and PPARγ2 expression in HepG2 cells under hypoxic conditions. By dual-luciferase reporter assay and chromatin immunoprecipitation assay we confirmed a functional hypoxic response element (HRE) localized at 684bp upstream of the transcriptional start site (TSS) of PPARγ1 and a functional HRE localized at 204bp downstream of the TSS of PPARγ2 in HepG2 cells. Additionally we observed an increase and co-presence of PPARγ and HIF-1α, and a highly positive correlation between PPARγ expression and HIF-1α expression (r=0.553, p<0.0001), in the same tumor tissue areas of hepatocellular carcinoma patients. Our data suggested a new mechanism of hepatocellular carcinoma cells response to hypoxia.
Collapse
Affiliation(s)
- Ying-Ze Zhao
- Department of Biochemistry and Molecular Biology and National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Ling Liu
- Department of Biochemistry and Molecular Biology and National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guo-Min Shen
- Department of Biochemistry and Molecular Biology and National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan-Ni Ma
- Department of Biochemistry and Molecular Biology and National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feng-Lin Zhang
- Department of Biochemistry and Molecular Biology and National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Tai Chen
- Department of Biochemistry and Molecular Biology and National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua-Lu Zhao
- Department of Biochemistry and Molecular Biology and National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia Yu
- Department of Biochemistry and Molecular Biology and National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun-Wu Zhang
- Department of Biochemistry and Molecular Biology and National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
30
|
Dicitore A, Caraglia M, Gaudenzi G, Manfredi G, Amato B, Mari D, Persani L, Arra C, Vitale G. Type I interferon-mediated pathway interacts with peroxisome proliferator activated receptor-γ (PPAR-γ): at the cross-road of pancreatic cancer cell proliferation. Biochim Biophys Acta Rev Cancer 2013; 1845:42-52. [PMID: 24295567 DOI: 10.1016/j.bbcan.2013.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/14/2013] [Accepted: 11/22/2013] [Indexed: 12/12/2022]
Abstract
Pancreatic adenocarcinoma remains an unresolved therapeutic challenge because of its intrinsically refractoriness to both chemo- and radiotherapy due to the complexity of signaling and the activation of survival pathways in cancer cells. Recent studies have demonstrated that the combination of some drugs, targeting most of aberrant pathways crucial for the survival of pancreatic cancer cells may be a valid antitumor strategy for this cancer. Type I interferons (IFNs) may have a role in the pathogenesis and progression of pancreatic adenocarcinoma, but the limit of their clinical use is due to the activation of tumor resistance mechanisms, including JAK-2/STAT-3 pathway. Moreover, aberrant constitutive activation of STAT-3 proteins has been frequently detected in pancreatic adenocarcinoma. The selective targeting of these cell survival cascades could be a promising strategy in order to enhance the antitumor effects of type I IFNs. The activation of peroxisome proliferator-activated receptor γ (PPAR-γ), on the other hand, has a suppressive activity on STAT-3. In fact, PPAR-γ agonists negatively modulate STAT-3 through direct and/or indirect mechanisms in several normal and cancer models. This review provides an overview on the current knowledge about the molecular mechanisms and antitumor activity of these two promising classes of drugs for pancreatic cancer therapy. Finally, the synergistic antiproliferative activity of combined IFN-β and troglitazone treatment on pancreatic cancer cell lines, evaluated in vitro, and the consequent potential clinical applications will be discussed.
Collapse
Affiliation(s)
- Alessandra Dicitore
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Germano Gaudenzi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Gloria Manfredi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Bruno Amato
- Department of Clinical Medicine and Surgery, University "Federico II" of Naples, Italy
| | - Daniela Mari
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Geriatric Unit IRCCS Ca' Grande Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Luca Persani
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Claudio Arra
- Animal Facility, National Cancer Institute of Naples Fondazione "G. Pascale", Naples, Italy
| | - Giovanni Vitale
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| |
Collapse
|
31
|
Fucci A, Colangelo T, Votino C, Pancione M, Sabatino L, Colantuoni V. The role of peroxisome proliferator-activated receptors in the esophageal, gastric, and colorectal cancer. PPAR Res 2012; 2012:242498. [PMID: 22991505 PMCID: PMC3444044 DOI: 10.1155/2012/242498] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/24/2012] [Indexed: 12/21/2022] Open
Abstract
Tumors of the gastrointestinal tract are among the most frequent human malignancies and account for approximately 30% of cancer-related deaths worldwide. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that control diverse cellular functions such as proliferation, differentiation, and cell death. Owing to their involvement in so many processes, they play crucial roles also in the development and physiology of the gastrointestinal tract. Consistently, PPARs deregulation has been implicated in several pathophysiological conditions, including chronic inflammation and cancer development. This paper summarizes the current knowledge on the role that the various PPAR isoforms play in the pathogenesis of the esophageal, gastric, and intestinal cancer. Elucidation of the molecular mechanisms underlying PPARs' signaling pathways will provide insights into their possible use as predictive biomarkers in the initial stages of the process. In addition, this understanding will provide the basis for new molecular targets in cancer therapy and chemoprevention.
Collapse
Affiliation(s)
- Alessandra Fucci
- Department of Biological, Geological and Environmental Sciences, University of Sannio, 82100 Benevento, Italy
| | - Tommaso Colangelo
- Department of Biological, Geological and Environmental Sciences, University of Sannio, 82100 Benevento, Italy
| | - Carolina Votino
- Department of Biological, Geological and Environmental Sciences, University of Sannio, 82100 Benevento, Italy
| | - Massimo Pancione
- Department of Biological, Geological and Environmental Sciences, University of Sannio, 82100 Benevento, Italy
| | - Lina Sabatino
- Department of Biological, Geological and Environmental Sciences, University of Sannio, 82100 Benevento, Italy
| | - Vittorio Colantuoni
- Department of Biological, Geological and Environmental Sciences, University of Sannio, 82100 Benevento, Italy
| |
Collapse
|