1
|
Qian J, Yin S, Ye L, Wang Z, Shu S, Mou Z, Xu M, Chattipakorn N, Liu Z, Liang G. An Indole-2-Carboxamide Derivative, LG4, Alleviates Diabetic Kidney Disease Through Inhibiting MAPK-Mediated Inflammatory Responses. J Inflamm Res 2021; 14:1633-1645. [PMID: 33948087 PMCID: PMC8088301 DOI: 10.2147/jir.s308353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/02/2021] [Indexed: 01/13/2023] Open
Abstract
Aim Elevated inflammatory signaling has been shown to play an important role in diabetic kidney disease (DKD). We previously developed a new anti-inflammatory compound LG4. In the present study, we have tested the hypothesis that LG4 could prevent DKD by suppressing inflammation and identified the underlying mechanism. Methods Streptozotocin-induced type 1 diabetic mice were used to develop DKD and evaluate the effects of LG4 against DKD. To identify the potential targets of LG4, biotin-linked LG4 was synthesized and subjected to proteome microarray screening. The cellular mechanism of LG4 was investigated in HG-challenged SV40MES13 cells. Results Although LG4 treatment had no effect on the body weight and blood glucose levels, it remarkably reversed the hyperglycemia-induced pathological changes and fibrosis in the kidneys of T1DM mice. Importantly, hyperglycemia-induced renal inflammation evidenced by NF-κB activation and TNFα and IL-6 overexpression was greatly ameliorated with LG4 treatment. Proteosome microarray screening revealed that JNK and ERK were the direct binding proteins of LG4. LG4 significantly reduced HG-induced JNK and ERK phosphorylation and subsequent NF-κB activation in vivo and in vitro. In addition, LG4 did not show further anti-inflammatory effect in HG-challenged mesangial cells with the presence of JNK or ERK inhibitor. Conclusion LG4 showed renoprotective activity through inhibiting ERK/JNK-mediated inflammation in diabetic mice, indicating that LG4 may be a therapeutic agent for DKD.
Collapse
Affiliation(s)
- Jianchang Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Sihui Yin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Lin Ye
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Zhe Wang
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Sheng Shu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.,School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China
| | - Zhenxin Mou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.,School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China
| | - Mingjiang Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Zhiguo Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.,School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
2
|
Liu Y, Li D, Jiang Q, Zhang Q, Liu P, Wang L, Zong M, Zhang Q, Li H, An Y, Zhang Y, Zhu L, Zhang X, Zhao F. (3R, 7R)-7-Acetoxyl-9-Oxo-de-O-Methyllasiodiplodin, a Secondary Metabolite of Penicillium Sp., Inhibits LPS-Mediated Inflammation in RAW 264.7 Macrophages through Blocking ERK/MAPKs and NF-κB Signaling Pathways. Inflammation 2020; 42:1463-1473. [PMID: 31011928 DOI: 10.1007/s10753-019-01009-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Twelve polyketones were isolated from the fermentation broth of Penicillium sp., including six new compounds (supplementary material). Penicillium sp. is widely used in clinic as a highly effective and low toxic antibiotic. Among these compounds, (3R, 7R)-7-acetoxyl-9-oxo-de-O-methyllasiodiplodin named PS-2 showed significant anti-inflammatory activity. So, the anti-inflammatory mechanism of PS-2 was investigated by using lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. The results showed that PS-2 can significantly inhibit the overproduction of nitric oxide (NO), prostaglandin E2 (PGE2), and interleukin-6 (IL-6), whereas it showed no inhibition on the release of pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α). Cell-free colorimetric method demonstrated that PS-2 could obviously inhibit the enzymatic activity of cyclooxygenase-2 (COX-2). Western blot results indicated that PS-2 could significantly inhibit high expression of iNOS and COX-2 proteins. Further investigations on the anti-inflammatory mechanism showed that PS-2 could suppress the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), but did not exhibit obvious inhibition on the phosphorylation of c-JunN-terminal kinase (JNK) and phosphorylated 38 (p38). In addition, PS-2 inhibited the degradation of inhibitor of kappa-B alpha (IκB-α) and translocation to nucleus of nuclear factor kappa-B (NF-κB) p65 in RAW 264.7 macrophages. These results suggested that PS-2 might be an effective intervention against inflammatory diseases.
Collapse
Affiliation(s)
- Yanan Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road of Laishan District, Yantai, 264005, Shandong, People's Republic of China
| | - Danna Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road of Laishan District, Yantai, 264005, Shandong, People's Republic of China
| | - Qianqian Jiang
- School of Foreign Languages Yantai University, Yantai, 264005, Shandong Province, China
| | - Qian Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road of Laishan District, Yantai, 264005, Shandong, People's Republic of China
| | - Pan Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road of Laishan District, Yantai, 264005, Shandong, People's Republic of China
| | - Liying Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road of Laishan District, Yantai, 264005, Shandong, People's Republic of China
| | - Mingyue Zong
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road of Laishan District, Yantai, 264005, Shandong, People's Republic of China
| | - Qingran Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road of Laishan District, Yantai, 264005, Shandong, People's Republic of China
| | - Huixiang Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road of Laishan District, Yantai, 264005, Shandong, People's Republic of China
| | - Yanan An
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yixuan Zhang
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lingjuan Zhu
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xue Zhang
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Feng Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road of Laishan District, Yantai, 264005, Shandong, People's Republic of China.
| |
Collapse
|
3
|
Yu JG, Guo J, Zhu KY, Tao W, Chen Y, Liu P, Hua Y, Tang Y, Duan JA. How impaired efficacy happened between Gancao and Yuanhua: Compounds, targets and pathways. Sci Rep 2017. [PMID: 28630457 PMCID: PMC5476574 DOI: 10.1038/s41598-017-03201-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
As recorded in Traditional Chinese Medicine (TCM) theory, Gancao (Glycyrrhizae Radix et Rhizoma) could weaken the pharmacological effect or increase the toxicity of Yuanhua (Genkwa Flos). However, the theory has been suspected due to lack of evidence. Here, we investigate whether Gancao could weaken Yuanhua’s diuretic effect, if so, which chemicals and which targets may be involved. Results showed that Yuanhua exerted diuretic effect through down-regulating renal AQP 2, without electrolyte disturbances such as K+ loss which has been observed as side-effect of most diuretics. Gancao had no diuretic effect, but could impair Yuanhua’s diuretic effect through up-regulating renal AQP 2. Glycyrrhetinic acid (GRA) in Gancao could up-regulate AQP 2 and counteract the AQP 2 regulation effect of Yuanhuacine (YHC) and Ginkwanin (GKW) in Yuanhua. Network pharmacology method suggested that YHC, GKW and GRA could bind to MEK1/FGFR1 protein and influence ERK-MAPK pathway, which was verified by Western blotting. This study supports TCM theory and reminds that more attention should be paid to the safety and efficacy problems induced by improper combination between herbs. Moreover, we suggested that promising diuretics with less side effects can be developed from Chinese Medicines such as Yuanhua.
Collapse
Affiliation(s)
- Jin-Gao Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu Province, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jianming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu Province, China. .,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Kevin Yue Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu Province, China. .,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Weiwei Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu Province, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanyan Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu Province, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Pei Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu Province, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yongqing Hua
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu Province, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuping Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu Province, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu Province, China. .,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
4
|
Nambiar SS, Venugopal KS, Shetty NP, Appaiah KAA. Fermentation induced changes in bioactive properties of wine from Phyllanthus with respect to atherosclerosis. Journal of Food Science and Technology 2016; 53:2361-71. [PMID: 27407202 DOI: 10.1007/s13197-016-2208-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/12/2016] [Accepted: 03/18/2016] [Indexed: 01/06/2023]
Abstract
Wine was prepared from three varieties of Phyllanthus viz., P. emblica (wild and cultivated) and P. acidus. Among the wines prepared, cultivated Emblica wine had the highest total phenolic (11.02 μg gallic acid equivalent/ml) and flavonoid (59.46 μg quercetin equivalent/ml) content. Further gallic acid, syringic acid, protocatechuic acid and caffeic acid were present in higher amounts in wine from the cultivated variety compared to other wines. HPLC analysis showed that in juice of the cultivated variety, gallic acid and coumaric acid were found in higher amounts than that in the corresponding wine. Antioxidant assays, LDL oxidation prevention, foam cell prevention and nitrite scavenging activities (cell lines) were found to be highest in cultivated Emblica juice and wine with an activity of 15 μg/ml and 14 μg/ml (nitrite assay) and 108.649 μg ascorbic acid equivalent/mg and 321.622 μg ascorbic acid equivalent /mg (total antioxidant capacity) respectively. CD36 expression was reduced and ABCA1 expression was increased to the highest extent by the cultivated Emblica wine and juice. Further, antioxidant activity was seen to increase during the course of fermentation. Sensory analysis showed that cultivated Emblica wine was sweeter compared to the other wines.
Collapse
Affiliation(s)
- Sinjitha S Nambiar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Cheluvamba Mansion, Mysore, -570 020 India
| | - K S Venugopal
- Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore, -570020 India
| | - Nandini Prasad Shetty
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Cheluvamba Mansion, Mysore, -570 020 India
| | - K A Anu Appaiah
- Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore, -570020 India
| |
Collapse
|
5
|
Triterpene glycosides with stimulatory activity on melanogenesis from the aerial parts of Weigela subsessilis. Arch Pharm Res 2015; 38:1541-51. [PMID: 25630794 DOI: 10.1007/s12272-014-0524-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
Abstract
Three new triterpene glycosides (Lonicerosides K, L and M) and 11 known compounds were isolated from the aerial parts of Weigela subsessilis. Among the known isolated compounds, loniceroside A, sweroside, kaempferol-3-O-glucopyranoside 6″-(3-hydroxy-3-methylglutarate), kaempferol-3-O-acetylglucoside and grandifloroside were reported for the first time in a Weigela genus plant. Their chemical structures were identified using extensive spectroscopic analysis including two-dimensional (2D)-NMR experiments, HR-ESI-QTOF-MS and comparison with reported data. Among these compounds, lonicerosides A and L had potent melanogenesis stimulatory activity in murine B16F0 melanoma cells. The structural relationship of active compounds was discussed.
Collapse
|
6
|
Chen L, Chen R, Wang H, Liang F. Mechanisms Linking Inflammation to Insulin Resistance. Int J Endocrinol 2015; 2015:508409. [PMID: 26136779 PMCID: PMC4468292 DOI: 10.1155/2015/508409] [Citation(s) in RCA: 323] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/04/2015] [Indexed: 12/14/2022] Open
Abstract
Obesity is now widespread around the world. Obesity-associated chronic low-grade inflammation is responsible for the decrease of insulin sensitivity, which makes obesity a major risk factor for insulin resistance and related diseases such as type 2 diabetes mellitus and metabolic syndromes. The state of low-grade inflammation is caused by overnutrition which leads to lipid accumulation in adipocytes. Obesity might increase the expression of some inflammatory cytokines and activate several signaling pathways, both of which are involved in the pathogenesis of insulin resistance by interfering with insulin signaling and action. It has been suggested that specific factors and signaling pathways are often correlated with each other; therefore, both of the fluctuation of cytokines and the status of relevant signaling pathways should be considered during studies analyzing inflammation-related insulin resistance. In this paper, we discuss how these factors and signaling pathways contribute to insulin resistance and the therapeutic promise targeting inflammation in insulin resistance based on the latest experimental studies.
Collapse
Affiliation(s)
- Li Chen
- Hubei University of Chinese Medicine, Wuhan 430061, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan 430061, China
| | - Rui Chen
- Integrated TCM and Western Medicine Department, Union Hospital, Tongji Medical College of Huazhong Science and Technology University, Wuhan 430022, China
| | - Hua Wang
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan 430061, China
- Acupuncture and Moxibustion College, Hubei University of Chinese Medicine, Wuhan 430061, China
| | - Fengxia Liang
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan 430061, China
- Acupuncture and Moxibustion College, Hubei University of Chinese Medicine, Wuhan 430061, China
- *Fengxia Liang:
| |
Collapse
|
7
|
Li X, Wu L, Liu W, Jin Y, Chen Q, Wang L, Fan X, Li Z, Cheng Y. A network pharmacology study of Chinese medicine QiShenYiQi to reveal its underlying multi-compound, multi-target, multi-pathway mode of action. PLoS One 2014; 9:e95004. [PMID: 24817581 PMCID: PMC4015902 DOI: 10.1371/journal.pone.0095004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 03/21/2014] [Indexed: 01/04/2023] Open
Abstract
Chinese medicine is a complex system guided by traditional Chinese medicine (TCM) theories, which has proven to be especially effective in treating chronic and complex diseases. However, the underlying modes of action (MOA) are not always systematically investigated. Herein, a systematic study was designed to elucidate the multi-compound, multi-target and multi-pathway MOA of a Chinese medicine, QiShenYiQi (QSYQ), on myocardial infarction. QSYQ is composed of Astragalus membranaceus (Huangqi), Salvia miltiorrhiza (Danshen), Panax notoginseng (Sanqi), and Dalbergia odorifera (Jiangxiang). Male Sprague Dawley rat model of myocardial infarction were administered QSYQ intragastrically for 7 days while the control group was not treated. The differentially expressed genes (DEGs) were identified from myocardial infarction rat model treated with QSYQ, followed by constructing a cardiovascular disease (CVD)-related multilevel compound-target-pathway network connecting main compounds to those DEGs supported by literature evidences and the pathways that are functionally enriched in ArrayTrack. 55 potential targets of QSYQ were identified, of which 14 were confirmed in CVD-related literatures with experimental supporting evidences. Furthermore, three sesquiterpene components of QSYQ, Trans-nerolidol, (3S,6S,7R)-3,7,11-trimethyl-3,6-epoxy-1,10-dodecadien-7-ol and (3S,6R,7R)-3,7,11-trimethyl-3,6-epoxy-1,10-dodecadien-7-ol from Dalbergia odorifera T. Chen, were validated experimentally in this study. Their anti-inflammatory effects and potential targets including extracellular signal-regulated kinase-1/2, peroxisome proliferator-activated receptor-gamma and heme oxygenase-1 were identified. Finally, through a three-level compound-target-pathway network with experimental analysis, our study depicts a complex MOA of QSYQ on myocardial infarction.
Collapse
Affiliation(s)
- Xiang Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Leihong Wu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wei Liu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yecheng Jin
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qian Chen
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Linli Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zheng Li
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiyu Cheng
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Qiao Y, Zhao Y, Wu Q, Sun L, Ruan Q, Chen Y, Wang M, Duan J, Wang D. Full toxicity assessment of Genkwa Flos and the underlying mechanism in nematode Caenorhabditis elegans. PLoS One 2014; 9:e91825. [PMID: 24626436 PMCID: PMC3953530 DOI: 10.1371/journal.pone.0091825] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/16/2014] [Indexed: 01/10/2023] Open
Abstract
Genkwa Flos (GF), the dried flower bud from Daphne genkwa Sieb. et Zucc. (Thymelaeaceae), is a well-known and widely used traditional Chinese medicine. However, we know little about the in vivo mechanism of GF toxicity. Nematode Caenorhabditis elegans has been considered as a useful toxicity assay system by offering a system best suited for asking the in vivo questions. In the present study, we employed the prolonged exposure assay system of C. elegans to perform the full in vivo toxicity assessment of raw-processed GF. Our data show that GF exposure could induce the toxicity on lifespan, development, reproduction, and locomotion behavior. GF exposure not only decreased body length but also induced the formation of abnormal vulva. The decrease in brood size in GF exposed nematodes appeared mainly at day-1 during the development of adult nematodes. The decrease of locomotion behavior in GF exposed nematodes might be due to the damage on development of D-type GABAergic motor neurons. Moreover, we observed the induction of intestinal reactive oxygen species (ROS) production and alteration of expression patterns of genes required for development of apical domain, microvilli, and apical junction of intestine in GF exposed nematodes, implying the possible dysfunction of the primary targeted organ. In addition, GF exposure induced increase in defecation cycle length and deficits in development of AVL and DVB neurons controlling the defecation behavior. Therefore, our study implies the usefulness of C. elegans assay system for toxicity assessment from a certain Chinese medicine or plant extract. The observed toxicity of GF might be the combinational effects of oxidative stress, dysfunction of intestine, and altered defecation behavior in nematodes.
Collapse
Affiliation(s)
- Yan Qiao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School of Southeast University, Nanjing, China
| | - Yunli Zhao
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School of Southeast University, Nanjing, China
| | - Qiuli Wu
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School of Southeast University, Nanjing, China
| | - Lingmei Sun
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School of Southeast University, Nanjing, China
| | - Qinli Ruan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanyan Chen
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meng Wang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
9
|
Kaoud TS, Park H, Mitra S, Yan C, Tseng CC, Shi Y, Jose J, Taliaferro JM, Lee K, Ren P, Hong J, Dalby KN. Manipulating JNK signaling with (--)-zuonin A. ACS Chem Biol 2012; 7:1873-83. [PMID: 22916726 DOI: 10.1021/cb300261e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recently, in a virtual screening strategy to identify new compounds targeting the D-recruitment site (DRS) of the c-Jun N-terminal kinases (JNKs), we identified the natural product (-)-zuonin A. Here we report the asymmetric synthesis of (-)-zuonin A and its enantiomer (+)-zuonin A. A kinetic analysis for the inhibition of c-Jun phosphorylation by (-)-zuonin A revealed a mechanism of partial competitive inhibition. Its binding is proposed to weaken the interaction of c-Jun to JNK by approximately 5-fold, without affecting the efficiency of phosphorylation within the complex. (-)-Zuonin A inhibits the ability of both MKK4 and MKK7 to phosphorylate and activate JNK. The binding site of (-)-zuonin A is predicted by docking and molecular dynamics simulation to be located in the DRS of JNK. (+)-Zuonin A also binds JNK but barely impedes the binding of c-Jun. (-)-Zuonin A inhibits the activation of JNK, as well as the phosphorylation of c-Jun in anisomycin-treated HEK293 cells, with the inhibition of JNK activation being more pronounced. (-)-Zuonin A also inhibits events associated with constitutive JNK2 activity, including c-Jun phosphorylation, basal Akt activation, and MDA-MB-231 cell migration. Mutations in the predicted binding site for (-)-zuonin A can render it significantly more or less sensitive to inhibition than wild type JNK2, allowing for the design of potential chemical genetic experiments. These studies suggest that the biological activity reported for other lignans, such as saucerneol F and zuonin B, may be the result of their ability to impede protein-protein interactions within MAPK cascades.
Collapse
Affiliation(s)
| | - Heekwang Park
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United
States
| | - Shreya Mitra
- The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United
States
| | | | | | | | | | | | - Kiyoun Lee
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United
States
| | | | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United
States
| | | |
Collapse
|