1
|
Zhang C, Tan Z, Xie Y, Zhao Y, Huang TY, Lu Z, Luo H, Can D, Xu H, Zhang YW, Zhang X. Appoptosin Mediates Lesions Induced by Oxidative Stress Through the JNK-FoxO1 Pathway. Front Aging Neurosci 2019; 11:243. [PMID: 31551758 PMCID: PMC6737070 DOI: 10.3389/fnagi.2019.00243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/20/2019] [Indexed: 01/07/2023] Open
Abstract
Oxidative stress is a common feature of neurodegenerative diseases and plays an important role in disease progression. Appoptosin is a pro-apoptotic protein that contributes to the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and progressive supranuclear palsy. However, whether appoptosin mediates oxidative stress-induced neurotoxicity has yet to be determined. Here, we observe that appoptosin protein levels are induced by hydrogen peroxide (H2O2) exposure through the inhibition of proteasomal appoptosin degradation. Furthermore, we demonstrate that overexpression of appoptosin induces apoptosis through the JNK-FoxO1 pathway. Importantly, knockdown of appoptosin can ameliorate H2O2-induced JNK activation and apoptosis in primary neurons. Thus, we propose that appoptosin functions as an upstream regulator of the JNK-FoxO1 pathway, contributing to cell death in response to oxidative stress during neurodegeneration.
Collapse
Affiliation(s)
- Cuilin Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China.,The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Zhenqiu Tan
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Yongzhuang Xie
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Yingjun Zhao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Zhaoping Lu
- Fujian Provincial Maternity and Children's Hospital of Fujian Medical University, Fuzhou, China
| | - Hong Luo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Dan Can
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Xian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Messina S, De Simone G, Ascenzi P. Cysteine-based regulation of redox-sensitive Ras small GTPases. Redox Biol 2019; 26:101282. [PMID: 31386964 PMCID: PMC6695279 DOI: 10.1016/j.redox.2019.101282] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen and nitrogen species (ROS and RNS, respectively) activate the redox-sensitive Ras small GTPases. The three canonical genes (HRAS, NRAS, and KRAS) are archetypes of the superfamily of small GTPases and are the most common oncogenes in human cancer. Oncogenic Ras is intimately linked to redox biology, mainly in the context of tumorigenesis. The Ras protein structure is highly conserved, especially in effector-binding regions. Ras small GTPases are redox-sensitive proteins thanks to the presence of the NKCD motif (Asn116-Lys 117-Cys118-Asp119). Notably, the ROS- and RNS-based oxidation of Cys118 affects protein stability, activity, and localization, and protein-protein interactions. Cys residues at positions 80, 181, 184, and 186 may also help modulate these actions. Moreover, oncogenic mutations of Gly12Cys and Gly13Cys may introduce additional oxidative centres and represent actionable drug targets. Here, the pathophysiological involvement of Cys-redox regulation of Ras proteins is reviewed in the context of cancer and heart and brain diseases.
Collapse
Affiliation(s)
- Samantha Messina
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, I-00146, Roma, Italy.
| | - Giovanna De Simone
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Paolo Ascenzi
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| |
Collapse
|
3
|
Messina S, Di Zazzo E, Moncharmont B. Early and Late Induction of KRAS and HRAS Proto-Oncogenes by Reactive Oxygen Species in Primary Astrocytes. Antioxidants (Basel) 2017; 6:antiox6030048. [PMID: 28661467 PMCID: PMC5618076 DOI: 10.3390/antiox6030048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 12/13/2022] Open
Abstract
Astrocytes, one of the predominant types of glial cells, function as both supportive and metabolic cells for the brain. Among mammalian tissues, the highest levels of p21Ras protein are detected in the brain. Here, we investigated the expression of KRAS and HRAS proto-oncogenes in primary astrocytes following acute oxidative stimulation. Reactive oxygen species (ROS) changed the expression of proto-oncogenes at both transcriptional and translational levels. De novo protein synthesis analysis measured approximate values of proteins half-life, ranging from 1–4 h, of the different H- and K- isoforms by western blot analysis. Quantitative gene expression analysis of KRAS and HRAS revealed an unexpected short-term induction of KRAS mRNA in primary astrocytes in response to acute stimulation. Indeed, cultured astrocytes responded to proteasomal inhibition by preventing the reduction of c-K-Ras. A fraction of K-Ras protein accumulated in the presence of ROS and cycloheximide, while a substantial proportion was continuously synthesized. These data indicate that ROS regulate in a complementary fashion p21Ras isoforms in primary astrocytes: K-Ras is rapidly and transiently induced by post-translational and post-transcriptional mechanisms, while H-Ras is stably induced by mRNA accumulation. We suggest that K-Ras and H-Ras are ROS sensors that adapt cells to metabolic needs and oxidative stress.
Collapse
Affiliation(s)
- Samantha Messina
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, Cassino 03043, Italy.
| | - Erika Di Zazzo
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso 86100, Italy.
| | - Bruno Moncharmont
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso 86100, Italy.
| |
Collapse
|
4
|
Zhao J, Zheng Y, Xue F, Chang Y, Yang H, Zhang J. Molecular basis of reactive oxygen species-induced inactivation of α4β2 nicotinic acetylcholine receptors. Free Radic Biol Med 2016; 97:520-530. [PMID: 27445102 DOI: 10.1016/j.freeradbiomed.2016.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/03/2016] [Accepted: 07/16/2016] [Indexed: 01/11/2023]
Abstract
The α4β2 neuronal nicotinic acetylcholine receptors (nAChRs) are the most widespread heteromeric nAChR subtype in the brain, mediating fast synaptic transmission. Previous studies showed that α4β2 nAChRs could be inactivated by reactive oxygen species (ROS), but the underlying mechanism is still obscure. We found that H2O2 induced the rundown of ACh-evoked currents in human α4β2 nAChRs and the replacement of the conserved cysteine in the M1-M2 linker of either α4 Cys245 or β2 Cys237 with an alanine residue could prevent the current rundown. Structurally, α4 Cys245 and β2 Cys237 are hypothesized to be in close proximity when the receptor is activated. Western blotting results showed that α4 and β2 subunits were cross-linked when the agonist-bound receptor encountered H2O2, which could be prevented by the substitution of the conserved cysteine in the M1-M2 linker to an alanine. Thus, when agonist bound to the receptor, α4 Cys245 and β2 Cys237 came close to each other and ROS oxidized these conserved cysteines, leading subunits to be cross-linked and trapping α4β2 nAChRs into the inactivation state. In addition, we mimicked an experimental Parkinson's disease (PD) model in PC12 cells and found that ROS, generated by 6-hydroxydopamine (6-OHDA), could cause the current rundown in α4β2 nAChRs, which may play a role in PD.
Collapse
Affiliation(s)
- Junjun Zhao
- Department of Neurobiology, Beijing Institute of Brain Disorders, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing Key Laboratory of Brain Major Disorders-State Key Lab Incubation Base, Beijing Neuroscience Disciplines, Beijing 100069, China
| | - Yan Zheng
- Department of Neurobiology, Beijing Institute of Brain Disorders, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing Key Laboratory of Brain Major Disorders-State Key Lab Incubation Base, Beijing Neuroscience Disciplines, Beijing 100069, China
| | - Fenqin Xue
- Medical Experiment and Test Center, Capital Medical University, Beijing 100069, China
| | - Yongchang Chang
- Division of Neurobiology, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Hui Yang
- Department of Neurobiology, Beijing Institute of Brain Disorders, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing Key Laboratory of Brain Major Disorders-State Key Lab Incubation Base, Beijing Neuroscience Disciplines, Beijing 100069, China.
| | - Jianliang Zhang
- Department of Neurobiology, Beijing Institute of Brain Disorders, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing Key Laboratory of Brain Major Disorders-State Key Lab Incubation Base, Beijing Neuroscience Disciplines, Beijing 100069, China.
| |
Collapse
|
5
|
Liu L, Ling X, Tang H, Chen J, Wen Q, Zou F. Poly(ADP-ribosyl)ation enhances H-RAS protein stability and causes abnormal cell cycle progression in human TK6 lymphoblastoid cells treated with hydroquinone. Chem Biol Interact 2015; 238:1-8. [PMID: 26047893 DOI: 10.1016/j.cbi.2015.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 05/24/2015] [Accepted: 05/28/2015] [Indexed: 01/26/2023]
Abstract
Hydroquinone (HQ), one of the most important benzene-derived metabolites, can induce aberrant cell cycle progression; however, the mechanism of this induction remains unclear. Poly(ADP-ribosyl)ation (PARylation), which is catalysed primarily by poly(ADP-ribose) polymerase-1 (PARP-1), participates in various biological processes, including cell cycle control. The results of the present study show an accumulation in G1 phase versus S phase of TK6 human lymphoblast cells treated with HQ for 48h compared with PBS-treated cells; after 72h of HQ treatment, the cells transitioned from G1 arrest to S phase arrest. We examined the expression of six genes related to the cell cycle or leukaemia to further explore the reason for this phenomenon. Among these genes, H-RAS was found to be associated with this phenomenon because its mRNA and protein expression decreased at 48h and increased at 72h. Experiments for PARP activity induction and inhibition revealed that the observed PARylation was positively associated with H-RAS expression. Moreover, in cells treated with HQ in conjunction with PARP-1 knockdown, expression of the H-RAS protein decreased and the number of cells in G1 phase increased. The degree of poly(ADP-ribosyl) modification of the H-RAS protein increased in cells treated with HQ for 72h, further supporting that changes in PARylation contributed to the rapid alteration of H-RAS protein expression, followed by abnormal progression of the cell cycle. Co-immunoprecipitation (co-IP) assays were employed to determine whether protein complexes were formed by PARP-1 and H-RAS proteins, and the direct interaction between these proteins indicated that PARylation regulated H-RAS expression. As detected by confocal microscopy, the H-RAS protein was found in the nucleus and cytoplasm. To our knowledge, this study is the first to reveal that H-RAS protein can be modified by PARylation.
Collapse
Affiliation(s)
- Linhua Liu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, PR China; Department of Environmental and Occupational Health, Institute for Environment and Health, School of Public Health, Guangdong Medical College, Dongguan 523808, PR China
| | - Xiaoxuan Ling
- Department of Environmental and Occupational Health, Institute for Environment and Health, School of Public Health, Guangdong Medical College, Dongguan 523808, PR China
| | - Huanwen Tang
- Department of Environmental and Occupational Health, Institute for Environment and Health, School of Public Health, Guangdong Medical College, Dongguan 523808, PR China
| | - Jialong Chen
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, PR China; Department of Environmental and Occupational Health, Institute for Environment and Health, School of Public Health, Guangdong Medical College, Dongguan 523808, PR China
| | - Qiaosheng Wen
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, PR China; School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
6
|
González-Flores D, Rodríguez AB, Pariente JA. TNFα-induced apoptosis in human myeloid cell lines HL-60 and K562 is dependent of intracellular ROS generation. Mol Cell Biochem 2014; 390:281-7. [PMID: 24488173 DOI: 10.1007/s11010-014-1979-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/21/2014] [Indexed: 12/26/2022]
Abstract
The present study determines the role of reactive oxygen species (ROS) production and calcium signaling evoked by the tumor necrosis factor-alpha (TNFα) on apoptosis in the human leukemia HL-60 and K562 cell lines. The results show that treatment of both cell lines cells with 10 ng/mL TNFα resulted in a rise in the percentage of apoptotic cells after 6 h of treatment. It was also observed that the administration of 10 ng/mL TNFα increased intracellular ROS production, as well as a time-dependent increase in caspase-8, -3, and -9 activities. The present results also show that the pretreatment with well-known antioxidants such as trolox and N-acetyl cysteine partially reduced the caspase activation caused by the administration of TNFα. The findings suggest that TNFα-induced apoptosis is dependent on alterations in intracellular ROS generation in human leukemia HL-60 and K562 cells.
Collapse
Affiliation(s)
- D González-Flores
- Department of Physiology, Neuroimmunophysiology and Chrononutrition Research Group, Faculty of Science, University of Extremadura, 06006, Badajoz, Spain,
| | | | | |
Collapse
|