1
|
Luo J, Shen S, Xia J, Wang J, Gu Z. Mitochondria as the Essence of Yang Qi in the Human Body. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:336-348. [PMID: 36939762 PMCID: PMC9590506 DOI: 10.1007/s43657-022-00060-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/26/2022]
Abstract
The concept of Yang Qi in Traditional Chinese Medicine (TCM) has many similarities with mitochondria in modern medicine. Both are indispensable to human beings and closely related to life and death. This article discusses the similarities in various aspects between mitochondria and Yang Qi, including body temperature, aging, newborns, circadian rhythm, immunity, and meridian. It is well-known that Yang Qi is vital for human health. Interestingly, decreased mitochondrial function is thought to be key to the development of various diseases. Here, we further explain diseases induced by Yang Qi deficiency, such as cancer, chronic fatigue syndrome, sleep disorder, senile dementia, and metabolic diseases, from the perspective of mitochondrial function. We aim to establish similarities and connections between two important concepts, and hope our essay can stimulate further discussion and investigation on unifying important concepts in western medicine and alternative medicine, especially TCM, and provide unique holistic insights into understanding human health.
Collapse
Affiliation(s)
- Junjie Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193 China
| | - Shiwei Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Jingjing Xia
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853 USA
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458 China
| |
Collapse
|
2
|
Wang K, Ye X, Yin C, Ren Q, Chen Y, Qin X, Duan C, Lu A, Gao L, Guan D. Computational Metabolomics Reveals the Potential Mechanism of Matrine Mediated Metabolic Network Against Hepatocellular Carcinoma. Front Cell Dev Biol 2022; 10:859236. [PMID: 35938176 PMCID: PMC9354776 DOI: 10.3389/fcell.2022.859236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a complex issue in cancer treatment in the world at present. Matrine is the main active ingredient isolated from Sophora flavescens air and possesses excellent antitumor effects in HCC. However, the specific underlying mechanisms, especially the possible relationships between the anti-HCC effect of matrine and the related metabolic network of HCC, are not yet clear and need further clarification. In this study, an integrative metabolomic-based bioinformatics algorithm was designed to explore the underlying mechanism of matrine on HCC by regulating the metabolic network. Cell clone formation, invasion, and adhesion assay were utilized in HCC cells to evaluate the anti-HCC effect of matrine. A cell metabolomics approach based on LC-MS was used to obtain the differential metabolites and metabolic pathways regulated by matrine. The maximum activity contribution score model was developed and applied to calculate high contribution target genes of matrine, which could regulate a metabolic network based on the coexpression matrix of matrine-regulated metabolic genes and targets. Matrine significantly repressed the clone formation and invasion, enhanced cell–cell adhesion, and hampered cell matrix adhesion in SMMC-7721 cells. Metabolomics results suggested that matrine markedly regulated the abnormal metabolic network of HCC by regulating the level of choline, creatine, valine, spermidine, 4-oxoproline, D-(+)-maltose, L-(−)-methionine, L-phenylalanine, L-pyroglutamic acid, and pyridoxine, which are involved in D-glutamine and D-glutamate metabolism, glycine, serine and threonine metabolism, arginine and proline metabolism, etc. Our proposed metabolomic-based bioinformatics algorithm showed that the regulating metabolic networks of matrine exhibit anti-HCC effects through acting on MMP7, ABCC1, PTGS1, etc. At last, MMP7 and its related target β-catenin were validated. Together, the metabolomic-based bioinformatics algorithm reveals the effects of the regulating metabolic networks of matrine in treating HCC relying on the unique characteristics of the multitargets and multipathways of traditional Chinese medicine.
Collapse
Affiliation(s)
- Kexin Wang
- National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Neurosurgery Institute, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong SAR, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiangmin Ye
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chuanhui Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qing Ren
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong SAR, China
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yupeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Chuanzhi Duan
- National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Neurosurgery Institute, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Aiping Lu
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong SAR, China
- *Correspondence: Aiping Lu, ; Li Gao, ; Daogang Guan,
| | - Li Gao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- *Correspondence: Aiping Lu, ; Li Gao, ; Daogang Guan,
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
- *Correspondence: Aiping Lu, ; Li Gao, ; Daogang Guan,
| |
Collapse
|
3
|
The Effects of Radix Astragali Water Abstract on Energy Metabolism in Rat Yang-Deficiency Cold Syndrome Model through PPAR Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9194362. [PMID: 30519272 PMCID: PMC6241352 DOI: 10.1155/2018/9194362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/09/2018] [Indexed: 12/23/2022]
Abstract
Radix Astragali (RA) herb with warm property and significant “tonifying qi” effects is indicated for the syndrome of internal cold due to Yang deficiency. The purpose of this research was to explore effects of Radix Astragali (RA) through PPAR signaling pathway on gene expression profiles related to energy metabolism in rats with the Yang-deficiency cold (YDC) syndrome, for identifying the pathological mechanism of Yang-deficiency cold (YDC) syndrome and the effects mechanism of RA. The results indicated that RA could significantly increase body weight (BM), cold and heat tendency (CT), overall temperature (OT), rectum temperature (RT), toe temperature (TT), energy intake (EI), and V(O2)/V(CO2) ratio (which indicates basal metabolism, BM) (P<0.05), enhancing the depressed metabolic function in YDC syndrome model rat. Our data also indicated differentially expressed genes (DEGs) related to energy metabolism involving lipids, carbohydrates, and amino acids metabolic process; the expression of CPT-1 and FABP4 (ap2) was improved; PPAR, Glycolysis, Wnt, cAMP, MAPK, AMPK, and fatty acid degradation signaling pathway may be related to energy metabolism. However, the Chinese herbal medicine RA plays a certain role in promoting the metabolism of substances and energy in rats by its warming and beneficial effect. Our results suggest that the mechanism underlying the function of RA may take effect through the regulation of PPAR signaling pathway and related gene expression. Lipids, carbohydrates, and amino acids metabolic process may be affected to adjust the reduced metabolic function in the model animals. In general, results indicate that RA could promote energy metabolism in rats with the YDC syndrome via PPAR signaling pathway regulating the expression of CPT-1 and FABP4 (ap2), which reflected the warm and qi tonifying properties of RA.
Collapse
|
4
|
Yang/Qi invigoration: an herbal therapy for chronic fatigue syndrome with yang deficiency? EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:945901. [PMID: 25763095 PMCID: PMC4339790 DOI: 10.1155/2015/945901] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/10/2014] [Indexed: 11/18/2022]
Abstract
According to traditional Chinese medicine (TCM) theory, Yang and Qi are driving forces of biological activities in the human body. Based on the crucial role of the mitochondrion in energy metabolism, we propose an extended view of Yang and Qi in the context of mitochondrion-driven cellular and body function. It is of interest that the clinical manifestations of Yang/Qi deficiencies in TCM resemble those of chronic fatigue syndrome in Western medicine, which is pathologically associated with mitochondrial dysfunction. By virtue of their ability to enhance mitochondrial function and its regulation, Yang- and Qi-invigorating tonic herbs, such as Cistanches Herba and Schisandrae Fructus, may therefore prove to be beneficial in the treatment of chronic fatigue syndrome with Yang deficiency.
Collapse
|
5
|
Parvizzadeh N, Sadeghi S, Irani S, Iravani A, Kalayee Z, Rahimi NA, Azadi M, Zamani Z. A Metabonomic Study of the Effect of Methanol Extract of Ginger on Raji Cells Using (1)HNMR Spectroscopy. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2014; 2014:572534. [PMID: 25610655 PMCID: PMC4291193 DOI: 10.1155/2014/572534] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/19/2014] [Accepted: 11/25/2014] [Indexed: 01/08/2023]
Abstract
Cancer is currently a major international health problem. The development of resistance to chemotherapy has resulted in the search for herbal drugs. Ginger is a medicinal plant with several clinical applications. Metabolomics is a simultaneous detection of all the metabolites by use of (1)HNMR or mass spectroscopy and interpretation by modeling software. The purpose of this study was to detect the altered metabolites of Raji cells in the presence of ginger extract in vitro. Cells were cultured in the presence and absence of methanolic ginger extract in RPMI medium. IC50 determined by MTT and lipophilic and hydrophilic extracts were prepared from control and treated groups which were analyzed by (1)HNMR. The IC50 was 1000 μg/mL. Modeling of spectra was carried out on the two groups using OSC-PLS with MATLAB software and the main metabolites detected. Further analysis was carried out using MetaboAnalyst database. The main metabolic pathways affected by the ginger extract were detected. Ginger extract was seen to effect the protein biosynthesis, amino acid, and carbohydrate metabolism and had a strong cytotoxic effect on Raji cells in vitro.
Collapse
Affiliation(s)
- N. Parvizzadeh
- Department of Biology, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran
| | - S. Sadeghi
- Biochemistry Department, Pasteur Institute of Iran, Pasteur Avenue, Tehran 1316943551, Iran
| | - S. Irani
- Department of Biology, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran
| | - A. Iravani
- Biochemistry Department, Pasteur Institute of Iran, Pasteur Avenue, Tehran 1316943551, Iran
| | - Z. Kalayee
- Biochemistry Department, Pasteur Institute of Iran, Pasteur Avenue, Tehran 1316943551, Iran
| | - N. A. Rahimi
- Biochemistry Department, Pasteur Institute of Iran, Pasteur Avenue, Tehran 1316943551, Iran
| | - M. Azadi
- Biochemistry Department, Pasteur Institute of Iran, Pasteur Avenue, Tehran 1316943551, Iran
| | - Z. Zamani
- Biochemistry Department, Pasteur Institute of Iran, Pasteur Avenue, Tehran 1316943551, Iran
| |
Collapse
|
6
|
Zhao L, Wan L, Qiu X, Li R, Liu S, Wang D. A Metabonomics Profiling Study on Phlegm Syndrome and Blood-Stasis Syndrome in Coronary Heart Disease Patients Using Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:385102. [PMID: 25140185 PMCID: PMC4129150 DOI: 10.1155/2014/385102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/20/2014] [Accepted: 05/30/2014] [Indexed: 11/18/2022]
Abstract
A metabonomics approach based on liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS) was utilized to obtain potential biomarkers of coronary heart disease (CHD) patients and investigate the ZHENG types differentiation in CHD patients. The plasma samples of 20 CHD patients with phlegm syndrome, 20 CHD patients with blood-stasis syndrome, and 16 healthy volunteers were collected in the study. 26 potential biomarkers were identified in the plasma of CHD patients and 19 differential metabolites contributed to the discrimination of phlegm syndrome and blood-stasis syndrome in CHD patients (VIP > 1.5; P < 0.05) which mainly involved purine metabolism, pyrimidine metabolism, amino acid metabolism, steroid biosynthesis, and arachidonic acid metabolism. This study demonstrated that metabonomics approach based on LC-MS was useful for studying pathologic changes of CHD patients and interpreting the differentiation of ZHENG types (phlegm and blood-stasis syndrome) in traditional Chinese medicine (TCM).
Collapse
Affiliation(s)
- Linlin Zhao
- Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central south University, Changsha 410008, China
| | - Ling Wan
- Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central south University, Changsha 410008, China
| | - Xinjian Qiu
- Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central south University, Changsha 410008, China
| | - Ruomeng Li
- Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central south University, Changsha 410008, China
| | - Shimi Liu
- Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central south University, Changsha 410008, China
| | - Dongsheng Wang
- Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central south University, Changsha 410008, China
| |
Collapse
|
7
|
Current applications of chromatographic methods for diagnosis and identification of potential biomarkers in cancer. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2013.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
The Association between Yang-Deficient Constitution and Clinical Outcome of Highly Active Antiretroviral Therapy on People Living with HIV. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:201857. [PMID: 24489581 PMCID: PMC3892935 DOI: 10.1155/2013/201857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 12/11/2013] [Accepted: 12/11/2013] [Indexed: 12/26/2022]
Abstract
Objective. To determine the association between Yang-Deficient Constitution and the clinical outcomes of HIV/AIDS patients who have initiated highly active antiretroviral therapy (HAART). Method. A total of 197 antiretroviral-naive adults who initiated HAART between 2009 and 2011 were recruited. The participants were asked to complete a questionnaire twice to assess their Yang-Deficient Constitution status before HAART. During the study, signs and symptoms and CD4 or CD8 T cell counts were recorded. Routine blood and biochemical tests were conducted. For the patients who were found to have infections, pathologic examination was performed. Statistical test of association of clinical attributes and demographic factors with Yang-Deficient Constitution was conducted. Result. Good test-retest reliability was observed for Yang-Deficient Constitution scoring. The median Yang-Deficient Constitution score of 142 eligible participants was 25. Female (score = 32.14, P < 0.05), hepatotoxicity (32.14, P < 0.1), nephrotoxicity (37.50, P < 0.1), total number of adverse events (P < 0.1), and mortality (39.29, P < 0.05) were associated with Yang-Deficient Consitution, while annual changes or nadir values of CD4 or CD8 T lymphocytes, and newly acquired infections after starting HAART were not. Mortality was also associated with total number of adverse events (P < 0.05), hepatotoxicity (P < 0.05), and nephrotoxicity (P < 0.05). Conclusion. Yang-Deficient Constitution score has a potential to be developed as a predictor for early HIV-related mortality and side effects. The interrelation and underlying mechanisms should be further investigated for evidence-based design of a more appropriate treatment strategy.
Collapse
|