1
|
Zhang S, Huang Y, Han C, Chen M, Yang Z, Wang C. Circulating mitochondria carrying cGAS promote endothelial Secreted group IIA phospholipase A2-mediated neuroinflammation through activating astroglial/microglial Integrin-alphavbeta3 in subfornical organ to augment central sympathetic overdrive in heart failure rats. Int Immunopharmacol 2025; 144:113649. [PMID: 39586230 DOI: 10.1016/j.intimp.2024.113649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Sympathoexcitation, a manifestation of heart-brain axis dysregulation, contributes to the progression of heart failure (HF). Our recent study revealed that circulating mitochondria (C-Mito), a newly identified mediator of multi-organ communication, promote sympathoexcitation in HF by aggravating endothelial cell (EC)-derived neuroinflammation in the subfornical organ (SFO), the cardiovascular autonomic neural center. The precise molecular mechanism by which C-Mito promotes SFO-induced endothelial neuroinflammation has not been fully elucidated. OBJECTIVE C-Mito carrying cGAS promote sympathoexcitation by targeting PLA2G2A in ECs of the SFO in HF rats. METHODS Male Sprague-Dawley (SD) rats received a subcutaneous injection of isoprenaline (ISO) at a dosage of 5 mg/kg/day for seven consecutive days to establish a HF model. C-Mito were isolated from HF rats and evaluated. The level of cGAS, a dsDNA sensor recently discovered to be directly localized on the outer membrane of mitochondria, was detected in C-Mito. C-Mito from HF rats (C-MitoHF) or control rats (C-MitoCtrl) were intravenously infused into HF rats. The accumulation of C-Mito in the ECs in the SFO was detected via double immunofluorescence staining. The SFO was processed for RNA sequencing (RNA-Seq) analysis. Secreted group IIA phospholipase A2 (PLA2G2A), the key gene involved in C-MitoHF-associated SFO dysfunction, was identified via bioinformatics analysis. Upregulation of PLA2G2A in the SFO ECs was assessed via immunofluorescence staining and immunoblotting, and PLA2G2A activity was evaluated. The interaction between cGAS and PLA2G2A was detected via co-immunoprecipitation. The dowstream molecular mechanisms of which PLA2G2A induced astroglial/microglial activation were also investigated. AAV9-TIE-shRNA (PLA2G2A) was introduced into the SFO to specifically knockdown endothelial PLA2G2A. Neuronal activation and glial proinflammatory polarization in the SFO were also evaluated. Renal sympathetic nerve activity (RSNA) was measured to evaluate central sympathetic output. Cardiac sympathetic hyperinnervation, myocardial remodeling, and left ventricular systolic function were assessed in C-Mito-treated HF rats. RESULTS Respiratory functional incompetence and oxidative damage were observed in C-MitoHF compared with C-MitoCtrl. Surprisingly, cGAS protein levels in C-MitoHF were significantly higher than those in C-MitoCtrl, while blocking cGAS with its specific inhibitor, RU.521, mitigated respiratory dysfunction and oxidative injury in C-MitoHF. C-Mito entered the ECs of the SFO in HF rats. RNA sequencing revealed that PLA2G2A is a key molecule for the induction of SFO dysfunction by C-MitoHF. The immunoblotting and immunofluorescence results confirmed that, compared with C-MitoCtrl, C-MitoHF increased endothelial PLA2G2A expression in the SFO of HF rats, which could be alleviated by attenuating C-MitoHF-localized cGAS. Furthermore, we found that cGAS directly interacts with PLA2G2A, increased the activity of PLA2AG2, which produced arachidonic acid, and also promoted PLA2G2A secretion in brain ECs. In addition, the inhibition of PLA2G2A in brain ECs significantly mitigated the proinflammatory effect of conditioned cell culture medium from C-MitoHF-treated ECs on astroglia and microglia. Also, we found that PLA2G2A secreted from ECs insulted by C-Mito induced neuroinflammation through activating astriglial/microglial Integrin-alphavbeta3 in the SFO, which further promote central sympathetic overdrive in HF rats. Specific knockdown of endothelial PLA2G2A in the SFO mitigated C-MitoHF-induced presympathetic neuronal sensitization, cardiac sympathetic hyperinnervation, RSNA activation, myocardial remodeling, and systolic dysfunction in HF rats. CONCLUSION C-Mito carrying cGAS promoted cardiac sympathoexcitation by directly targeting PLA2G2A in the ECs of the SFO in HF rats. Secreted PLA2G2A derived from ECs insulted by C-Mito induced neuroinflammation through activating astriglial/microglial Integrin-alphavbeta3 in the SFO, which further promote central sympathetic overdrive in HF rats. Our study indicated that inhibiting cGAS in C-Mito might be a potential treatment for central sympathetic overdrive in HF.
Collapse
Affiliation(s)
- Shutian Zhang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Yijun Huang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Chengzhi Han
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Maoxiang Chen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Zhaohua Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| |
Collapse
|
2
|
Zhang S, Zhao D, Yang Z, Wang F, Yang S, Wang C. Circulating mitochondria promoted endothelial cGAS-derived neuroinflammation in subfornical organ to aggravate sympathetic overdrive in heart failure mice. J Neuroinflammation 2024; 21:27. [PMID: 38243316 PMCID: PMC10799549 DOI: 10.1186/s12974-024-03013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Sympathoexcitation contributes to myocardial remodeling in heart failure (HF). Increased circulating pro-inflammatory mediators directly act on the Subfornical organ (SFO), the cardiovascular autonomic center, to increase sympathetic outflow. Circulating mitochondria (C-Mito) are the novel discovered mediators for inter-organ communication. Cyclic GMP-AMP synthase (cGAS) is the pro-inflammatory sensor of damaged mitochondria. OBJECTIVES This study aimed to assess the sympathoexcitation effect of C-Mito in HF mice via promoting endothelial cGAS-derived neuroinflammation in the SFO. METHODS C-Mito were isolated from HF mice established by isoprenaline (0.0125 mg/kg) infusion via osmotic mini-pumps for 2 weeks. Structural and functional analyses of C-Mito were conducted. Pre-stained C-Mito were intravenously injected every day for 2 weeks. Specific cGAS knockdown (cGAS KD) in the SFO endothelial cells (ECs) was achieved via the administration of AAV9-TIE-shRNA (cGAS) into the SFO. The activation of cGAS in the SFO ECs was assessed. The expression of the mitochondrial redox regulator Dihydroorotate dehydrogenase (DHODH) and its interaction with cGAS were also explored. Neuroinflammation and neuronal activation in the SFO were evaluated. Sympathetic activity, myocardial remodeling, and cardiac systolic dysfunction were measured. RESULTS C-Mito were successfully isolated, which showed typical structural characteristics of mitochondria with double-membrane and inner crista. Further analysis showed impaired respiratory complexes activities of C-Mito from HF mice (C-MitoHF) accompanied by oxidative damage. C-Mito entered ECs, instead of glial cells and neurons in the SFO of HF mice. C-MitoHF increased the level of ROS and cytosolic free double-strand DNA (dsDNA), and activated cGAS in cultured brain endothelial cells. Furthermore, C-MitoHF highly expressed DHODH, which interacted with cGAS to facilitate endothelial cGAS activation. C-MitoHF aggravated endothelial inflammation, microglial/astroglial activation, and neuronal sensitization in the SFO of HF mice, which could be ameliorated by cGAS KD in the ECs of the SFO. Further analysis showed C-MitoHF failed to exacerbate sympathoexcitation and myocardial sympathetic hyperinnervation in cGAS KD HF mice. C-MitoHF promoted myocardial fibrosis and hypertrophy, and cardiac systolic dysfunction in HF mice, which could be ameliorated by cGAS KD. CONCLUSION Collectively, we demonstrated that damaged C-MitoHF highly expressed DHODH, which promoted endothelial cGAS activation in the SFO, hence aggravating the sympathoexcitation and myocardial injury in HF mice, suggesting that C-Mito might be the novel therapeutic target for sympathoexcitation in HF.
Collapse
Affiliation(s)
- Shutian Zhang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Dajun Zhao
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Zhaohua Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Fanshun Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Shouguo Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| |
Collapse
|
3
|
Apaijai N, Arinno A, Palee S, Pratchayasakul W, Kerdphoo S, Jaiwongkam T, Chunchai T, Chattipakorn SC, Chattipakorn N. High‐Saturated Fat High‐Sugar Diet Accelerates Left‐Ventricular Dysfunction Faster than High‐Saturated Fat Diet Alone via Increasing Oxidative Stress and Apoptosis in Obese‐Insulin Resistant Rats. Mol Nutr Food Res 2018; 63:e1800729. [DOI: 10.1002/mnfr.201800729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/24/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Nattayaporn Apaijai
- Cardiac Electrophysiology Research and Training CenterFaculty of MedicineChiang Mai University Chiang Mai 50200 Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University Chiang Mai 50200 Thailand
| | - Apiwan Arinno
- Cardiac Electrophysiology Research and Training CenterFaculty of MedicineChiang Mai University Chiang Mai 50200 Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University Chiang Mai 50200 Thailand
- Cardiac Electrophysiology UnitDepartment of PhysiologyFaculty of MedicineChiang Mai University Chiang Mai 50200 Thailand
| | - Siripong Palee
- Cardiac Electrophysiology Research and Training CenterFaculty of MedicineChiang Mai University Chiang Mai 50200 Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University Chiang Mai 50200 Thailand
| | - Wasana Pratchayasakul
- Cardiac Electrophysiology Research and Training CenterFaculty of MedicineChiang Mai University Chiang Mai 50200 Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University Chiang Mai 50200 Thailand
- Cardiac Electrophysiology UnitDepartment of PhysiologyFaculty of MedicineChiang Mai University Chiang Mai 50200 Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training CenterFaculty of MedicineChiang Mai University Chiang Mai 50200 Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University Chiang Mai 50200 Thailand
| | - Thidarat Jaiwongkam
- Cardiac Electrophysiology Research and Training CenterFaculty of MedicineChiang Mai University Chiang Mai 50200 Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University Chiang Mai 50200 Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training CenterFaculty of MedicineChiang Mai University Chiang Mai 50200 Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University Chiang Mai 50200 Thailand
- Cardiac Electrophysiology UnitDepartment of PhysiologyFaculty of MedicineChiang Mai University Chiang Mai 50200 Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training CenterFaculty of MedicineChiang Mai University Chiang Mai 50200 Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University Chiang Mai 50200 Thailand
- Department of Oral Biology and Diagnostic SciencesFaculty of DentistryChiang Mai University Chiang Mai 50200 Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training CenterFaculty of MedicineChiang Mai University Chiang Mai 50200 Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University Chiang Mai 50200 Thailand
- Cardiac Electrophysiology UnitDepartment of PhysiologyFaculty of MedicineChiang Mai University Chiang Mai 50200 Thailand
| |
Collapse
|
4
|
Smykiewicz P, Segiet A, Keag M, Żera T. Proinflammatory cytokines and ageing of the cardiovascular-renal system. Mech Ageing Dev 2018; 175:35-45. [DOI: 10.1016/j.mad.2018.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/01/2018] [Accepted: 07/19/2018] [Indexed: 12/11/2022]
|
5
|
The Cardiovascular Effect of Systemic Homocysteine Is Associated with Oxidative Stress in the Rostral Ventrolateral Medulla. Neural Plast 2017; 2017:3256325. [PMID: 29098089 PMCID: PMC5643037 DOI: 10.1155/2017/3256325] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/15/2017] [Indexed: 12/31/2022] Open
Abstract
It has been demonstrated that homocysteine (HCY) is a significant risk factor of hypertension, which is characterized by overactivity of sympathetic tone. Excessive oxidative stress in the rostral ventrolateral medulla (RVLM), a key region for control of sympathetic outflow, contributes to sympathetic hyperactivity in hypertension. Therefore, the goal of the present study is to determine the effect of systemic HCY on production of reactive oxygen species (ROS) in the RVLM. In the rat model of the diet-induced hyperhomocysteinemia (L-methionine, 1 g/kg/day, 8 weeks), we found that the HCY resulted in a significant increase (≈3.7-fold, P < 0.05) in ROS production in the RVLM, which was paralleled with enhanced sympathetic tone and blood pressure (BP). Compared to the vehicle group, levels of BP and basal renal sympathetic nerve activity in the HCY group were significantly (P < 0.05, n = 5) increased by an average of 27 mmHg and 31%, respectively. Furthermore, the rats treated with L-methionine (1 g/kg/day, 8 weeks) showed an upregulation of NADPHase (NOX4) protein expression and a downregulation of superoxide dismutase protein expression in the RVLM. The current data suggest that central oxidative stress induced by systemic HCY plays an important role in hypertension-associated sympathetic overactivity.
Collapse
|
6
|
Renal denervation in the treatment of resistant hypertension: Dead, alive or surviving? REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2016. [DOI: 10.1016/j.repce.2016.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
7
|
Al-Fakhouri A, Efeovbokhan N, Nakhla R, Khouzam RN. Renal denervation in the treatment of resistant hypertension: Dead, alive or surviving? Rev Port Cardiol 2016; 35:531-538. [PMID: 27614724 DOI: 10.1016/j.repc.2016.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 04/14/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022] Open
Abstract
Hypertension is one of the most common chronic clinical problems encountered by physicians. The prevalence of resistant hypertension is estimated at 9% in the US. Patients with resistant hypertension have been shown to be at higher risk for adverse cardiovascular events, hence the need for greater efforts in improving the treatment of hypertension. The renal sympathetic nerves play an important role in the development of hypertension, mediated via sodium and water retention, increased renin release and alterations in renal blood flow. The proximity of the afferent and efferent renal sympathetic nerves to the adventitia of the renal arteries suggested the feasibility of an endovascular, selective, minimally invasive approach to renal denervation; a potential treatment option for resistant hypertension. While the RAPID, Reduce-HTN, EnligHTN, DENERHTN and Symplicity HTN-1 and -2 studies showed significant benefit of renal denervation in the treatment of resistant hypertension, the results of Oslo RDN, Prague-15 and Symplicity HTN-3 were not so favorable. Future well-designed clinical trials are needed to ascertain the benefits or otherwise of renal denervation in treatment-resistant hypertension.
Collapse
Affiliation(s)
- Ahmad Al-Fakhouri
- Department of Medicine, Methodist South Hospital, Memphis, TN, United States.
| | - Nephertiti Efeovbokhan
- Department of Medicine, Division of Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Rami Nakhla
- Ain Shams University School of Medicine, Cairo, Egypt
| | - Rami N Khouzam
- Department of Medicine, Division of Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
8
|
Bilateral Renal Denervation Ameliorates Isoproterenol-Induced Heart Failure through Downregulation of the Brain Renin-Angiotensin System and Inflammation in Rat. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3562634. [PMID: 27746855 PMCID: PMC5056308 DOI: 10.1155/2016/3562634] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/08/2016] [Accepted: 08/15/2016] [Indexed: 11/21/2022]
Abstract
Heart failure (HF) is characterized by cardiac dysfunction along with autonomic unbalance that is associated with increased renin-angiotensin system (RAS) activity and elevated levels of proinflammatory cytokines (PICs). Renal denervation (RD) has been shown to improve cardiac function in HF, but the protective mechanisms remain unclear. The present study tested the hypothesis that RD ameliorates isoproterenol- (ISO-) induced HF through regulation of brain RAS and PICs. Chronic ISO infusion resulted in remarked decrease in blood pressure (BP) and increase in heart rate and cardiac dysfunction, which was accompanied by increased BP variability and decreased baroreflex sensitivity and HR variability. Most of these adverse effects of ISO on cardiac and autonomic function were reversed by RD. Furthermore, ISO upregulated mRNA and protein expressions of several components of the RAS and PICs in the lamina terminalis and hypothalamic paraventricular nucleus, two forebrain nuclei involved in cardiovascular regulations. RD significantly inhibited the upregulation of these genes. Either intracerebroventricular AT1-R antagonist, irbesartan, or TNF-α inhibitor, etanercept, mimicked the beneficial actions of RD in the ISO-induced HF. The results suggest that the RD restores autonomic balance and ameliorates ISO-induced HF and that the downregulated RAS and PICs in the brain contribute to these beneficial effects of RD.
Collapse
|
9
|
Besnier F, Labrunée M, Pathak A, Pavy-Le Traon A, Galès C, Sénard JM, Guiraud T. Exercise training-induced modification in autonomic nervous system: An update for cardiac patients. Ann Phys Rehabil Med 2016; 60:27-35. [PMID: 27542313 DOI: 10.1016/j.rehab.2016.07.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/01/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022]
Abstract
Patients with cardiovascular disease show autonomic dysfunction, including sympathetic activation and vagal withdrawal, which leads to fatal events. This review aims to place sympathovagal balance as an essential element to be considered in management for cardiovascular disease patients who benefit from a cardiac rehabilitation program. Many studies showed that exercise training, as non-pharmacologic treatment, plays an important role in enhancing sympathovagal balance and could normalize levels of markers of sympathetic flow measured by microneurography, heart rate variability or plasma catecholamine levels. This alteration positively affects prognosis with cardiovascular disease. In general, cardiac rehabilitation programs include moderate-intensity and continuous aerobic exercise. Other forms of activities such as high-intensity interval training, breathing exercises, relaxation and transcutaneous electrical stimulation can improve sympathovagal balance and should be implemented in cardiac rehabilitation programs. Currently, the exercise training programs in cardiac rehabilitation are individualized to optimize health outcomes. The sports science concept of the heart rate variability (HRV)-vagal index used to manage exercise sessions (for a goal of performance) could be implemented in cardiac rehabilitation to improve cardiovascular fitness and autonomic nervous system function.
Collapse
Affiliation(s)
- Florent Besnier
- Institute of Cardiovascular and Metabolic Diseases, National Institute of Health and Medical Research (INSERM), UMR-1048, Toulouse, France; Clinic of Saint-Orens, Cardiovascular and Pulmonary Rehabilitation Center, Saint-Orens-de-Gameville, France
| | - Marc Labrunée
- Institute of Cardiovascular and Metabolic Diseases, National Institute of Health and Medical Research (INSERM), UMR-1048, Toulouse, France; Department of Rehabilitation, Toulouse University Hospital, Toulouse, France
| | - Atul Pathak
- Institute of Cardiovascular and Metabolic Diseases, National Institute of Health and Medical Research (INSERM), UMR-1048, Toulouse, France; Unit of Hypertension, Risk Factors and Heart Failure, Clinique Pasteur, Toulouse, France
| | - Anne Pavy-Le Traon
- Institute of Cardiovascular and Metabolic Diseases, National Institute of Health and Medical Research (INSERM), UMR-1048, Toulouse, France
| | - Céline Galès
- Institute of Cardiovascular and Metabolic Diseases, National Institute of Health and Medical Research (INSERM), UMR-1048, Toulouse, France
| | - Jean-Michel Sénard
- Institute of Cardiovascular and Metabolic Diseases, National Institute of Health and Medical Research (INSERM), UMR-1048, Toulouse, France
| | - Thibaut Guiraud
- Institute of Cardiovascular and Metabolic Diseases, National Institute of Health and Medical Research (INSERM), UMR-1048, Toulouse, France; Clinic of Saint-Orens, Cardiovascular and Pulmonary Rehabilitation Center, Saint-Orens-de-Gameville, France.
| |
Collapse
|
10
|
Estrogen Replacement Reduces Oxidative Stress in the Rostral Ventrolateral Medulla of Ovariectomized Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:2158971. [PMID: 26640612 PMCID: PMC4657113 DOI: 10.1155/2016/2158971] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/06/2015] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease prevalence rises rapidly after menopause, which is believed to be derived from the loss of estrogen. It is reported that sympathetic tone is increased in postmenopause. The high level of oxidative stress in the rostral ventrolateral medulla (RVLM) contributes to increased sympathetic outflow. The focus of this study was to determine if estrogen replacement reduces oxidative stress in the RVLM and sympathetic outflow in the ovariectomized (OVX) rats. The data of this study showed that OVX rat increased oxidative stress in the RVLM and sympathetic tone; estrogen replacement improved cardiovascular functions but also reduced the level of oxidative stress in the RVLM. These findings suggest that estrogen replacement decreases blood pressure and sympathoexcitation in the OVX rats, which may be associated with suppression in oxidative stress in the RVLM through downregulation of protein expression of NADPHase (NOX4) and upregulation of protein expression of SOD1. The data from this study is beneficial for our understanding of the mechanism of estrogen exerting cardiovascular protective effects on postmenopause.
Collapse
|
11
|
Campos FV, Neves LM, Da Silva VZ, Cipriano GF, Chiappa GR, Cahalin L, Arena R, Cipriano G. Hemodynamic Effects Induced by Transcutaneous Electrical Nerve Stimulation in Apparently Healthy Individuals: A Systematic Review With Meta-Analysis. Arch Phys Med Rehabil 2015; 97:826-35. [PMID: 26384939 DOI: 10.1016/j.apmr.2015.08.433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/13/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To determine the immediate effects of transcutaneous electrical nerve stimulation (TENS) on heart rate, systolic blood pressure (SBP), and diastolic blood pressure (DBP) in apparently healthy adults (age ≥18y). DATA SOURCES The Cochrane Library (online version 2014), PubMed (1962-2014), EMBASE (1980-2014), and LILACS (1980-2014) electronic databases were searched. STUDY SELECTION Randomized controlled trials were included when TENS was administered noninvasively with surface electrodes during rest, and the effect of TENS was compared with that of control or placebo TENS. A sensitive search strategy for identifying randomized controlled trials was used by 2 independent reviewers. The initial search led to the identification of 432 studies, of which 5 articles met the eligibility criteria. DATA EXTRACTION Two independent reviewers extracted data from the selected studies. Quality was evaluated using the PEDro scale. Mean differences or standardized mean differences in outcomes were calculated. DATA SYNTHESIS Five eligible articles involved a total of 142 apparently healthy individuals. Four studies used high-frequency TENS and 3 used low-frequency TENS and evaluated the effect on SBP. Three studies using high-frequency TENS and 2 using low-frequency TENS evaluated the effect on DBP. Three studies using high-frequency TENS and 1 study using low-frequency TENS evaluated the effect on heart rate. A statistically significant reduction in SBP (-3.00mmHg; 95% confidence interval [CI], -5.02 to -0.98; P=.004) was found using low-frequency TENS. A statistically significant reduction in DBP (-1.04mmHg; 95% CI, -2.77 to -0.03; I(2)=61%; P=.04) and in heart rate (-2.55beats/min; 95% CI, -4.31 to -0.78; I(2)=86%; P=.005]) was found using both frequencies. The median value on the PEDro scale was 7 (range, 4-8). CONCLUSIONS TENS seems to promote a discrete reduction in SBP, DBP, and heart rate in apparently healthy individuals.
Collapse
Affiliation(s)
- Filippe V Campos
- Health Sciences and Technologies PhD Program, Department of Physical Therapy, University of Brasilia, Brasilia, Brazil; Cardiac Rehabilitation Ambulatory, Armed Forces Hospital, Brasilia, Brazil
| | - Laura M Neves
- Health Sciences and Technologies PhD Program, Department of Physical Therapy, University of Brasilia, Brasilia, Brazil; University of Para, Belém, Brazil
| | - Vinicius Z Da Silva
- Health Sciences and Technologies PhD Program, Department of Physical Therapy, University of Brasilia, Brasilia, Brazil
| | - Graziella F Cipriano
- Health Sciences and Technologies PhD Program, Department of Physical Therapy, University of Brasilia, Brasilia, Brazil
| | - Gaspar R Chiappa
- Exercise Pathophysiology Research Laboratory, Cardiology Division, Porto Alegre Hospital, Porto Alegre, Brazil
| | - Lawrence Cahalin
- Department of Physical Therapy, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Ross Arena
- Department of Physical Therapy, College of Applied Health Sciences, Chicago, IL; Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL
| | - Gerson Cipriano
- Health Sciences and Technologies PhD Program, Department of Physical Therapy, University of Brasilia, Brasilia, Brazil.
| |
Collapse
|
12
|
de Sousa Almeida M, de Araújo Gonçalves P, Infante de Oliveira E, Cyrne de Carvalho H. Renal denervation for resistant hypertension. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2015. [DOI: 10.1016/j.repce.2014.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
13
|
de Sousa Almeida M, de Araújo Gonçalves P, Infante de Oliveira E, Cyrne de Carvalho H. Renal denervation for resistant hypertension. Rev Port Cardiol 2015; 34:125-35. [DOI: 10.1016/j.repc.2014.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 07/31/2014] [Indexed: 12/24/2022] Open
|
14
|
Chhabra SK, Gupta M, Ramaswamy S, Dash DJ, Bansal V, Deepak KK. Cardiac Sympathetic Dominance and Systemic Inflammation in COPD. COPD 2014; 12:552-9. [DOI: 10.3109/15412555.2014.974743] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Ma L, Cui B, Shao Y, Ni B, Zhang W, Luo Y, Zhang S. Electroacupuncture improves cardiac function and remodeling by inhibition of sympathoexcitation in chronic heart failure rats. Am J Physiol Heart Circ Physiol 2014; 306:H1464-71. [PMID: 24585780 DOI: 10.1152/ajpheart.00889.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic heart failure (CHF) is responsible for significant morbidity and mortality worldwide, mainly as a result of neurohumoral activation. Acupuncture has been used to treat a wide range of diseases and conditions. In this study, we investigated the effects of electroacupuncture (EA) on the sympathetic nerve activity, heart function, and remodeling in CHF rats after ligation of the left anterior descending coronary artery. CHF rats were randomly selected to EA and control groups for acute and chronic experiments. In the acute experiment, both the renal sympathetic nerve activity and cardiac sympathetic afferent reflex elicited by epicardial application of capsaicin were recorded. In the chronic experiment, we performed EA for 30 min once a day for 1 wk to test the long-term EA effects on heart function, remodeling, as well as infarct size in CHF rats. The results show EA significantly decreased the renal sympathetic nerve activity effectively, inhibited cardiac sympathetic afferent reflex, and lowered the blood pressure of CHF rats. Treating CHF rats with EA for 1 wk dramatically increased left ventricular ejection fraction and left ventricular fraction shortening, reversed the enlargement of left ventricular end-systolic dimension and left ventricular end-diastolic dimension, and shrunk the infarct size. In this experiment, we demonstrated EA attenuates sympathetic overactivity. Additionally, long-term EA improves cardiac function and remodeling and reduces infarct size in CHF rats. EA is a novel and potentially useful therapy for treating CHF.
Collapse
Affiliation(s)
- Luyao Ma
- Division of Cardiothoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Baiping Cui
- Division of Physiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yongfeng Shao
- Division of Cardiothoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Buqing Ni
- Division of Cardiothoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Weiran Zhang
- Division of Cardiothoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Yonggang Luo
- Division of Cardiothoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Shijiang Zhang
- Division of Cardiothoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
16
|
Abstract
PURPOSE This review highlights the physiological mechanisms underlying the neural regulation of the kidney, normally to maintain cardiovascular homeostasis, and in pathophysiological states of hypertension and renal disease. It is relevant because of the demonstration that bilateral renal denervation in different hypertensive groups causes a sustained reduction in blood pressure. RECENT FINDINGS There are patients groups in whom their hypertension is resistant to antihypertensive drugs or with renal diseases in which they are contraindicated. Recently, medical devices have been developed to manipulate the sympathetic nervous system, for example, implantation of carotid sinus nerve stimulating electrodes and ablation of the renal innervation. These approaches have been relatively successful but there remains a lack of understanding of the neural mechanisms impinging on the kidney that regulate long-term control of blood pressure. SUMMARY The observation that bilateral renal nerve ablation can reduce blood pressure represents an important therapeutic milestone. Nonetheless, questions arise as to the underlying mechanisms, the long-term consequences, whether there may be re-innervation over a number of years, or whether some unknown consequence to the denervation may arise. This may point to the development of novel compounds targeted to the innervation of the kidney.
Collapse
|
17
|
Almeida OP, Garrido GJ, Etherton-Beer C, Lautenschlager NT, Arnolda L, Alfonso H, Flicker L. Brain and mood changes over 2 years in healthy controls and adults with heart failure and ischaemic heart disease. Eur J Heart Fail 2014; 15:850-8. [DOI: 10.1093/eurjhf/hft029] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Osvaldo P. Almeida
- School of Psychiatry & Clinical Neurosciences; University of Western Australia; Perth Australia
- Western Australian Centre for Health & Ageing; Centre for Medical Research, University of Western Australia; Perth Australia
- Department of Psychiatry; Royal Perth Hospital; Perth Australia
| | - Griselda J. Garrido
- School of Psychiatry & Clinical Neurosciences; University of Western Australia; Perth Australia
- Western Australian Centre for Health & Ageing; Centre for Medical Research, University of Western Australia; Perth Australia
| | - Christopher Etherton-Beer
- Western Australian Centre for Health & Ageing; Centre for Medical Research, University of Western Australia; Perth Australia
- School of Medicine and Pharmacology; University of Western Australia; Perth Australia
- Department of Geriatric Medicine; Royal Perth Hospital; Perth Australia
| | - Nicola T. Lautenschlager
- School of Psychiatry & Clinical Neurosciences; University of Western Australia; Perth Australia
- Western Australian Centre for Health & Ageing; Centre for Medical Research, University of Western Australia; Perth Australia
- Academic Unit for Psychiatry of Old Age, St Vincent's Health, Department of Psychiatry; University of Melbourne; Melbourne Australia
| | - Leonard Arnolda
- Academic Unit of Internal Medicine; Australian National University Medical School; Canberra Australia
| | - Helman Alfonso
- School of Psychiatry & Clinical Neurosciences; University of Western Australia; Perth Australia
- Western Australian Centre for Health & Ageing; Centre for Medical Research, University of Western Australia; Perth Australia
| | - Leon Flicker
- Western Australian Centre for Health & Ageing; Centre for Medical Research, University of Western Australia; Perth Australia
- School of Medicine and Pharmacology; University of Western Australia; Perth Australia
- Department of Geriatric Medicine; Royal Perth Hospital; Perth Australia
| |
Collapse
|
18
|
Abstract
Statins (3-hydroxy-3-methylglutaryl-CoA reductase inhibitors) reduce plasma cholesterol and improve endothelium-dependent vasodilation, inflammation and oxidative stress. A ‘pleiotropic’ property of statins receiving less attention is their effect on the autonomic nervous system. Increased central sympathetic outflow and diminished cardiac vagal tone are disturbances characteristic of a range of cardiovascular conditions for which statins are now prescribed routinely to reduce cardiovascular events: following myocardial infarction, and in hypertension, chronic kidney disease, heart failure and diabetes. The purpose of the present review is to synthesize contemporary evidence that statins can improve autonomic circulatory regulation. In experimental preparations, high-dose lipophilic statins have been shown to reduce adrenergic outflow by attenuating oxidative stress in central brain regions involved in sympathetic and parasympathetic discharge induction and modulation. In patients with hypertension, chronic kidney disease and heart failure, lipophilic statins, such as simvastatin or atorvastatin, have been shown to reduce MNSA (muscle sympathetic nerve activity) by 12–30%. Reports concerning the effect of statin therapy on HRV (heart rate variability) are less consistent. Because of their implications for BP (blood pressure) control, insulin sensitivity, arrhythmogenesis and sudden cardiac death, these autonomic nervous system actions should be considered additional mechanisms by which statins lower cardiovascular risk.
Collapse
|
19
|
Hamann JJ, Ruble SB, Stolen C, Wang M, Gupta RC, Rastogi S, Sabbah HN. Vagus nerve stimulation improves left ventricular function in a canine model of chronic heart failure. Eur J Heart Fail 2013; 15:1319-26. [PMID: 23883651 DOI: 10.1093/eurjhf/hft118] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIMS Autonomic dysfunction is a feature of chronic heart failure (HF). This study tested the hypothesis that chronic open-loop electrical vagus nerve stimulation (VNS) improves LV structure and function in canines with chronic HF. METHODS AND RESULTS Twenty-six canines with HF (EF ∼35%) produced by intracoronary microembolizations were implanted with a bipolar cuff electrode around the right cervical vagus nerve and connected to an implantable pulse generator. The canines were enrolled in Control (n = 7) vs. VNS therapy (n = 7) or a crossover study, with crossovers occurring at 3 months (C × VNS, n = 6; VNS × C, n = 6). After 6 months of VNS, LVEF and LV end-systolic volume (ESV) were significantly improved compared with Control (ΔEF Control -4.6 ± 0.9% vs. VNS 6.0 ± 1.6%, P < 0.001) and (ΔESV Control 8.3 ± 1.8 mL vs. VNS -3.0 ± 2.3 mL, P = 0.002. Plasma and tissue biomarkers were also improved. In the crossover study, VNS also resulted in a significant improvement in EF and ESV compared with Control (ΔEF Control -2.3 ± 0.65% vs. VNS 6.7 ± 1.1 mL, P < 0.001 and ΔESV Control 3.2 ± 1.2 mL vs. VNS -4.0 ± 0.9 mL, P < 0.001). Initiation of therapy in the Control group at 3 months resulted in a significant improvement in EF (Control -4.7 ± 1.4% vs. VNS 3.7 ± 0.74%, P < 0.001) and ESV (Control 1.5 ± 1.2 mL vs. NS -5.5 ± 1.6 mL, P = 0.003) by 6 months. CONCLUSIONS In canines with HF, long-term, open-looped low levels of VNS therapy improves LV systolic function, prevents progressive LV enlargement, and improves biomarkers of HF when compared with control animals that did not receive therapy.
Collapse
|
20
|
Ogawa K, Hirooka Y, Kishi T, Ide T, Sunagawa K. Partially silencing brain toll-like receptor 4 prevents in part left ventricular remodeling with sympathoinhibition in rats with myocardial infarction-induced heart failure. PLoS One 2013; 8:e69053. [PMID: 23874864 PMCID: PMC3706428 DOI: 10.1371/journal.pone.0069053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 06/04/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Left ventricular (LV) remodeling and activation of sympathetic nervous system (SNS) are cardinal features of heart failure. We previously demonstrated that enhanced central sympathetic outflow is associated with brain toll-like receptor 4 (TLR4) probably mediated by brain angiotensin II type 1 receptor in mice with myocardial infarction (MI)-induced heart failure. The purpose of the present study was to examine whether silencing brain TLR4 could prevent LV remodeling with sympathoinhibition in MI-induced heart failure. METHODOLOGY/PRINCIPAL FINDINGS MI-induced heart failure model rats were created by ligation of left coronary artery. The expression level of TLR4 in brainstem was significantly higher in MI-induced heart failure treated with intracerebroventricular (ICV) injection of hGAPDH-SiRNA than in sham. TLR4 in brainstem was significantly lower in MI-induced heart failure treated with ICV injection of TLR4-SiRNA than in that treated with ICV injection of hGAPDH-SiRNA. Lung weight, urinary norepinephrine excretion, and LV end-diastolic pressure were significantly lower and LV dimension was significantly smaller in MI-induced heart failure treated with TLR4-SiRNA than in that treated with hGAPDH-SiRNA for 2 weeks. CONCLUSIONS Partially silencing brain TLR4 by ICV injection of TLR4-SiRNA for 2 weeks could in part prevent LV remodeling with sympathoinhibition in rats with MI-induced heart failure. Brain TLR4 has a potential to be a target of the treatment for MI-induced heart failure.
Collapse
Affiliation(s)
- Kiyohiro Ogawa
- Departments of Cardiovascular Medicine, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Yoshitaka Hirooka
- Advanced Cardiovascular Regulation and Therapeutics, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
- * E-mail:
| | - Takuya Kishi
- Advanced Therapeutics for Cardiovascular Diseases, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Tomomi Ide
- Departments of Cardiovascular Medicine, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Kenji Sunagawa
- Departments of Cardiovascular Medicine, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| |
Collapse
|
21
|
Marques Neto SR, Silva ADH, Santos MCPD, Ferraz EF, Nascimento JHM. The blockade of angiotensin AT1 and aldosterone receptors protects rats from synthetic androgen-induced cardiac autonomic dysfunction. Acta Physiol (Oxf) 2013; 208:166-71. [PMID: 23279762 DOI: 10.1111/apha.12056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/15/2012] [Accepted: 12/15/2012] [Indexed: 11/29/2022]
Abstract
AIM This study aimed to evaluate the combined effects of exercise and antagonists of the angiotensin II and aldosterone receptors on cardiac autonomic regulation and ventricular repolarization in rats chronically treated with nandrolone decanoate (ND), a synthetic androgen. METHODS Thirty male Wistar rats were divided into six groups: sedentary, trained, ND-treated, trained and ND-treated, trained and treated with both ND and spironolactone, and trained and treated with both ND and losartan. ND (10 mg kg(-1) weekly) and the antagonists (20 mg kg(-1) daily) of the angiotensin II AT1 (losartan) and aldosterone (spironolactone) receptors were administered for 8 weeks. Exercise training was performed using a treadmill five times each week for 8 weeks. Following this 8-week training and treatment period, electrocardiogram recordings were obtained to determine the time and frequency domains of heart rate variability (HRV) and corrected QT interval (QTc). RESULTS Nandrolone decanoate treatment increased the QTc interval and reduced the parasympathetic indexes of HRV (RMSSD, pNN5 and high-frequency power) in sedentary and trained rats. The ratio between low- and high-frequency power (LF/HF) was higher in ND-treated groups. Both losartan and spironolactone treatments prevented the effects of ND on the QTc interval and the HRV parameters (RMSSD, pNN5, high-frequency power, and the LF/HF ratio). CONCLUSION Our results show that chronic treatment with a high dose of ND induces cardiac parasympathetic dysfunction and disturbances in ventricular repolarization in both sedentary and exercised rats. Furthermore, inhibiting the renin-angiotensin-aldosterone system using losartan, or spironolactone, prevented these deleterious effects.
Collapse
Affiliation(s)
| | - A. da H. Silva
- Instituto de Biofisica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; Rio de Janeiro; Brazil
| | - M. C. P. dos Santos
- Instituto de Biofisica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; Rio de Janeiro; Brazil
| | - E. F. Ferraz
- Instituto de Biofisica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; Rio de Janeiro; Brazil
| | - J. H. M. Nascimento
- Instituto de Biofisica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; Rio de Janeiro; Brazil
| |
Collapse
|