1
|
Deng YA, Li L, Peng Q, Feng LF, Yang JF, Zhan RT, Ma DM. Isolation and characterization of AaZFP1, a C2H2 zinc finger protein that regulates the AaIPPI1 gene involved in artemisinin biosynthesis in Artemisia annua. PLANTA 2022; 255:122. [PMID: 35554686 DOI: 10.1007/s00425-022-03892-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
AaZFP1, a C2H2-type transcription factor, was found to bind the AGT-N1-10-AGT box of AaIPPI1pro and activate the expression of AaIPPI1 involved in artemisinin biosynthesis. Artemisinin, an endoperoxide sesquiterpene lactone, is a widely used antimalarial drug isolated from Artemisia annua L. Isopentenyl pyrophosphate isomerase (AaIPPI1) catalyzes the interconversion of isopentenyl diphosphate and dimethylallyl diphosphate and is the key gene involved in the biosynthesis of artemisinin. However, the AaIPPI1 gene regulation network remains largely unknown. Here, we isolated the AaIPPI1 promoter (AaIPPI1pro) and predicted that it contains cis-elements involved in stress responses, including the TGACG motif (a methyl jasmonate-responsive element), GARE motif (a gibberellin-responsive element), ABRE (an abscisic acid-responsive element), TC-rich repeats (a stress-responsive element), and the AGT-N1-10-AGT box, which is the binding site of Cys/His2 zinc finger protein (C2H2 ZFP). The C2H2 ZFP gene AaZFP1 was discovered by screening a cDNA library using AaIPPI1pro as bait in yeast. AaZFP1 contains two conserved C2H2 regions, a nuclear localization domain (B box), a Leu-rich domain (L box), and a conserved DLN sequence (DLN box) close to its C terminus. A subcellular localization assay indicated that AaZFP1 protein is localized in the nucleus and cytoplasm. An electrophoretic mobility shift assay demonstrated that AaZFP1 binds to the AGT-N1-10-AGT box of AaIPPI1pro. A dual-luciferase assay indicated that AaZFP1 enhanced the promoter activity of AaIPPI1 in vivo. Transient overexpression of AaZFP1 in A. annua increased the expression of AaIPPI1 and the content of artemisinin. Our data demonstrated that AaZFP1 functions as a transcriptional activator that regulates the expression of AaIPPI1 by directly binding to its promoter. The present study provides insights into the transcriptional regulation of genes involved in artemisinin biosynthesis in A. annua.
Collapse
Affiliation(s)
- Yin-Ai Deng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Li Li
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Qian Peng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Ling-Fang Feng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Jin-Fen Yang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Ruo-Ting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China.
| | - Dong-Ming Ma
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
2
|
Lubega J, Umbreen S, Loake GJ. Recent advances in the regulation of plant immunity by S-nitrosylation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:864-872. [PMID: 33005916 DOI: 10.1093/jxb/eraa454] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/28/2020] [Indexed: 05/16/2023]
Abstract
S-nitrosylation, the addition of a nitric oxide (NO) moiety to a reactive protein cysteine (Cys) thiol, to form a protein S-nitrosothiol (SNO), is emerging as a key regulatory post-translational modification (PTM) to control the plant immune response. NO also S-nitrosylates the antioxidant tripeptide, glutathione, to form S-nitrosoglutathione (GSNO), both a storage reservoir of NO bioactivity and a natural NO donor. GSNO and, by extension, S-nitrosylation, are controlled by GSNO reductase1 (GSNOR1). The emerging data suggest that GSNOR1 itself is a target of NO-mediated S-nitrosylation, which subsequently controls its selective autophagy, regulating cellular protein SNO levels. Recent findings also suggest that S-nitrosylation may be deployed by pathogen-challenged host cells to counteract the effect of delivered microbial effector proteins that promote pathogenesis and by the pathogens themselves to augment virulence. Significantly, it also appears that S-nitrosylation may regulate plant immune functions by controlling SUMOylation, a peptide-based PTM. In this context, global SUMOylation is regulated by S-nitrosylation of SUMO conjugating enzyme 1 (SCE1) at Cys139. This redox-based PTM has also been shown to control the function of a key zinc finger transcriptional regulator during the establishment of plant immunity. Here, we provide an update of these recent advances.
Collapse
Affiliation(s)
- Jibril Lubega
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Saima Umbreen
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Chen WF, Wei XB, Rety S, Huang LY, Liu NN, Dou SX, Xi XG. Structural analysis reveals a "molecular calipers" mechanism for a LATERAL ORGAN BOUNDARIES DOMAIN transcription factor protein from wheat. J Biol Chem 2018; 294:142-156. [PMID: 30425099 DOI: 10.1074/jbc.ra118.003956] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/10/2018] [Indexed: 01/13/2023] Open
Abstract
LATERAL ORGAN BOUNDARIES DOMAIN (LBD) proteins, a family of plant-specific transcription factors harboring a conserved Lateral Organ Boundaries (LOB) domain, are regulators of plant organ development. Recent studies have unraveled additional pivotal roles of the LBD protein family beyond defining lateral organ boundaries, such as pollen development and nitrogen metabolism. The structural basis for the molecular network of LBD-dependent processes remains to be deciphered. Here, we solved the first structure of the homodimeric LOB domain of Ramosa2 from wheat (TtRa2LD) to 1.9 Å resolution. Our crystal structure reveals structural features shared with other zinc-finger transcriptional factors, as well as some features unique to LBD proteins. Formation of the TtRa2LD homodimer relied on hydrophobic interactions of its coiled-coil motifs. Several specific motifs/domains of the LBD protein were also involved in maintaining its overall conformation. The intricate assembly within and between the monomers determined the precise spatial configuration of the two zinc fingers that recognize palindromic DNA sequences. Biochemical, molecular modeling, and small-angle X-ray scattering experiments indicated that dimerization is important for cooperative DNA binding and discrimination of palindromic DNA through a molecular calipers mechanism. Along with previously published data, this study enables us to establish an atomic-scale mechanistic model for LBD proteins as transcriptional regulators in plants.
Collapse
Affiliation(s)
- Wei-Fei Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao-Bin Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, 467044, China
| | - Stephane Rety
- University Lyon, ENS de Lyon, University Claude Bernard, CNRS UMR 5239, INSERM U1210, LBMC, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France.
| | - Ling-Yun Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na-Nv Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuo-Xing Dou
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xu-Guang Xi
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; LBPA, Ecole Normale Supérieure Paris-Saclay, CNRS, Université Paris Saclay, 61 Avenue du Président Wilson, F-94235 Cachan, France.
| |
Collapse
|
4
|
Cui B, Pan Q, Clarke D, Villarreal MO, Umbreen S, Yuan B, Shan W, Jiang J, Loake GJ. S-nitrosylation of the zinc finger protein SRG1 regulates plant immunity. Nat Commun 2018; 9:4226. [PMID: 30315167 PMCID: PMC6185907 DOI: 10.1038/s41467-018-06578-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 08/29/2018] [Indexed: 11/13/2022] Open
Abstract
Nitric oxide (NO) orchestrates a plethora of incongruent plant immune responses, including the reprograming of global gene expression. However, the cognate molecular mechanisms remain largely unknown. Here we show a zinc finger transcription factor (ZF-TF), SRG1, is a central target of NO bioactivity during plant immunity, where it functions as a positive regulator. NO accumulation promotes SRG1 expression and subsequently SRG1 occupies a repeated canonical sequence within target promoters. An EAR domain enables SRG1 to recruit the corepressor TOPLESS, suppressing target gene expression. Sustained NO synthesis drives SRG1 S-nitrosylation predominantly at Cys87, relieving both SRG1 DNA binding and transcriptional repression activity. Accordingly, mutation of Cys87 compromises NO-mediated control of SRG1-dependent transcriptional suppression. Thus, the SRG1-SNO formation may contribute to a negative feedback loop that attenuates the plant immune response. SRG1 Cys87 is evolutionary conserved and thus may be a target for redox regulation of ZF-TF function across phylogenetic kingdoms.
Collapse
Affiliation(s)
- Beimi Cui
- Jiangsu Normal University - Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, P.R. China
- Key Laboratory of Biotechnology for Medicinal Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, P.R. China
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Qiaona Pan
- Jiangsu Normal University - Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, P.R. China
- Key Laboratory of Biotechnology for Medicinal Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, P.R. China
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - David Clarke
- School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | | | - Saima Umbreen
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Bo Yuan
- Jiangsu Normal University - Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, P.R. China
- Key Laboratory of Biotechnology for Medicinal Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, P.R. China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jihong Jiang
- Jiangsu Normal University - Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, P.R. China
- Key Laboratory of Biotechnology for Medicinal Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, P.R. China
| | - Gary J Loake
- Jiangsu Normal University - Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, P.R. China.
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
5
|
Chebbi M, Ginis O, Courdavault V, Glévarec G, Lanoue A, Clastre M, Papon N, Gaillard C, Atanassova R, St-Pierre B, Giglioli-Guivarc'h N, Courtois M, Oudin A. ZCT1 and ZCT2 transcription factors repress the activity of a gene promoter from the methyl erythritol phosphate pathway in Madagascar periwinkle cells. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1510-3. [PMID: 25108262 DOI: 10.1016/j.jplph.2014.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 05/07/2023]
Abstract
In Catharanthus roseus, accumulating data highlighted the existence of a coordinated transcriptional regulation of structural genes that takes place within the secoiridoid biosynthetic branch, including the methyl erythritol phosphate (MEP) pathway and the following steps leading to secologanin. To identify transcription factors acting in these pathways, we performed a yeast one-hybrid screening using as bait a promoter region of the hydroxymethylbutenyl 4-diphosphate synthase (HDS) gene involved in the responsiveness of C. roseus cells to hormonal signals inducing monoterpene indole alkaloid (MIA) production. We identified that ZCT2, one of the three members of the zinc finger Catharanthus protein (ZCT) family, can bind to a HDS promoter region involved in hormonal responsiveness. By trans-activation assays, we demonstrated that ZCT1 and ZCT2 but not ZCT3 repress the HDS promoter activity. Gene expression analyses in C. roseus cells exposed to methyljasmonate revealed a persistence of induction of ZCT2 gene expression suggesting the existence of feed-back regulatory events acting on HDS gene expression in correlation with the MIA production.
Collapse
Affiliation(s)
- Mouadh Chebbi
- EA 2106 "Biomolécules et Biotechnologies Végétales"-Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - Olivia Ginis
- EA 2106 "Biomolécules et Biotechnologies Végétales"-Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - Vincent Courdavault
- EA 2106 "Biomolécules et Biotechnologies Végétales"-Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - Gaëlle Glévarec
- EA 2106 "Biomolécules et Biotechnologies Végétales"-Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - Arnaud Lanoue
- EA 2106 "Biomolécules et Biotechnologies Végétales"-Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - Marc Clastre
- EA 2106 "Biomolécules et Biotechnologies Végétales"-Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - Nicolas Papon
- EA 2106 "Biomolécules et Biotechnologies Végétales"-Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - Cécile Gaillard
- UMR CNRS 7267 EBI, Ecologie et Biologie des Interactions, Equipe, "Sucres & Echanges Végétaux-Environnement", Université de Poitiers, Bâtiment Botanique B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Rossitza Atanassova
- UMR CNRS 7267 EBI, Ecologie et Biologie des Interactions, Equipe, "Sucres & Echanges Végétaux-Environnement", Université de Poitiers, Bâtiment Botanique B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Benoit St-Pierre
- EA 2106 "Biomolécules et Biotechnologies Végétales"-Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - Nathalie Giglioli-Guivarc'h
- EA 2106 "Biomolécules et Biotechnologies Végétales"-Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - Martine Courtois
- EA 2106 "Biomolécules et Biotechnologies Végétales"-Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - Audrey Oudin
- EA 2106 "Biomolécules et Biotechnologies Végétales"-Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France.
| |
Collapse
|