1
|
Reyes-Reveles J, Sedaghat-Herati R, Gilley DR, Schaeffer AM, Ghosh KC, Greene TD, Gann HE, Dowler WA, Kramer S, Dean JM, Delong RK. mPEG-PAMAM-G4 nucleic acid nanocomplexes: enhanced stability, RNase protection, and activity of splice switching oligomer and poly I:C RNA. Biomacromolecules 2013; 14:4108-15. [PMID: 24164501 PMCID: PMC4295786 DOI: 10.1021/bm4012425] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dendrimer chemistries have virtually exploded in recent years with increasing interest in this class of polymers as gene delivery vehicles. An effective nucleic acid delivery vehicle must efficiently bind its cargo and form physically stable complexes. Most importantly, the nucleic acid must be protected in biological fluids and tissues, as RNA is extremely susceptible to nuclease degradation. Here, we characterized the association of nucleic acids with generation 4 PEGylated poly(amidoamine) dendrimer (mPEG-PAMAM-G4). We investigated the formation, size, and stability over time of the nanoplexes at various N/P ratios by gel shift and dynamic light scatter spectroscopy (DLS). Further characterization of the mPEG-PAMAM-G4/nucleic acid association was provided by atomic force microscopy (AFM) and by circular dichroism (CD). Importantly, mPEG-PAMAM-G4 complexation protected RNA from treatment with RNase A, degradation in serum, and various tissue homogenates. mPEG-PAMAM-G4 complexation also significantly enhanced the functional delivery of RNA in a novel engineered human melanoma cell line with splice-switching oligonucleotides (SSOs) targeting a recombinant luciferase transcript. mPEG-PAMAM-G4 triconjugates formed between gold nanoparticle (GNP) and particularly manganese oxide (MnO) nanorods, poly IC, an anticancer RNA, showed enhanced cancer-killing activity by an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell viability assay.
Collapse
Affiliation(s)
- Juan Reyes-Reveles
- Department of Biomedical Sciences, Missouri State University, Springfield, Missouri, 65897
| | - Reza Sedaghat-Herati
- Department of Chemistry, Missouri State University, Springfield, Missouri, 65897
| | - David R. Gilley
- Department of Biomedical Sciences, Missouri State University, Springfield, Missouri, 65897
| | - Ashley M. Schaeffer
- Department of Biomedical Sciences, Missouri State University, Springfield, Missouri, 65897
| | - Kartik C. Ghosh
- Department of Physics, Missouri State University, Springfield, Missouri, 65897
| | - Thomas D. Greene
- Department of Biomedical Sciences, Missouri State University, Springfield, Missouri, 65897
| | - Hannah E. Gann
- Department of Biomedical Sciences, Missouri State University, Springfield, Missouri, 65897
| | - Wesley A Dowler
- Department of Chemistry, Missouri State University, Springfield, Missouri, 65897
| | - Stephen Kramer
- Department of Chemistry, Missouri State University, Springfield, Missouri, 65897
| | - John M. Dean
- Department of Biomedical Sciences, Missouri State University, Springfield, Missouri, 65897
| | - Robert K. Delong
- Department of Biomedical Sciences, Missouri State University, Springfield, Missouri, 65897
- Corresponding author: R. K. DeLong, Phone: 417-836-5730;
| |
Collapse
|
2
|
Tipping the Proteome with Gene-Based Vaccines: Weighing in on the Role of Nanomaterials. JOURNAL OF NANOTECHNOLOGY 2012. [DOI: 10.1155/2012/843170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Since the first generation of DNA vaccines was introduced in 1988, remarkable improvements have been made to improve their efficacy and immunogenicity. Although human clinical trials have shown that delivery of DNA vaccines is well tolerated and safe, the potency of these vaccines in humans is somewhat less than optimal. The development of a gene-based vaccine that was effective enough to be approved for clinical use in humans would be one of, if not the most important, advance in vaccines to date. This paper highlights the literature relating to gene-based vaccines, specifically DNA vaccines, and suggests possible approaches to boost their performance. In addition, we explore the idea that combining RNA and nanomaterials may hold the key to successful gene-based vaccines for prevention and treatment of disease.
Collapse
|