1
|
Derseh HB, Perera KUE, Dewage SNV, Stent A, Koumoundouros E, Organ L, Pagel CN, Snibson KJ. Tetrathiomolybdate Treatment Attenuates Bleomycin-Induced Angiogenesis and Lung Pathology in a Sheep Model of Pulmonary Fibrosis. Front Pharmacol 2021; 12:700902. [PMID: 34744706 PMCID: PMC8570673 DOI: 10.3389/fphar.2021.700902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive chronic lung disease characterized by excessive extracellular matrix (ECM) deposition in the parenchyma of the lung. Accompanying the fibrotic remodeling, dysregulated angiogenesis has been observed and implicated in the development and progression of pulmonary fibrosis. Copper is known to be required for key processes involved in fibrosis and angiogenesis. We therefore hypothesized that lowering bioavailable serum copper with tetrathiomolybdate could be of therapeutic value for treating pulmonary fibrosis. This study aimed to investigate the effect of tetrathiomolybdate on angiogenesis and fibrosis induced in sheep lung segments infused with bleomycin. Twenty sheep received two fortnightly infusions of either bleomycin (3U), or saline (control) into two spatially separate lung segments. A week after the final bleomycin/saline infusions, sheep were randomly assigned into two groups (n = 10 per group) and received twice-weekly intravenous administrations of either 50 mg tetrathiomolybdate, or sterile saline (vehicle control), for 6 weeks. Vascular density, expressed as the percentage of capillary area to the total area of parenchyma, was determined in lung tissue sections immuno-stained with antibodies against CD34 and collagen type IV. The degree of fibrosis was assessed by histopathology scoring of H&E stained sections and collagen content using Masson's trichrome staining. Lung compliance was measured via a wedged bronchoscope procedure prior to and 7 weeks following final bleomycin infusion. In this large animal model, we show that copper lowering by tetrathiomolybdate chelation attenuates both bleomycin-induced angiogenesis and pulmonary fibrosis. Moreover, tetrathiomolybdate treatment downregulates vascular endothelial growth factor (VEGF) expression, and improved lung function in bleomycin-induced pulmonary fibrosis. Tetrathiomolybdate also suppressed the accumulation of inflammatory cells in bronchoalveolar lavage fluid 2 weeks after bleomycin injury. The molecular mechanism(s) underpinning copper modulation of fibrotic pathways is an important area for future investigation, and it represents a potential therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Habtamu B Derseh
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | | | - Sasika N Vithana Dewage
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Andrew Stent
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, VIC, Australia
| | - Emmanuel Koumoundouros
- Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Parkville, VIC, Australia
| | - Louise Organ
- Division of Respiratory Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Charles N Pagel
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Ken J Snibson
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
2
|
Dey S, Eapen MS, Chia C, Gaikwad AV, Wark PAB, Sohal SS. Pathogenesis, clinical features of asthma COPD overlap (ACO), and therapeutic modalities. Am J Physiol Lung Cell Mol Physiol 2021; 322:L64-L83. [PMID: 34668439 DOI: 10.1152/ajplung.00121.2021] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Both asthma and COPD are heterogeneous diseases identified by characteristic symptoms and functional abnormalities, with airway obstruction common in both diseases. Asthma COPD overlap (ACO) does not define a single disease but is a descriptive term for clinical use that includes several overlapping clinical phenotypes of chronic airways disease with different underlying mechanisms. This literature review was initiated to describe published studies, identify gaps in knowledge, and propose future research goals regarding the disease pathology of ACO, especially the airway remodelling changes and inflammation aspects. Airway remodelling occurs in asthma and COPD, but there are differences in the structures affected and the prime anatomic site at which they occur. Reticular basement membrane thickening and cellular infiltration with eosinophils and T-helper (CD4+) lymphocytes are prominent features of asthma. Epithelial squamous metaplasia, airway wall fibrosis, emphysema, bronchoalveolar lavage (BAL) neutrophilia and (CD8+) T-cytotoxic lymphocyte infiltrations in the airway wall are features of COPD. There is no universally accepted definition of ACO, nor are there clearly defined pathological characteristics to differentiate from asthma and COPD. Understanding etiological concepts within the purview of inflammation and airway remodelling changes in ACO would allow better management of these patients.
Collapse
Affiliation(s)
- Surajit Dey
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Collin Chia
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia.,Department of Respiratory Medicine, Launceston General Hospital, Launceston, Tasmania, Australia
| | - Archana Vijay Gaikwad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, Australia.,Department of Respiratory and Sleep Medicine John Hunter Hospital, New Lambton Heights, Australia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| |
Collapse
|
3
|
Millares-Ramirez EM, Lavoie JP. Bronchial angiogenesis in horses with severe asthma and its response to corticosteroids. J Vet Intern Med 2021; 35:2026-2034. [PMID: 34048095 PMCID: PMC8295704 DOI: 10.1111/jvim.16159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Background Severe asthma in horses is characterized by structural changes that thicken the lower airway wall, a change that is only partially reversible by current treatments. Increased vascularization contributes to the thickening of the bronchial wall in humans with asthma and is considered a potential new therapeutic target. Objective To determine the presence of angiogenesis in the bronchi of severely asthmatic horses, and if present, to evaluate its reversibility by treatment with corticosteroids. Animals Study 1: Bronchial samples from asthmatic horses in exacerbation (7), in remission (7), and aged‐matched healthy horses. Study 2: Endobronchial biopsy samples from asthmatic horses in exacerbation (6) and healthy horses (6) before and after treatment with dexamethasone. Methods Blinded, randomized controlled study. Immunohistochemistry was performed using collagen IV as a marker for vascular basement membranes. Number of vessels, vascular area, and mean vessel size in the bronchial lamina propria were measured by histomorphometry. Reversibility of vascular changes in Study 2 was assessed after 2 weeks of treatment with dexamethasone. Results The number of vessels and vascular area were increased in the airway walls of asthmatic horses in exacerbation (P = .01 and P = .02, respectively) and in remission (P = .02 and P = .04, respectively) when compared to controls. In Study 2, the differences observed between groups disappeared after 2 weeks of treatment with corticosteroids because of the increased number of vessels in healthy horses. Conclusions and Clinical Importance Angiogenesis contributes to thickening of the airway wall in asthmatic horses and was not reversed by a 2‐week treatment with corticosteroids.
Collapse
Affiliation(s)
- Esther M Millares-Ramirez
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
4
|
Derseh HB, Dewage SNV, Perera KUE, Pagel CN, Koumoundouros E, Organ L, Snibson KJ. K Ca3.1 channel blockade attenuates microvascular remodelling in a large animal model of bleomycin-induced pulmonary fibrosis. Sci Rep 2019; 9:19893. [PMID: 31882807 PMCID: PMC6934539 DOI: 10.1038/s41598-019-56412-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/11/2019] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with limited therapeutic options and poor prognosis. IPF has been associated with aberrant vascular remodelling, however the role of vascular remodelling in pulmonary fibrosis is poorly understood. Here, we used a novel segmental challenge model of bleomycin-induced pulmonary fibrosis in sheep to evaluate the remodelling of the pulmonary vasculature, and to investigate the changes to this remodelling after the administration of the KCa3.1 channel inhibitor, senicapoc, compared to the FDA-approved drug pirfenidone. We demonstrate that in vehicle-treated sheep, bleomycin-infused lung segments had significantly higher blood vessel density when compared to saline-infused control segments in the same sheep. These microvascular density changes were significantly attenuated by senicapoc treatment. The increases in vascular endothelial growth factor (VEGF) expression and endothelial cell proliferation in bleomycin-infused lung segments were significantly reduced in sheep treated with the senicapoc, when compared to vehicle-treated controls. These parameters were not significantly suppressed with pirfenidone treatment. Senicapoc treatment attenuated vascular remodelling through inhibition of capillary endothelial cell proliferation and VEGF expression. These findings suggest a potential new mode of action for the novel drug senicapoc which may contribute to its efficacy in combatting pulmonary fibrosis.
Collapse
Affiliation(s)
- Habtamu B Derseh
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia.
| | - Sasika N Vithana Dewage
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Kopiyawaththage U E Perera
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Charles N Pagel
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Emmanuel Koumoundouros
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Louise Organ
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK
| | - Ken J Snibson
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities. Drugs 2019; 78:1717-1740. [PMID: 30392114 DOI: 10.1007/s40265-018-1001-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer are major lung diseases affecting millions worldwide. Both diseases have links to cigarette smoking and exert a considerable societal burden. People suffering from COPD are at higher risk of developing lung cancer than those without, and are more susceptible to poor outcomes after diagnosis and treatment. Lung cancer and COPD are closely associated, possibly sharing common traits such as an underlying genetic predisposition, epithelial and endothelial cell plasticity, dysfunctional inflammatory mechanisms including the deposition of excessive extracellular matrix, angiogenesis, susceptibility to DNA damage and cellular mutagenesis. In fact, COPD could be the driving factor for lung cancer, providing a conducive environment that propagates its evolution. In the early stages of smoking, body defences provide a combative immune/oxidative response and DNA repair mechanisms are likely to subdue these changes to a certain extent; however, in patients with COPD with lung cancer the consequences could be devastating, potentially contributing to slower postoperative recovery after lung resection and increased resistance to radiotherapy and chemotherapy. Vital to the development of new-targeted therapies is an in-depth understanding of various molecular mechanisms that are associated with both pathologies. In this comprehensive review, we provide a detailed overview of possible underlying factors that link COPD and lung cancer, and current therapeutic advances from both human and preclinical animal models that can effectively mitigate this unholy relationship.
Collapse
|
6
|
Cigarette Smoke Induced Lung Barrier Dysfunction, EMT, and Tissue Remodeling: A Possible Link between COPD and Lung Cancer. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2025636. [PMID: 31341890 PMCID: PMC6613007 DOI: 10.1155/2019/2025636] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/02/2019] [Indexed: 12/13/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer, closely related to smoking, are major lung diseases affecting millions of individuals worldwide. The generated gas mixture of smoking is proved to contain about 4,500 components such as carbon monoxide, nicotine, oxidants, fine particulate matter, and aldehydes. These components were considered to be the principle factor driving the pathogenesis and progression of pulmonary disease. A large proportion of lung cancer patients showed a history of COPD, which demonstrated that there might be a close relationship between COPD and lung cancer. In the early stages of smoking, lung barrier provoked protective response and DNA repair are likely to suppress these changes to a certain extent. In the presence of long-term smoking exposure, these mechanisms seem to be malfunctioned and lead to disease progression. The infiltration of inflammatory cells to mucosa, submucosa, and glandular tissue caused by inhaled cigarette smoke is responsible for the destruction of matrix, blood supply shortage, and epithelial cell death. Conversely, cancer cells have the capacity to modulate the proliferation of epithelial cells and produce of new vascular networks. Comprehension understanding of mechanisms responsible for both pathologies is necessary for the prevention and treatment of COPD and lung cancer. In this review, we will summarize related articles and give a glance of possible mechanism between cigarette smoking induced COPD and lung cancer.
Collapse
|
7
|
Eapen MS, Myers S, Lu W, Tanghe C, Sharma P, Sohal SS. sE-cadherin and sVE-cadherin indicate active epithelial/endothelial to mesenchymal transition (EMT and EndoMT) in smokers and COPD: implications for new biomarkers and therapeutics. Biomarkers 2018; 23:709-711. [DOI: 10.1080/1354750x.2018.1479772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, College of Health and Medicine, University of Tasmania, Launceston, Launceston, TAS, Australia
| | - Stephen Myers
- Respiratory Translational Research Group, Department of Laboratory Medicine, College of Health and Medicine, University of Tasmania, Launceston, Launceston, TAS, Australia
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, College of Health and Medicine, University of Tasmania, Launceston, Launceston, TAS, Australia
| | - Chloé Tanghe
- Respiratory Translational Research Group, Department of Laboratory Medicine, College of Health and Medicine, University of Tasmania, Launceston, Launceston, TAS, Australia
- Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| | - Pawan Sharma
- Biomedical Sciences, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, College of Health and Medicine, University of Tasmania, Launceston, Launceston, TAS, Australia
| |
Collapse
|
8
|
Mahmood MQ, Ward C, Muller HK, Sohal SS, Walters EH. Epithelial mesenchymal transition (EMT) and non-small cell lung cancer (NSCLC): a mutual association with airway disease. Med Oncol 2017; 34:45. [PMID: 28197929 DOI: 10.1007/s12032-017-0900-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/03/2017] [Indexed: 12/19/2022]
Abstract
NSCLC is a leading cause of morbidity and mortality worldwide. It includes adeno- and squamous cell carcinoma. In the background, COPD and smoking play a vital role in development of NSCLC. Local progression and metastasis of NSCLC has been associated with various mechanisms, but in particular by a process called epithelial mesenchymal transition (EMT), which is implicated in COPD pathogenesis. In this study, we have investigated whether expression of EGFR (activation marker) and S100A4, vimentin and N-cadherin (as EMT) is different both in central and leading edge of NSCLC and to what extent related to EMT activity of both small and large airways, stage and differentiation of NSCLC. We have investigated EMT biomarkers (S100A4, vimentin, and N-cadherin), an epithelial activation marker (EGFR) and a vascularity marker (Type-IV collagen) in surgically resected tissue from patients with NSCLC (adeno- and squamous cell carcinoma), and compared them with expression in the corresponding non-tumorous airways. EGFR, S100A4, vimentin, N-cadherin expression was higher in tumor cells located at the peripheral leading edge of NSCLC when compared with centrally located tumor cells of same subjects (P < 0.01). Type-IV collagen-expressing blood vessels were also more at the leading edge in comparison with central parts of NSCLC. EGFR and S100A4 expression was related to differentiation status (P < 0.05) and TNM stage (P < 0.05) of NSCLC. Moreover, EMT markers in the leading edge were significantly related to airway EMT activity, while peripheral edge vascularity of squamous cell carcinoma only was significantly related to large airway Rbm vascularity (P < 0.05). EGFR- and EMT-related protein expression was markedly high in the peripheral leading edge of NSCLCs and related to tumor characteristics associated with poor prognosis. The relationships between EMT-related tumor biomarker expression and those in the airway epithelium and Rbm provide a background for utility of airway changes in clinical settings.
Collapse
Affiliation(s)
- Malik Quasir Mahmood
- NHMRC Centre for Research Excellence in Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, MS1, 17 Liverpool Street, Private Bag 23, Hobart, TAS, 7000, Australia
| | - Chris Ward
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Hans Konrad Muller
- NHMRC Centre for Research Excellence in Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, MS1, 17 Liverpool Street, Private Bag 23, Hobart, TAS, 7000, Australia
| | - Sukhwinder Singh Sohal
- NHMRC Centre for Research Excellence in Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, MS1, 17 Liverpool Street, Private Bag 23, Hobart, TAS, 7000, Australia.,Faculty of Health, School of Health Sciences, University of Tasmania, Launceston, TAS, 7248, Australia
| | - Eugene Haydn Walters
- NHMRC Centre for Research Excellence in Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, MS1, 17 Liverpool Street, Private Bag 23, Hobart, TAS, 7000, Australia.
| |
Collapse
|
9
|
Soltani A, Walters EH, Reid DW, Shukla SD, Nowrin K, Ward C, Muller HK, Sohal SS. Inhaled corticosteroid normalizes some but not all airway vascular remodeling in COPD. Int J Chron Obstruct Pulmon Dis 2016; 11:2359-2367. [PMID: 27703346 PMCID: PMC5038570 DOI: 10.2147/copd.s113176] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND This study assessed the effects of inhaled corticosteroid (ICS) on airway vascular remodeling in chronic obstructive pulmonary disease (COPD). METHODS Thirty-four subjects with mild-to-moderate COPD were randomly allocated 2:1 to ICS or placebo treatment in a double-blinded clinical trial over 6 months. Available tissue was compared before and after treatment for vessel density, and expression of VEGF, TGF-β1, and TGF-β1-related phosphorylated transcription factors p-SMAD 2/3. This clinical trial has been registered and allocated with the Australian New Zealand Clinical Trials Registry (ANZCTR) on 17/10/2012 with reference number ACTRN12612001111864. RESULTS There were no significant baseline differences between treatment groups. With ICS, vessels and angiogenic factors did not change in hypervascular reticular basement membrane, but in the hypovascular lamina propria (LP), vessels increased and this had a proportionate effect on lung air trapping. There was modest evidence for a reduction in LP vessels staining for VEGF with ICS treatment, but a marked and significant reduction in p-SMAD 2/3 expression. CONCLUSION Six-month high-dose ICS treatment had little effect on hypervascularity or angiogenic growth factors in the reticular basement membrane in COPD, but normalized hypovascularity in the LP, and this was physiologically relevant, though accompanied by a paradoxical reduction in growth factor expression.
Collapse
Affiliation(s)
- Amir Soltani
- NHMRC Center of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Eugene Haydn Walters
- NHMRC Center of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - David W Reid
- NHMRC Center of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, TAS, Australia
- Iron Metabolism Laboratory, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - Shakti Dhar Shukla
- NHMRC Center of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Kaosia Nowrin
- NHMRC Center of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Chris Ward
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - H Konrad Muller
- NHMRC Center of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Sukhwinder Singh Sohal
- NHMRC Center of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, TAS, Australia
- School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| |
Collapse
|
10
|
Sohal SS. Endothelial to mesenchymal transition (EndMT): an active process in Chronic Obstructive Pulmonary Disease (COPD)? Respir Res 2016; 17:20. [PMID: 26898357 PMCID: PMC4762171 DOI: 10.1186/s12931-016-0337-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/17/2016] [Indexed: 11/10/2022] Open
Abstract
Small airway fibrosis is the main contributor to physiological airway dysfunction in COPD. One potential mechanism contributing to small airway fibrosis is epithelial mesenchymal transition (EMT). When associated with angiogenesis (so called EMT-Type-3) it may well also be the link with the development of airway epithelial cancer, which is closely associated with COPD and predominantly in large airways. In a recent study published in Respiratory Research, Reimann and colleagues, showed increased expression of S100A4 in vasculature of human COPD and murine lungs. It is quite possible that the process of endothelial to mesenchymal transition (EndMT) is active in COPD lungs which we wish to comment on.
Collapse
Affiliation(s)
- Sukhwinder Singh Sohal
- School of Health Sciences, University of Tasmania, Locked Bag - 1322, Newnham Drive, Launceston, TAS, 7248, Australia. .,Breathe Well Centre of Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, Hobart, 7000, Australia.
| |
Collapse
|