1
|
Balzano T, Esteban-García N, Blesa J. Neuroinflammation, immune response and α-synuclein pathology: how animal models are helping us to connect dots. Expert Opin Drug Discov 2023; 18:13-23. [PMID: 36538833 DOI: 10.1080/17460441.2023.2160440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION A key pathological event occurring in Parkinson's disease (PD) is the transneuronal spreading of alpha-synuclein (α-syn). Other hallmarks of PD include neurodegeneration, glial activation, and immune cell infiltration in susceptible brain regions. Although preclinical models can mimic most of the key characteristics of PD, it is crucial to know the biological bases of individual differences between them when choosing one over another, to ensure proper interpretation of the results and to positively influence the outcome of the experiments. AREAS COVERED This review provides an overview of current preclinical models actively used to study the interplay between α-syn pathology, neuroinflammation and immune response in PD but also to explore new potential preclinical models or emerging therapeutic strategies intended to fulfill the unmet medical needs in this disease. Lastly, this review also considers the current state of the ongoing clinical trials of new drugs designed to target these processes and delay the initiation or progression of the disease. EXPERT OPINION Anti-inflammatory and immunomodulatory agents have been demonstrated to be very promising candidates for reducing disease progression; however, more efforts are needed to reduce the enormous gap between these and dopaminergic drugs, which have dominated the therapeutic market for the last sixty years.
Collapse
Affiliation(s)
- Tiziano Balzano
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, Madrid, Spain
| | - Noelia Esteban-García
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, Madrid, Spain
- PhD Program in Neuroscience Autónoma de Madrid University-Cajal Institute, Madrid, Spain
| | - Javier Blesa
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, Madrid, Spain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III; Madrid, Madrid, Spain
| |
Collapse
|
2
|
Zhao Y, Forst CV, Sayegh CE, Wang IM, Yang X, Zhang B. Molecular and genetic inflammation networks in major human diseases. MOLECULAR BIOSYSTEMS 2017; 12:2318-41. [PMID: 27303926 DOI: 10.1039/c6mb00240d] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It has been well-recognized that inflammation alongside tissue repair and damage maintaining tissue homeostasis determines the initiation and progression of complex diseases. Albeit with the accomplishment of having captured the most critical inflammation-involved molecules, genetic susceptibilities, epigenetic factors, and environmental factors, our schemata on the role of inflammation in complex diseases remain largely patchy, in part due to the success of reductionism in terms of research methodology per se. Omics data alongside the advances in data integration technologies have enabled reconstruction of molecular and genetic inflammation networks which shed light on the underlying pathophysiology of complex diseases or clinical conditions. Given the proven beneficial role of anti-inflammation in coronary heart disease as well as other complex diseases and immunotherapy as a revolutionary transition in oncology, it becomes timely to review our current understanding of the molecular and genetic inflammation networks underlying major human diseases. In this review, we first briefly discuss the complexity of infectious diseases and then highlight recently uncovered molecular and genetic inflammation networks in other major human diseases including obesity, type II diabetes, coronary heart disease, late onset Alzheimer's disease, Parkinson's disease, and sporadic cancer. The commonality and specificity of these molecular networks are addressed in the context of genetics based on genome-wide association study (GWAS). The double-sword role of inflammation, such as how the aberrant type 1 and/or type 2 immunity leads to chronic and severe clinical conditions, remains open in terms of the inflammasome and the core inflammatome network features. Increasingly available large Omics and clinical data in tandem with systems biology approaches have offered an exciting yet challenging opportunity toward reconstruction of more comprehensive and dynamic molecular and genetic inflammation networks, which hold great promise in transiting network snapshots to video-style multi-scale interplays of disease mechanisms, in turn leading to effective clinical intervention.
Collapse
Affiliation(s)
- Yongzhong Zhao
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, 1425 Madison Avenue, NY 10029, USA. and Institute of Genomics and Multiscale Biology, Mount Sinai School of Medicine, 1425 Madison Avenue, NY 10029, USA
| | - Christian V Forst
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, 1425 Madison Avenue, NY 10029, USA. and Institute of Genomics and Multiscale Biology, Mount Sinai School of Medicine, 1425 Madison Avenue, NY 10029, USA
| | - Camil E Sayegh
- Vertex Pharmaceuticals (Canada) Incorporated, 275 Armand-Frappier, Laval, Quebec H7V 4A7, Canada
| | - I-Ming Wang
- Informatics and Analysis, Merck Research Laboratories, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA.
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90025, USA.
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, 1425 Madison Avenue, NY 10029, USA. and Institute of Genomics and Multiscale Biology, Mount Sinai School of Medicine, 1425 Madison Avenue, NY 10029, USA
| |
Collapse
|
3
|
Lambert WS, Carlson BJ, Formichella CR, Sappington RM, Ahlem C, Calkins DJ. Oral Delivery of a Synthetic Sterol Reduces Axonopathy and Inflammation in a Rodent Model of Glaucoma. Front Neurosci 2017; 11:45. [PMID: 28223915 PMCID: PMC5293777 DOI: 10.3389/fnins.2017.00045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/20/2017] [Indexed: 12/12/2022] Open
Abstract
Glaucoma is a group of optic neuropathies associated with aging and sensitivity to intraocular pressure (IOP). The disease is the leading cause of irreversible blindness worldwide. Early progression in glaucoma involves dysfunction of retinal ganglion cell (RGC) axons, which comprise the optic nerve. Deficits in anterograde transport along RGC axons to central visual structures precede outright degeneration, and preventing these deficits is efficacious at abating subsequent progression. HE3286 is a synthetic sterol derivative that has shown therapeutic promise in models of inflammatory disease and neurodegenerative disease. We examined the efficacy of HE3286 oral delivery in preventing loss of anterograde transport in an inducible model of glaucoma (microbead occlusion). Adult rats received HE3286 (20 or 100 mg/kg) or vehicle daily via oral gavage for 4 weeks. Microbead occlusion elevated IOP ~30% in all treatment groups, and elevation was not affected by HE3286 treatment. In the vehicle group, elevated IOP reduced anterograde axonal transport to the superior colliculus, the most distal site in the optic projection, by 43% (p = 0.003); HE3286 (100 mg/kg) prevented this reduction (p = 0.025). HE3286 increased brain-derived neurotrophic factor (BDNF) in the optic nerve head and retina, while decreasing inflammatory and pathogenic proteins associated with elevated IOP compared to vehicle treatment. Treatment with HE3286 also increased nuclear localization of the transcription factor NFκB in collicular and retinal neurons, but decreased NFκB in glial nuclei in the optic nerve head. Thus, HE3286 may have a neuroprotective influence in glaucoma, as well as other chronic neurodegenerations.
Collapse
Affiliation(s)
- Wendi S Lambert
- Vanderbilt University Medical Center, The Vanderbilt Eye Institute Nashville, TN, USA
| | - Brian J Carlson
- Vanderbilt University Medical Center, The Vanderbilt Eye Institute Nashville, TN, USA
| | - Cathryn R Formichella
- Vanderbilt University Medical Center, The Vanderbilt Eye Institute Nashville, TN, USA
| | - Rebecca M Sappington
- Vanderbilt University Medical Center, The Vanderbilt Eye Institute Nashville, TN, USA
| | | | - David J Calkins
- Vanderbilt University Medical Center, The Vanderbilt Eye Institute Nashville, TN, USA
| |
Collapse
|
4
|
Effects of Synthetic Anti-Inflammatory Sterol in CB3V-Induced Myocarditis: A Morphological Study on Heart Muscle Tissue. J Funct Morphol Kinesiol 2016. [DOI: 10.3390/jfmk1010069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
5
|
Segura-Aguilar J, Kostrzewa RM. Neurotoxin mechanisms and processes relevant to Parkinson's disease: an update. Neurotox Res 2015; 27:328-54. [PMID: 25631236 DOI: 10.1007/s12640-015-9519-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 12/14/2022]
Abstract
The molecular mechanism responsible for degenerative process in the nigrostriatal dopaminergic system in Parkinson's disease (PD) remains unknown. One major advance in this field has been the discovery of several genes associated to familial PD, including alpha synuclein, parkin, LRRK2, etc., thereby providing important insight toward basic research approaches. There is an consensus in neurodegenerative research that mitochon dria dysfunction, protein degradation dysfunction, aggregation of alpha synuclein to neurotoxic oligomers, oxidative and endoplasmic reticulum stress, and neuroinflammation are involved in degeneration of the neuromelanin-containing dopaminergic neurons that are lost in the disease. An update of the mechanisms relating to neurotoxins that are used to produce preclinical models of Parkinson´s disease is presented. 6-Hydroxydopamine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and rotenone have been the most wisely used neurotoxins to delve into mechanisms involved in the loss of dopaminergic neurons containing neuromelanin. Neurotoxins generated from dopamine oxidation during neuromelanin formation are likewise reviewed, as this pathway replicates neurotoxin-induced cellular oxidative stress, inactivation of key proteins related to mitochondria and protein degradation dysfunction, and formation of neurotoxic aggregates of alpha synuclein. This survey of neurotoxin modeling-highlighting newer technologies and implicating a variety of processes and pathways related to mechanisms attending PD-is focused on research studies from 2012 to 2014.
Collapse
Affiliation(s)
- Juan Segura-Aguilar
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Casilla, 70000, Santiago 7, Chile,
| | | |
Collapse
|
6
|
Khan RS, Dine K, Luna E, Ahlem C, Shindler KS. HE3286 reduces axonal loss and preserves retinal ganglion cell function in experimental optic neuritis. Invest Ophthalmol Vis Sci 2014; 55:5744-51. [PMID: 25139738 DOI: 10.1167/iovs.14-14672] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
PURPOSE Optic nerve inflammation, demyelination, and axonal loss are all prominent features of optic neuritis. While corticosteroids hasten visual recovery in optic neuritis, no treatment improves final visual outcomes. HE3286 (17α-ethynyl-5-androstene-3β,7β,17β-triol), a synthetic derivative of a natural steroid, β-AET (5-androstene-3β,7β,17β-triol), exerts anti-inflammatory effects in several disease models and has purported neuroprotective effects as well. HE3286's ability to suppress optic neuritis was examined in experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. METHODS Experimental autoimmune encephalomyelitis was induced in C57/BL6 mice. Mice were treated daily with intraperitoneal vehicle or 40 mg/kg HE3286. Visual function was assessed by optokinetic responses (OKR) at baseline and every 10 days until euthanasia at 40 days post immunization. Retinas and optic nerves were isolated. Inflammation (hematoxylin and eosin and Iba1 staining), demyelination (Luxol fast blue staining), and axonal loss (neurofilament staining) were assessed in optic nerve sections. Retinal ganglion cells (RGCs) were immunolabeled with Brn3a antibodies to quantify RGC survival. RESULTS Progressive decreases in OKR occurred in vehicle-treated EAE mice, and HE3286 treatment reduced the level of this vision loss. HE3286 also attenuated the degree of inflammation, demyelination, and axonal loss in EAE optic nerves as compared to nerves from vehicle-treated EAE mice. Retinal ganglion cell loss that occurred in both vehicle- and HE3286-treated EAE mice was reduced in the temporal retinal quadrant of HE3286-treated mice. CONCLUSIONS HE3286 suppresses inflammation, reduces demyelination and axonal loss, and promotes RGC survival during experimental optic neuritis. Importantly, HE3286 treatment also preserves some RGC function. Results suggest that HE3286 is a potential novel treatment for optic neuritis.
Collapse
Affiliation(s)
- Reas S Khan
- Scheie Eye Institute and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Kimberly Dine
- Scheie Eye Institute and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Esteban Luna
- Scheie Eye Institute and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Clarence Ahlem
- Harbor Therapeutics, Inc., San Diego, California, United States
| | - Kenneth S Shindler
- Scheie Eye Institute and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|