1
|
Park M, Shim Y, Choo YH, Kim HS, Kim J, Ha EJ. Should Hypertonic Saline Be Considered for the Treatment of Intracranial Hypertension? A Review of Current Evidence and Clinical Practices. Korean J Neurotrauma 2024; 20:146-158. [PMID: 39372110 PMCID: PMC11450342 DOI: 10.13004/kjnt.2024.20.e35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 10/08/2024] Open
Abstract
Intracranial hypertension (IH) is a critical neurological emergency that requires prompt intervention because failure to treat it properly can lead to severe outcomes, including secondary brain injury. Traditionally, mannitol (MNT) has been the cornerstone of hyperosmolar therapy. However, the use of hypertonic saline (HTS) has become increasingly important because of its unique advantages. Both HTS and MNT effectively reduce intracranial pressure by creating an osmotic gradient that draws fluid from brain tissue. However, unlike MNT, HTS does not induce diuresis or significantly lower blood pressure, making it more favorable for maintaining cerebral perfusion. Additionally, HTS does not cause rebound edema and carries a lower risk of renal injury than MNT. However, it is important to note that the use of HTS comes with potential risks, such as hypernatremia, hyperchloremia, and fluid overload. Due to its unique properties, HTS is a crucial agent in the management of IH, and understanding its appropriate use is essential to optimize patient outcomes.
Collapse
Affiliation(s)
- Moowan Park
- Department of Neurosurgery, Armed Force Yangju Hospital, Yangju, Korea
| | - Youngbo Shim
- Department of Critical Care Medicine, Kangbuk Samsung Hospital, Seoul, Korea
| | - Yoon-Hee Choo
- Department of Neurosurgery, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Hye Seon Kim
- Department of Neurosurgery, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| | - Jungook Kim
- Gachon University Gil Hospital Regional Trauma Center, Incheon, Korea
| | - Eun Jin Ha
- Department of Critical Care Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Liu PY, Shen HH, Kung CW, Chen SY, Lu CH, Lee YM. The Role of HSP70 in the Protective Effects of NVP-AUY922 on Multiple Organ Dysfunction Syndrome in Endotoxemic Rats. Front Pharmacol 2021; 12:724515. [PMID: 34421617 PMCID: PMC8377539 DOI: 10.3389/fphar.2021.724515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/27/2021] [Indexed: 12/29/2022] Open
Abstract
Sepsis is defined as a life-threatening organ dysfunction syndrome with high morbidity and mortality caused by bacterial infection. The major characteristics of sepsis are systemic inflammatory responses accompanied with elevated oxidative stress, leading to multiple organ dysfunction syndrome (MODS), and disseminated intravascular coagulation (DIC). As a molecular chaperon to repair unfolded proteins, heat shock protein 70 (HSP70) maintains cellular homeostasis and shows protective effects on inflammatory damage. HSP 90 inhibitors were reported to exert anti-inflammatory effects via activation of the heat shock factor-1 (HSF-1), leading to induction of HSP70. We evaluated the beneficial effect of HSP 90 inhibitor NVP-AUY 922 (NVP) on multiple organ dysfunction syndrome induced by lipopolysaccharide (LPS) and further explored the underlying mechanism. NVP (5 mg/kg, i.p.) was administered 20 h prior to LPS initiation (LPS 30 mg/kg, i.v. infusion for 4 h) in male Wistar rats. Results demonstrated that pretreatment with NVP significantly increased survival rate and prevented hypotension at 6 h after LPS injection. Plasma levels of ALT, CRE and LDH as well as IL-1β and TNF-α were significantly reduced by NVP at 6 h after LPS challenge. The induction of inducible NO synthase in the liver, lung and heart and NF-κB p-p65 and caspase 3 protein expression in the heart were also attenuated by NVP. In addition, NVP markedly induced HSP70 and HO-1 proteins in the liver, lung and heart after LPS injection. These results indicated that NVP possessed the anti-inflammatory and antioxidant effects on LPS-induced acute inflammation, which might be associated with HSP70 and HO-1, leading to prevent MODS in sepsis. NVP might be considered as a novel therapeutic strategy in the prevention of sepsis-induced MODS.
Collapse
Affiliation(s)
- Pang-Yen Liu
- Division of Cardiology, Department of Internal Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Hsin-Hsueh Shen
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Wen Kung
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Shu-Ying Chen
- Department of Nursing, Hung Kuang University, Taichung, Taiwan
| | - Chia-Hsien Lu
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Yen-Mei Lee
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
3
|
Pralidoxime improves the hemodynamics and survival of rats with peritonitis-induced sepsis. PLoS One 2021; 16:e0249794. [PMID: 33822820 PMCID: PMC8023460 DOI: 10.1371/journal.pone.0249794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 03/22/2021] [Indexed: 12/29/2022] Open
Abstract
Several studies have suggested that sympathetic overstimulation causes deleterious effects in septic shock. A previous study suggested that pralidoxime exerted a pressor effect through a mechanism unrelated to the sympathetic nervous system; this effect was buffered by the vasodepressor action of pralidoxime mediated through sympathoinhibition. In this study, we explored the effects of pralidoxime on hemodynamics and survival in rats with peritonitis-induced sepsis. This study consisted of two sub-studies: survival and hemodynamic studies. In the survival study, 66 rats, which survived for 10 hours after cecal ligation and puncture (CLP), randomly received saline placebo, pralidoxime, or norepinephrine treatment and were monitored for up to 24 hours. In the hemodynamic study, 44 rats were randomly assigned to sham, CLP-saline placebo, CLP-pralidoxime, or CLP-norepinephrine groups, and hemodynamic measurements were performed using a conductance catheter placed in the left ventricle. In the survival study, 6 (27.2%), 15 (68.1%), and 5 (22.7%) animals survived the entire 24-hour monitoring period in the saline, pralidoxime, and norepinephrine groups, respectively (log-rank test P = 0.006). In the hemodynamic study, pralidoxime but not norepinephrine increased end-diastolic volume (P <0.001), stroke volume (P = 0.002), cardiac output (P = 0.003), mean arterial pressure (P = 0.041), and stroke work (P <0.001). The pressor effect of norepinephrine was short-lived, such that by 60 minutes after the initiation of norepinephrine infusion, it no longer had any significant effect on mean arterial pressure. In addition, norepinephrine significantly increased heart rate (P <0.001) and the ratio of arterial elastance to ventricular end-systolic elastance (P = 0.010), but pralidoxime did not. In conclusion, pralidoxime improved the hemodynamics and 24-hour survival rate in rats with peritonitis-induced sepsis, but norepinephrine did not.
Collapse
|
4
|
Magalhães DMS, Zanoni FL, Correia CJ, Simas R, Soares RGF, Sannomiya P, Moreira LFP. Hypertonic Saline Modulates Heart Function and Myocardial Inflammatory Alterations in Brain-Dead Rats. J Surg Res 2019; 235:8-15. [DOI: 10.1016/j.jss.2018.09.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/05/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022]
|
5
|
Domingo-Fernández R, Coll RC, Kearney J, Breit S, O'Neill LAJ. The intracellular chloride channel proteins CLIC1 and CLIC4 induce IL-1β transcription and activate the NLRP3 inflammasome. J Biol Chem 2017; 292:12077-12087. [PMID: 28576828 DOI: 10.1074/jbc.m117.797126] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/01/2017] [Indexed: 11/06/2022] Open
Abstract
The NLRP3 inflammasome is a multiprotein complex that regulates the activation of caspase-1 leading to the maturation of the proinflammatory cytokines IL-1β and IL-18 and promoting pyroptosis. Classically, the NLRP3 inflammasome in murine macrophages is activated by the recognition of pathogen-associated molecular patterns and by many structurally unrelated factors. Understanding the precise mechanism of NLRP3 activation by such a wide array of stimuli remains elusive, but several signaling events, including cytosolic efflux and influx of select ions, have been suggested. Accordingly, several studies have indicated a role of anion channels in NLRP3 inflammasome assembly, but their direct involvement has not been shown. Here, we report that the chloride intracellular channel proteins CLIC1 and CLIC4 participate in the regulation of the NLRP3 inflammasome. Confocal microscopy and cell fractionation experiments revealed that upon LPS stimulation of macrophages, CLIC1 and CLIC4 translocated into the nucleus and cellular membrane. In LPS/ATP-stimulated bone marrow-derived macrophages (BMDMs), CLIC1 or CLIC4 siRNA transfection impaired transcription of IL-1β, ASC speck formation, and secretion of mature IL-1β. Collectively, our results demonstrate that CLIC1 and CLIC4 participate both in the priming signal for IL-1β and in NLRP3 activation.
Collapse
Affiliation(s)
- Raquel Domingo-Fernández
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Rebecca C Coll
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, St Lucia, Queensland 4072, Australia
| | - Jay Kearney
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Samuel Breit
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital and University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
6
|
|
7
|
Recombinant Human Annexin A5 Can Repair the Disrupted Cardiomyocyte Adherens Junctions in Endotoxemia. Shock 2016; 44:83-9. [PMID: 25799159 DOI: 10.1097/shk.0000000000000370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recombinant human annexin A5 (Anx5) is known to protect cardiac function during endotoxemia, although the underlying mechanisms have yet to be elucidated. In this study, we demonstrated that Anx5 could repair the disrupted cardiomyocyte adherens junctions and improve the myocardial contractile function in lipopolysaccharide (LPS)-induced endotoxemia. Mechanistic studies revealed that Anx5 could antagonize the disassociation between p120-catenin (p120) and N-cadherin as well as the dephosphorylation of p120 in LPS-treated cardiomyocytes. Small interference RNA and specific inhibitors experiment demonstrated that Anx5 regulated p120 functions by inhibition of p21-activated kinase 5 in a protein kinase Cα-dependent way. Moreover, Anx5 could inhibit nuclear factor κB activation and downregulate the level of inflammatory cytokines, such as tumor necrosis factor α and interleukin 1β, which contributed to improving tissue pathological damage in LPS-induced mouse endotoxemia model. Taken together, Anx5 could protect cardiomyocytes adherens junctions and improve myocardial contractile function via regulation of p120 and anti-inflammation in LPS-induced endotoxemia. This study provided novel insights in the prevention and treatment of septic shock.
Collapse
|
8
|
Ding Y, Lin Y, Zhu T, Huang M, Xu Q. Interleukin 6 increases dysfunction of organs in sepsis rats through sirtuin 1. Int J Clin Exp Med 2014; 7:2593-2598. [PMID: 25356114 PMCID: PMC4211764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/31/2014] [Indexed: 06/04/2023]
Abstract
Sepsis-induced organ failure is the major cause of death, and is characterized by a massive dysregulated inflammatory response. The present study was to determine whether interleukin 6 (IL-6) expression was increased in sepsis rats and the roles of IL-6 in the damage of cardiac, liver and renal function in the sepsis rats. Sepsis rat models were elicited by intravenous injection of LPS. The mRNA and protein of IL-6 levels were increased in the sepsis rats. The Left ventricular developed pressure (LVDP) and average ±dP/dt were significantly reduced in sepsis rats compare with sham group. ALT and AST activities and creatinine level were increased in the sepsis rats. IL-6 significantly reduced LVDP and average ±dP/dt, increased the activities of ALT and AST, and increased the concentration of creatinine in the sepsis rats. EX527, a sirtuin 1 (SIRT 1) inhibitor, blocked the effects of IL-6 in the sepsis rats. These results indicate that IL-6 plays important roles in the damage of cardiac, liver and renal function in the sepsis rats through SIRT 1.
Collapse
Affiliation(s)
- Ying Ding
- Department of Intensive Care Unit, Hangzhou Xiasha HospitalHangzhou 310018, China
| | - Yongjun Lin
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou 310016, China
| | - Tao Zhu
- Department of Intensive Care Unit, Hangzhou Xiasha HospitalHangzhou 310018, China
| | - Man Huang
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou 310016, China
| | - Qiuping Xu
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou 310016, China
| |
Collapse
|
9
|
Slimani H, Zhai Y, Yousif NG, Ao L, Zeng Q, Fullerton DA, Meng X. Enhanced monocyte chemoattractant protein-1 production in aging mice exaggerates cardiac depression during endotoxemia. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:527. [PMID: 25209241 PMCID: PMC4172828 DOI: 10.1186/s13054-014-0527-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/02/2014] [Indexed: 11/10/2022]
Abstract
Introduction Endotoxemia and the systemic inflammatory response syndrome have a significant impact on post-surgery outcome, particularly in the elderly. The cytokine response to endotoxin is altered by aging. We tested the hypothesis that vulnerability to endotoxemic cardiac depression increases with aging due to age-related augmentation of myocardial inflammatory responses. Methods Adult (4 to 6 months) and old (20 to 22 months) C57/BL6 mice were treated with endotoxin (0.5 mg/kg, iv). Left ventricle (LV) function was assessed using a microcatheter system. Chemokines and cytokines in plasma and myocardium were analyzed by enzyme-linked immunosorbent assay (ELISA). Mononuclear cells in the myocardium were examined using immunofluorescence staining. Results Old mice displayed worse LV function (cardiac output: 3.0 ± 0.2 mL/min versus 4.4 ± 0.3 mL/min in adult mice) following endotoxin treatment. The exaggerated cardiac depression in old mice was associated with higher levels of monocyte chemoattractant protein-1 (MCP-1) and keratinocyte chemoattractant (KC) in plasma and myocardium, greater myocardial accumulation of mononuclear cells, and greater levels of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β) and interleukin 6 (IL-6) in plasma and myocardium. Neutralization of MCP-1 resulted in greater reductions in myocardial mononuclear cell accumulation and cytokine production, and greater improvement in LV function in old mice while neutralization of KC had a minimal effect on LV function. Conclusion Old mice have enhanced inflammatory responses to endotoxemia that lead to exaggerated cardiac functional depression. MCP-1 promotes myocardial mononuclear cell accumulation and cardiodepressant cytokines production, and plays an important role in the endotoxemic cardiomyopathy in old mice. The findings suggest that special attention is needed to protect the heart in the elderly with endotoxemia.
Collapse
|