1
|
Nguyen VD, Pham DT, Le MAT, Shen GM. Effect on Satisfactory Seizure Control and Heart Rate Variability of Thread-Embedding Acupuncture for Drug-Resistant Epilepsy: A Patient-Assessor Blinded, Randomized Controlled Trial. Behav Neurol 2023; 2023:5871991. [PMID: 37767181 PMCID: PMC10522444 DOI: 10.1155/2023/5871991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
This randomized controlled trial investigates the efficacy of thread-embedding acupuncture (TEA) compared to sham TEA in treating drug-resistant epilepsy (DRE). Fifty-four DRE outpatients were randomly divided into two groups: TEA (27 patients) and sham TEA (27 patients). Both groups received four sessions of TEA or sham TEA, spaced four weeks apart, targeting GV20, GV14, BL15, BL18, ST40, and GB34 acupoints. Antiseizure medications were maintained at consistent doses throughout the study. Outcome measures included satisfactory seizure control, seizure freedom, and heart rate (HR) and heart rate variability (HRV) measurements. TEA demonstrated a significantly higher rate of satisfactory seizure control at follow-up compared to the sham TEA group (37% vs. 3.7%, p = 0.003). While no significant intergroup differences were observed in HR, HRV, and HRV components at each stage, the TEA group experienced a significant decrease in HR and a significant increase in HRV posttreatment. This study demonstrates TEA's effectiveness in managing DRE and suggests its impact may relate to heightened parasympathetic nerve activity. Further research with extended follow-up periods is necessary to validate these findings.
Collapse
Affiliation(s)
- Van-Dan Nguyen
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 Anhui Province, China
- Faculty of Traditional Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 100000, Vietnam
| | - Duc-Thang Pham
- Faculty of Traditional Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 100000, Vietnam
| | - Minh-An Thuy Le
- Department of Neurology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 100000, Vietnam
| | - Guo-Ming Shen
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 Anhui Province, China
- Institute of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 Anhui Province, China
| |
Collapse
|
2
|
Tsai ST, Wei TH, Yang YW, Lu MK, San S, Tsai CH, Lin YW. Transient receptor potential V1 modulates neuroinflammation in Parkinson's disease dementia: Molecular implications for electroacupuncture and rivastigmine. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1336-1345. [PMID: 35096291 PMCID: PMC8769514 DOI: 10.22038/ijbms.2021.56156.12531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/17/2021] [Indexed: 12/05/2022]
Abstract
OBJECTIVES Parkinson's disease (PD) is a common progressive neurodegeneration disease. Its incidence increases with age and affects about 1% of people over 60. Incidentally, transient receptor potential V1 (TRPV1) and its relation with neuroinflammation in mouse brain has been widely reported. MATERIALS AND METHODS We used 6-hydroxydopamine (6-OHDA) to induce PDD in mice. We then used the Morris water maze and Bio-Plex to test learning and inflammatory mediators in mouse plasma. Western blotting and immunostaining were used to examine TRPV1 pathway in the hippocampus and medial prefrontal cortex (mPFC). RESULTS On acquisition days 3 (Control = 4.40 ± 0.8 sec, PDD = 9.82 ± 1.52 sec, EA = 5.04 ± 0.58 sec, Riva = 4.75 ± 0.87 sec; P=0.001) and 4, reversal learning days 1, 2, 3 (Control = 2.86 ± 0.46 sec, PDD = 9.80 ± 1.83 sec, EA = 4.6 ± 0.82 sec, Riva = 4.6 ± 1.03 sec; P=0.001) and 4, PDD mice showed significantly longer escape latency than the other three groups. Results showed that several cytokines were up-regulated in PDD mice and reversed by EA and rivastigmine. TRPV1 and downstream molecules were up-regulated in PDD mice and further reversed by EA and rivastigmine. Interestingly, α7 nicotinic receptors and parvalbumin levels in both the hippocampus and prefrontal cortex increased in EA-treated mice, but not in rivastigmine-treated mice. CONCLUSION Our results showed that TRPV1 played a role in the modulation of neuroinflammation of PDD, and could potentially be a new target for treatment.
Collapse
Affiliation(s)
- Sheng-Ta Tsai
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan, Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan, Everflourish Neuroscience and Brain Disease Center, China Medical University Hospital, Taichung, Taiwan
| | - Tzu-Hsuan Wei
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Wan Yang
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan, College of Medicine, China Medical University, Taichung, Taiwan
| | - Ming-Kuei Lu
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan, Everflourish Neuroscience and Brain Disease Center, China Medical University Hospital, Taichung, Taiwan, College of Medicine, China Medical University, Taichung, Taiwan
| | - Shao San
- Department of Psychiatry, Taoyuan Psychiatric Center, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Chon-Haw Tsai
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan, Everflourish Neuroscience and Brain Disease Center, China Medical University Hospital, Taichung, Taiwan, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Wen Lin
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan, Chinese Medicine Research Center, China Medical University, Taichung, Taiwan,Corresponding author: Yi-Wen Lin. Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, No. 91, Xueshi Road, North District, Taichung 404, Taiwan. Tel: 886-970055508;
| |
Collapse
|
3
|
Vega-García A, Neri-Gómez T, Buzoianu-Anguiano V, Guerra-Araiza C, Segura-Uribe J, Feria-Romero I, Orozco-Suarez S. Electroacupuncture Reduces Seizure Activity and Enhances GAD 67 and Glutamate Transporter Expression in Kainic Acid Induced Status Epilepticus in Infant Rats. Behav Sci (Basel) 2019; 9:E68. [PMID: 31252624 PMCID: PMC6680393 DOI: 10.3390/bs9070068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/10/2019] [Accepted: 06/21/2019] [Indexed: 11/21/2022] Open
Abstract
Status epilepticus (SE) is one of the most significant complications in pediatric neurology. Clinical studies have shown positive effects of electroacupuncture (EA) as a therapeutic alternative in the control of partial seizures and secondary generalized clonic seizures. EA promotes the release of neurotransmitters such as GABA and some opioids. The present study aimed to evaluate the anticonvulsive and neuromodulatory effects of Shui Gou DM26 (SG_DM26) acupuncture point electrostimulation on the expression of the glutamate decarboxylase 67 (GAD67) enzyme and the glutamate transporter EAAC1 in an early SE model. At ten postnatal days (10-PD), male rats weighing 22-26 g were divided into 16 groups, including control and treatment groups: Simple stimulation, electrostimulation, anticonvulsant drug treatment, and combined treatment-electrostimulation and pentobarbital (PB). SE was induced with kainic acid (KA), and the following parameters were measured: Motor behavior, and expression of GAD67 and EAAC1. The results suggest an antiepileptic effect derived from SG DM26 point EA. The possible mechanism is most likely the increased production of the inhibitory neurotransmitter GABA, which is observed as an increase in the expression of both GAD67 and EAAC1, as well as the potential synergy between the neuromodulator effects of EA and PB.
Collapse
Affiliation(s)
- Angelica Vega-García
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México CP.06720, Mexico
| | - Teresa Neri-Gómez
- Laboratorio de Nanomateriales, Centro de Investigación en Ciencias de la Salud, Universidad Autónoma de San Luis Potosí, Estado de San Luis Potosí CP.78210, Mexico
| | - Vinnitsa Buzoianu-Anguiano
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México CP.06720, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación en Farmacología, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México CP.06720, Mexico
| | - Julia Segura-Uribe
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México CP.06720, Mexico
| | - Iris Feria-Romero
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México CP.06720, Mexico
| | - Sandra Orozco-Suarez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México CP.06720, Mexico.
| |
Collapse
|
4
|
Chen S, Wang S, Rong P, Liu J, Zhang H, Zhang J. Acupuncture for refractory epilepsy: role of thalamus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:950631. [PMID: 25548594 PMCID: PMC4273587 DOI: 10.1155/2014/950631] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 12/29/2022]
Abstract
Neurostimulation procedures like vagus nerve stimulation (VNS) and deep brain stimulation have been used to treat refractory epilepsy and other neurological disorders. While holding promise, they are invasive interventions with serious complications and adverse effects. Moreover, their efficacies are modest with less seizure free. Acupuncture is a simple, safe, and effective traditional healing modality for a wide range of diseases including pain and epilepsy. Thalamus takes critical role in sensory transmission and is highly involved in epilepsy genesis particularly the absence epilepsy. Considering thalamus serves as a convergent structure for both acupuncture and VNS and the thalamic neuronal activities can be modulated by acupuncture, we propose that acupuncture could be a promising therapy or at least a screening tool to select suitable candidates for those invasive modalities in the management of refractory epilepsy.
Collapse
Affiliation(s)
- Shuping Chen
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shubin Wang
- China General Meitan Hospital, Beijing 100028, China
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junling Liu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongqi Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Jianliang Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|