1
|
Richard V, Lee K, Kerin MJ. MicroRNAs as Endocrine Modulators of Breast Cancer. Int J Mol Sci 2025; 26:3449. [PMID: 40244378 PMCID: PMC11989600 DOI: 10.3390/ijms26073449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Breast cancer is an aggressive disease of multiple subtypes with varying phenotypic, hormonal, and clinicopathological features, offering enhanced resistance to conventional therapeutic regimens. There is an unmet need for reliable molecular biomarkers capable of detecting the malignant transformation from the early stages of the disease to enhance diagnosis and treatment outcomes. A subset of small non-coding nucleic acid molecules, micro ribonucleic acids (microRNAs/miRNAs), have emerged as promising biomarkers due to their role in gene regulation and cancer pathogenesis. This review discusses, in detail, the different origins and hormone-like regulatory functionalities of miRNAs localized in tumor tissue and in the circulation, as well as their inherent stability and turnover that determines the utility of miRNAs as biomarkers for disease detection, monitoring, prognosis, and therapeutic targets.
Collapse
Affiliation(s)
- Vinitha Richard
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, H91 V4AY Galway, Ireland
| | - Kevin Lee
- School of Medicine, University of Galway, H91 V4AY Galway, Ireland;
| | - Michael Joseph Kerin
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, H91 V4AY Galway, Ireland
- School of Medicine, University of Galway, H91 V4AY Galway, Ireland;
| |
Collapse
|
2
|
Shu H, Zhang Z, Liu J, Chen P, Yang C, Wu Y, Wu D, Cao Y, Chu Y, Li L. Circular RNAs: An emerging precise weapon for diabetic nephropathy diagnosis and therapy. Biomed Pharmacother 2023; 168:115818. [PMID: 37939612 DOI: 10.1016/j.biopha.2023.115818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023] Open
Abstract
Diabetic nephropathy (DN) is a prevalent chronic microvascular complication associated with diabetes mellitus and represents a major cause of chronic kidney disease and renal failure. Current treatment strategies for DN primarily focus on symptom alleviation, lacking effective approaches to halt or reverse DN progression. Circular RNA (circRNA), characterized by a closed-loop structure, has emerged as a novel non-coding RNA regulator of gene expression, attributed to its conservation, stability, specificity, and multifunctionality. Dysregulation of circRNA expression is closely associated with DN progression, whereby circRNA impacts kidney cell injury by modulating cell cycle, differentiation, cell death, as well as influencing the release of inflammatory factors and stromal fibronectin expression. Consequently, circRNA is considered a predictive biomarker and a potential therapeutic target for DN. This review provides an overview of the latest research progress in the classification, functions, monitoring methods, and databases related to circRNA. The paper focuses on elucidating the impact and underlying mechanisms of circRNA on kidney cells under diabetic conditions, aiming to offer novel insights into the prevention, diagnosis, and treatment of DN.
Collapse
Affiliation(s)
- Haiying Shu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| | - Peijian Chen
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Can Yang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yan Wu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Dan Wu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanan Cao
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| | - Luxin Li
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| |
Collapse
|
3
|
Dobrzycka M, Sulewska A, Biecek P, Charkiewicz R, Karabowicz P, Charkiewicz A, Golaszewska K, Milewska P, Michalska-Falkowska A, Nowak K, Niklinski J, Konopińska J. miRNA Studies in Glaucoma: A Comprehensive Review of Current Knowledge and Future Perspectives. Int J Mol Sci 2023; 24:14699. [PMID: 37834147 PMCID: PMC10572595 DOI: 10.3390/ijms241914699] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Glaucoma, a neurodegenerative disorder that leads to irreversible blindness, remains a challenge because of its complex nature. MicroRNAs (miRNAs) are crucial regulators of gene expression and are associated with glaucoma and other diseases. We aimed to review and discuss the advantages and disadvantages of miRNA-focused molecular studies in glaucoma through discussing their potential as biomarkers for early detection and diagnosis; offering insights into molecular pathways and mechanisms; and discussing their potential utility with respect to personalized medicine, their therapeutic potential, and non-invasive monitoring. Limitations, such as variability, small sample sizes, sample specificity, and limited accessibility to ocular tissues, are also addressed, underscoring the need for robust protocols and collaboration. Reproducibility and validation are crucial to establish the credibility of miRNA research findings, and the integration of bioinformatics tools for miRNA database creation is a valuable component of a comprehensive approach to investigate miRNA aberrations in patients with glaucoma. Overall, miRNA research in glaucoma has provided significant insights into the molecular mechanisms of the disease, offering potential biomarkers, diagnostic tools, and therapeutic targets. However, addressing challenges such as variability and limited tissue accessibility is essential, and further investigations and validation will contribute to a deeper understanding of the functional significance of miRNAs in glaucoma.
Collapse
Affiliation(s)
- Margarita Dobrzycka
- Department of Ophthalmology, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (K.G.)
| | - Anetta Sulewska
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (A.C.); (J.N.)
| | - Przemyslaw Biecek
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland;
| | - Radoslaw Charkiewicz
- Center of Experimental Medicine, Medical University of Bialystok, 15-369 Bialystok, Poland;
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland; (P.K.); (P.M.); (A.M.-F.)
| | - Piotr Karabowicz
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland; (P.K.); (P.M.); (A.M.-F.)
| | - Angelika Charkiewicz
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (A.C.); (J.N.)
| | - Kinga Golaszewska
- Department of Ophthalmology, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (K.G.)
| | - Patrycja Milewska
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland; (P.K.); (P.M.); (A.M.-F.)
| | | | - Karolina Nowak
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI 48201, USA;
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (A.C.); (J.N.)
| | - Joanna Konopińska
- Department of Ophthalmology, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (K.G.)
| |
Collapse
|
4
|
Henriques DG, Lamback EB, Dezonne RS, Kasuki L, Gadelha MR. MicroRNA in Acromegaly: Involvement in the Pathogenesis and in the Response to First-Generation Somatostatin Receptor Ligands. Int J Mol Sci 2022; 23:ijms23158653. [PMID: 35955787 PMCID: PMC9368811 DOI: 10.3390/ijms23158653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
Acromegaly is a chronic and systemic disease due to excessive growth hormone and insulin-like growth factor type I caused, in the vast majority of cases, by a GH-secreting pituitary adenoma. About 40% of these tumors have somatic mutations in the stimulatory G protein alpha-subunit 1 gene. The pathogenesis of the remaining tumors, however, is still not fully comprehended. Surgery is the first-line therapy for these tumors, and first-generation somatostatin receptor ligands (fg-SRL) are the most prescribed medications in patients who are not cured by surgery. MicroRNAs are small, non-coding RNAs that control the translation of many mRNAs, and are involved in the post-transcriptional regulation of gene expression. Differentially expressed miRNAs can explain differences in the pathogenesis of acromegaly and tumor resistance. In this review, we focus on the most validated miRNAs, which are mainly involved in acromegaly’s tumorigenesis and fg-SRL resistance, as well as in circulating miRNAs in acromegaly.
Collapse
Affiliation(s)
- Daniel G. Henriques
- Neuroendocrinology Research Center, Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Elisa B. Lamback
- Neuroendocrinology Research Center, Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
- Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
| | - Romulo S. Dezonne
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
| | - Leandro Kasuki
- Neuroendocrinology Research Center, Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
- Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
- Endocrinology Division, Hospital Federal de Bonsucesso, Rio de Janeiro 21041-020, Brazil
| | - Monica R. Gadelha
- Neuroendocrinology Research Center, Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
- Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
- Correspondence:
| |
Collapse
|
5
|
Factors influencing degradation kinetics of mRNAs and half-lives of microRNAs, circRNAs, lncRNAs in blood in vitro using quantitative PCR. Sci Rep 2022; 12:7259. [PMID: 35508612 PMCID: PMC9068688 DOI: 10.1038/s41598-022-11339-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/21/2022] [Indexed: 12/18/2022] Open
Abstract
RNAs are rapidly degraded in samples and during collection, processing and testing. In this study, we used the same method to explore the half-lives of different RNAs and the influencing factors, and compared the degradation kinetics and characteristics of different RNAs in whole blood and experimental samples. Fresh anticoagulant blood samples were incubated at room temperature for different durations, RNAs were extracted, and genes, including internal references, were amplified by real-time quantitative PCR. A linear half-life model was established according to cycle threshold (Ct) values. The effects of experimental operations on RNA degradation before and after RNA extraction were explored. Quantitative analysis of mRNA degradation in samples and during experimental processes were explored using an orthogonal experimental design. The storage duration of blood samples at room temperature had the greatest influence on RNA degradation. The half-lives of messenger RNAs (mRNAs) was 16.4 h. The half-lives of circular RNAs (circRNAs), long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) were 24.56 ± 5.2 h, 17.46 ± 3.0 h and 16.42 ± 4.2 h, respectively. RNA degradation occurred mainly in blood samples. The half-life of mRNAs was the shortest among the four kinds of RNAs. Quantitative experiments related to mRNAs should be completed within 2 h. The half-lives of circRNAs and lncRNAs were longer than those of the former two.
Collapse
|
6
|
Lukiw WJ. Fission Impossible: Stabilized miRNA-Based Analogs in Neurodegenerative Disease. Front Neurosci 2022; 16:875957. [PMID: 35592255 PMCID: PMC9111010 DOI: 10.3389/fnins.2022.875957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/04/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA, United States
- Department of Ophthalmology, Louisiana State University Health Science Center, New Orleans, LA, United States
- Department of Neurology, Louisiana State University Health Science Center, New Orleans, LA, United States
- *Correspondence: Walter J. Lukiw
| |
Collapse
|
7
|
Plasma Extracellular Vesicle miRNAs Can Identify Lung Cancer, Current Smoking Status, and Stable COPD. Int J Mol Sci 2021; 22:ijms22115803. [PMID: 34071592 PMCID: PMC8198071 DOI: 10.3390/ijms22115803] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer remains the leading cause of cancer related mortality worldwide. We aimed to test whether a simple blood biomarker (extracellular vesicle miRNAs) can discriminate between cases with and without lung cancer. METHODS plasma extracellular vesicles (EVs) were isolated from four cohorts (n = 20 in each): healthy non-smokers, healthy smokers, lung cancer, and stable COPD participants. EV miRNA expression was evaluated using the miRCURY LNA miRNA Serum/Plasma assay for 179 specific targets. Significantly dysregulated miRNAs were assessed for discriminatory power using ROC curve analysis. RESULTS 15 miRNAs were differentially expressed between lung cancer and healthy non-smoking participants, with the greatest single miRNA being miR-205-5p (AUC 0.850), improving to AUC 0.993 in combination with miR-199a-5p. Moreover, 26 miRNAs were significantly dysregulated between lung cancer and healthy smoking participants, with the greatest single miRNA being miR-497-5p (AUC 0.873), improving to AUC 0.953 in combination with miR-22-5p; 14 miRNAs were significantly dysregulated between lung cancer and stable COPD participants, with the greatest single miRNA being miR-27a-3p (AUC 0.803), with two other miRNAs (miR-106b-3p and miR-361-5p) further improving discriminatory power (AUC 0.870). CONCLUSION this case control study suggests miRNAs in EVs from plasma holds key biological information specific for lung cancer and warrants further prospective assessment.
Collapse
|
8
|
Abstract
MicroRNAs (miRNAs) are short, noncoding RNAs that are evolutionarily conserved across many different species. miRNA regulation of gene expression, specifically in the context of the mammalian brain, has been well characterized; however, the regulation of miRNA degradation is still a focus of ongoing research. This review focuses on recent findings concerning the cellular mechanisms that govern miRNA degradation, with an emphasis on target-mediated miRNA degradation and how this phenomenon is uniquely poised to maintain homeostasis in neuronal systems.
Collapse
Affiliation(s)
- Chun K Kim
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| | - Toni R Pak
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
9
|
Differential Stability of miR-9-5p and miR-9-3p in the Brain Is Determined by Their Unique Cis- and Trans-Acting Elements. eNeuro 2020; 7:ENEURO.0094-20.2020. [PMID: 32376600 PMCID: PMC7294468 DOI: 10.1523/eneuro.0094-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022] Open
Abstract
microRNAs (miRs) are fundamental regulators of protein coding genes. In the CNS, miR-9 is highly enriched and critical for neuronal development and function. Mature miRs are derived from a duplex precursor, and the -5p strand ("guide") is preferentially incorporated into an RNA-induced silencing complex (RISC) to exert its regulatory functions, while the complementary -3p strand ("passenger") is thought to be rapidly degraded. By contrast, both strands of the miR-9 duplex have unique functions critical for neuronal physiology, yet their respective degradation rates and mechanisms governing degradation are not well understood. Therefore, we determined the degradation kinetics of miR-9-5p and miR-9-3p and investigated the cis and trans elements that affected their stability in the brain. Using a combination of homogeneous neuronal/astrocyte cell models and heterogeneous brain tissue lysate, we demonstrate the novel finding that miR-9-3p was more stable than the miR-9-5p guide strand in all models tested. Moreover, the degradation kinetics of both miR-9-5p and miR-9-3p were brain-region specific, suggesting that each brain region was differentially enriched for specific degradation factors. We also determined that the 3' nucleotides harbor important cis elements required to not only maintain stability, but also to recruit potential protein degradation factors. We used mass spectrometry to assess the miR-9 interacting proteins and found that the -5p and -3p strands were associated with functionally distinct proteins. Overall, these studies revealed unique miR-9-5p and miR-9-3p degradation kinetics in the brain and proposed critical nucleotide sequences and protein partners that could contribute to this differential stability.
Collapse
|
10
|
Nartey MN, Peña-Castillo L, LeGrow M, Doré J, Bhattacharya S, Darby-King A, Carew SJ, Yuan Q, Harley CW, McLean JH. Learning-induced mRNA alterations in olfactory bulb mitral cells in neonatal rats. ACTA ACUST UNITED AC 2020; 27:209-221. [PMID: 32295841 PMCID: PMC7164515 DOI: 10.1101/lm.051177.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/11/2020] [Indexed: 12/20/2022]
Abstract
In the olfactory bulb, a cAMP/PKA/CREB-dependent form of learning occurs in the first week of life that provides a unique mammalian model for defining the epigenetic role of this evolutionarily ancient plasticity cascade. Odor preference learning in the week-old rat pup is rapidly induced by a 10-min pairing of odor and stroking. Memory is demonstrable at 24 h, but not 48 h, posttraining. Using this paradigm, pups that showed peppermint preference 30 min posttraining were sacrificed 20 min later for laser microdissection of odor-encoding mitral cells. Controls were given odor only. Microarray analysis revealed that 13 nonprotein-coding mRNAs linked to mRNA translation and splicing and 11 protein-coding mRNAs linked to transcription differed with odor preference training. MicroRNA23b, a translation inhibitor of multiple plasticity-related mRNAs, was down-regulated. Protein-coding transcription was up-regulated for Sec23b, Clic2, Rpp14, Dcbld1, Magee2, Mstn, Fam229b, RGD1566265, and Mgst2. Gng12 and Srcg1 mRNAs were down-regulated. Increases in Sec23b, Clic2, and Dcbld1 proteins were confirmed in mitral cells in situ at the same time point following training. The protein-coding changes are consistent with extracellular matrix remodeling and ryanodine receptor involvement in odor preference learning. A role for CREB and AP1 as triggers of memory-related mRNA regulation is supported. The small number of gene changes identified in the mitral cell input/output link for 24 h memory will facilitate investigation of the nature, and reversibility, of changes supporting temporally restricted long-term memory.
Collapse
Affiliation(s)
- Michaelina N Nartey
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Lourdes Peña-Castillo
- Department of Computer Science, Memorial University of Newfoundland, St. John's, Newfoundland A1B3X5, Canada
| | - Megan LeGrow
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Jules Doré
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Sriya Bhattacharya
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Andrea Darby-King
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Samantha J Carew
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Qi Yuan
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Carolyn W Harley
- Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland A1B3X9, Canada
| | - John H McLean
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| |
Collapse
|
11
|
Sahu A, Li N, Dunkel I, Chung HR. EPIGENE: genome-wide transcription unit annotation using a multivariate probabilistic model of histone modifications. Epigenetics Chromatin 2020; 13:20. [PMID: 32264931 PMCID: PMC7137282 DOI: 10.1186/s13072-020-00341-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/28/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding the transcriptome is critical for explaining the functional as well as regulatory roles of genomic regions. Current methods for the identification of transcription units (TUs) use RNA-seq that, however, require large quantities of mRNA rendering the identification of inherently unstable TUs, e.g. miRNA precursors, difficult. This problem can be alleviated by chromatin-based approaches due to a correlation between histone modifications and transcription. RESULTS Here, we introduce EPIGENE, a novel chromatin segmentation method for the identification of active TUs using transcription-associated histone modifications. Unlike the existing chromatin segmentation approaches, EPIGENE uses a constrained, semi-supervised multivariate hidden Markov model (HMM) that models the observed combination of histone modifications using a product of independent Bernoulli random variables, to identify active TUs. Our results show that EPIGENE can identify genome-wide TUs in an unbiased manner. EPIGENE-predicted TUs show an enrichment of RNA Polymerase II at the transcription start site and in gene body indicating that they are indeed transcribed. Comprehensive validation using existing annotations revealed that 93% of EPIGENE TUs can be explained by existing gene annotations and 5% of EPIGENE TUs in HepG2 can be explained by microRNA annotations. EPIGENE outperformed the existing RNA-seq-based approaches in TU prediction precision across human cell lines. Finally, we identified 232 novel TUs in K562 and 43 novel cell-specific TUs all of which were supported by RNA Polymerase II ChIP-seq and Nascent RNA-seq data. CONCLUSION We demonstrate the applicability of EPIGENE to identify genome-wide active TUs and to provide valuable information about unannotated TUs. EPIGENE is an open-source method and is freely available at: https://github.com/imbbLab/EPIGENE.
Collapse
Affiliation(s)
- Anshupa Sahu
- Institute for Medical Bioinformatics and Biostatistics, Philipps University of Marburg, 35037, Marburg, Germany
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Na Li
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Ilona Dunkel
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Ho-Ryun Chung
- Institute for Medical Bioinformatics and Biostatistics, Philipps University of Marburg, 35037, Marburg, Germany.
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany.
| |
Collapse
|
12
|
Tentori AM, Nagarajan MB, Kim JJ, Zhang WC, Slack FJ, Doyle PS. Quantitative and multiplex microRNA assays from unprocessed cells in isolated nanoliter well arrays. LAB ON A CHIP 2018; 18:2410-2424. [PMID: 29998262 PMCID: PMC6081239 DOI: 10.1039/c8lc00498f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) have recently emerged as promising biomarkers for the profiling of diseases. Translation of miRNA biomarkers to clinical practice, however, remains a challenge due to the lack of analysis platforms for sensitive, quantitative, and multiplex miRNA assays that have simple and robust workflows suitable for translation. The platform we present here utilizes functionalized hydrogel posts contained within isolated nanoliter well reactors for quantitative and multiplex assays directly from unprocessed cell samples without the need of prior nucleic acid extraction. Simultaneous reactor isolation and delivery of miRNA extraction reagents is achieved by sealing an array of wells containing the functionalized hydrogel posts and cells against another array of wells containing lysis and extraction reagents. The nanoliter well array platform features >100× better sensitivity compared to previous technology utilizing hydrogel particles without relying on signal amplification and enables >100 parallel assays in a single device. These advances provided by this platform lay the groundwork for translatable and robust analysis technologies for miRNA expression profiling in samples with small populations of cells and in precious, material-limited samples.
Collapse
Affiliation(s)
- Augusto M. Tentori
- Department of Chemical Engineering
, Massachusetts Institute of Technology
,
Cambridge
, USA
.
; Tel: +1 617 253 4534
| | - Maxwell B. Nagarajan
- Department of Chemical Engineering
, Massachusetts Institute of Technology
,
Cambridge
, USA
.
; Tel: +1 617 253 4534
| | - Jae Jung Kim
- Department of Chemical Engineering
, Massachusetts Institute of Technology
,
Cambridge
, USA
.
; Tel: +1 617 253 4534
| | - Wen Cai Zhang
- Department of Pathology
, Beth Israel Deaconess Medical Center/Harvard Medical School
,
Boston
, USA
| | - Frank J. Slack
- Department of Pathology
, Beth Israel Deaconess Medical Center/Harvard Medical School
,
Boston
, USA
| | - Patrick S. Doyle
- Department of Chemical Engineering
, Massachusetts Institute of Technology
,
Cambridge
, USA
.
; Tel: +1 617 253 4534
| |
Collapse
|
13
|
miRNAs in platelet-poor blood plasma and purified RNA are highly stable: a confirmatory study. BMC Res Notes 2018; 11:273. [PMID: 29728133 PMCID: PMC5936026 DOI: 10.1186/s13104-018-3378-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/30/2018] [Indexed: 11/18/2022] Open
Abstract
Objective We wished to re-assess the relative stability of microRNAs (miRNAs) as compared with other RNA molecules, which has been confirmed in many contexts. When bound to Argonaute proteins, miRNAs are protected from degradation, even when released into the extracellular space in ribonucleoprotein complexes, and with or without the protection of membranes in extracellular vesicles. Purified miRNAs also appear to present less of a target for degradation than other RNAs. Although miRNAs are by no means immune to degradation, biological samples subjected to prolonged incubation at room temperature, multiple freeze/thaws, or collection in the presence of inhibitors like heparin, can typically be remediated or used directly for miRNA measurements. Results Here, we provide additional confirmation of early, well validated findings on miRNA stability and detectability. Our data also suggest that inadequate depletion of platelets from plasma may explain the occasional report that freeze–thaw cycles can adversely affect plasma miRNA levels. Overall, the repeated observation of miRNA stability is again confirmed.
Collapse
|
14
|
Wei Z, Xu C, Wang J, Lu F, Bie X, Lu Z. Identification and characterization of Streptomyces flavogriseus NJ-4 as a novel producer of actinomycin D and holomycin. PeerJ 2017; 5:e3601. [PMID: 28740758 PMCID: PMC5520960 DOI: 10.7717/peerj.3601] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/30/2017] [Indexed: 01/23/2023] Open
Abstract
This paper is the first public report that Streptomyces flavogriseus can produce both actinomycin D and holomycin. The actinomycete strain NJ-4 isolated from the soil of Nanjing Agricultural University was identified as S. flavogriseus. This S. flavogriseus strain was found for the first time to produce two antimicrobial compounds that were identified as actinomycin D and holomycin. GS medium, CS medium and GSS medium were used for the production experiments. All three media supported the production of actinomycin D, while holomycin was detected only in GS medium and was undetectable by HPLC in the CS and GSS media. The antimicrobial activity against B. pumilus, S. aureus, Escherichia coli, F. moniliforme, F. graminearum and A. niger was tested using the agar well diffusion method. Actinomycin D exhibited strong antagonistic activities against all the indicator strains. Holomycin exhibited strong antagonistic activities against B. pumilus, S. aureus and E. coli and had antifungal activity against F. moniliforme and F. graminearum but had no antifungal activity against A. niger. The cell viability was determined using an MTT assay. Holomycin exhibited cytotoxic activity against A549 lung cancer cells, BGC823 gastric cancer cells and HepG2 hepatocellular carcinoma cells. The yield of actinomycin D from S. flavogriseus NJ-4 was 960 mg/l. S. flavogriseus NJ-4 exhibits a distinct capability and has the industrial potential to produce considerable yields of actinomycin D under unoptimized conditions.
Collapse
Affiliation(s)
- Zhaohui Wei
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chao Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Juan Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Differential MicroRNA Analyses of Burkholderia pseudomallei- and Francisella tularensis-Exposed hPBMCs Reveal Potential Biomarkers. Int J Genomics 2017; 2017:6489383. [PMID: 28791299 PMCID: PMC5534298 DOI: 10.1155/2017/6489383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence that microRNAs (miRNAs) play important roles in the immune response against infectious agents suggests that miRNA might be exploitable as signatures of exposure to specific infectious agents. In order to identify potential early miRNA biomarkers of bacterial infections, human peripheral blood mononuclear cells (hPBMCs) were exposed to two select agents, Burkholderia pseudomallei K96243 and Francisella tularensis SHU S4, as well as to the nonpathogenic control Escherichia coli DH5α. RNA samples were harvested at three early time points, 30, 60, and 120 minutes postexposure, then sequenced. RNAseq analyses identified 87 miRNAs to be differentially expressed (DE) in a linear fashion. Of these, 31 miRNAs were tested using the miScript miRNA qPCR assay. Through RNAseq identification and qPCR validation, we identified differentially expressed miRNA species that may be involved in the early response to bacterial infections. Based upon its upregulation at early time points postexposure in two different individuals, hsa-mir-30c-5p is a miRNA species that could be studied further as a potential biomarker for exposure to these gram-negative intracellular pathogens. Gene ontology functional analyses demonstrated that programmed cell death is the first ranking biological process associated with miRNAs that are upregulated in F. tularensis-exposed hPBMCs.
Collapse
|
16
|
McCormick R, Goljanek-Whysall K. MicroRNA Dysregulation in Aging and Pathologies of the Skeletal Muscle. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 334:265-308. [PMID: 28838540 DOI: 10.1016/bs.ircmb.2017.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skeletal muscle is one of the biggest organs of the body with important mechanistic and metabolic functions. Muscle homeostasis is controlled by environmental, genetic, and epigenetic factors. Indeed, MiRNAs, small noncoding RNAs robust regulators of gene expression, have and have been shown to regulate muscle homeostasis on several levels: through controlling myogenesis, muscle growth (hypertrophy) and atrophy, as well as interactions of muscle with other tissues. Given the large number of MiRNA target genes and the important role of MiRNAs in most physiological processes and various diseases, MiRNAs may have an enormous potential as therapeutic targets against numerous disorders, including pathologies of muscle. The purpose of this review is to present the current knowledge of the role of MiRNAs in skeletal muscle homeostasis and pathologies and the potential of MiRNAs as therapeutics for skeletal muscle wasting, with particular focus on the age- and disease-related loss of muscle mass and function.
Collapse
Affiliation(s)
- Rachel McCormick
- Musculoskeletal Biology II, Centre for Integrated Research into Musculoskeletal Aging, Institute of Aging and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.
| | - Katarzyna Goljanek-Whysall
- Musculoskeletal Biology II, Centre for Integrated Research into Musculoskeletal Aging, Institute of Aging and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
17
|
Tong YQ, Liu B, Zheng HY, Gu J, Liu H, Li F, Tan BH, Hartman M, Song C, Li Y. MiR-215, an activator of the CTNNBIP1/β-catenin pathway, is a marker of poor prognosis in human glioma. Oncotarget 2016; 6:25024-33. [PMID: 26317904 PMCID: PMC4694812 DOI: 10.18632/oncotarget.4622] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/08/2015] [Indexed: 01/13/2023] Open
Abstract
MicroRNA-215 (miR-215) promotes tumor growth in various human malignancies. However, its role has not yet been determined in human glioma. Here, we found that levels of miR-215 were higher in glioma tissues than in corresponding non-neoplastic brain tissue. High miR-215 expression was correlated with higher World Health Organization (WHO) grades and shorter overall survival. Multivariate and univariate analysis indicated that miR-215 expression was an independent prognostic factor. We also found that TGF-beta1, phosphorylated beta-catenin, alpha-SMA, and fibronectin were increased in glioma tissues. Additionally, CTNNBIP1, a direct target of miR-215, was decreased in glioma compared to adjacent normal tissue. These data indicate that miR-215 activates Wnt/β-catenin signaling by increasing β-catenin phosphorylation, α-SMA expression, and fibronectin expression. It promotes TGF-β1-induced oncogenesis by suppressing CTNNBIP1 in glioma. In summary, miR-215 is overexpressed in human glioma, is involved in TGF-β1-induced oncogenesis, and can be used as a marker of poor prognosis in glioma patients.
Collapse
Affiliation(s)
- Yong-Qing Tong
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, PR China.,Clinical Molecular Diagnostic Center, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Bei Liu
- Department of Pathology Affiliated Tianyou Hospital of Wuhan University of Science and Technology, Wuhan 430064, PR China
| | - Hong-Yun Zheng
- Clinical Molecular Diagnostic Center, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Jian Gu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Hang Liu
- Clinical Molecular Diagnostic Center, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Feng Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Bi-Hua Tan
- Pennsylvania State University College of Medicine and Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | - Melanie Hartman
- Pennsylvania State University College of Medicine and Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | - Chunhua Song
- Pennsylvania State University College of Medicine and Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | - Yan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, PR China.,Clinical Molecular Diagnostic Center, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| |
Collapse
|
18
|
Chen C, Cheng X, Li J, Chen H, Zhang S, Dong Y, Gan L, Liu J, Zhu T. Extracellular RNAs as a chemical initiator for postoperative cognitive dysfunction. Med Hypotheses 2016; 94:47-50. [PMID: 27515198 DOI: 10.1016/j.mehy.2016.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 06/04/2016] [Accepted: 06/09/2016] [Indexed: 02/05/2023]
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication that presents in the postoperative stage, especially in elderly patients. Despite years of considerable progress, the detailed molecular mechanisms of POCD remain largely unknown. Neuroinflammation has been increasingly pointed out as one of the core mechanisms for the pathogenesis of POCD. However, application of anti-inflammatory drugs failed to show consistent beneficial effect in patients with cognitive decline. Hence, it might be of great importance to identify the inflammatory initiators that are involved in the mediation, amplification and perpetuation of postoperative neuroinflammatory reactions. Extracellular RNAs (exRNAs), released from necrotic cells, were demonstrated to initiate the inflammatory responses in various pathological conditions. Recent study has suggested neuroprotective and edema protective effects of ribonuclease (RNase), the counterpart of RNA, in acute stroke. It was theorized that RNase acted against endogenous RNA that was released from tissue damage. Similarly, we have observed significant attenuation of cognitive impairment by RNase in aged mice after unilateral nephrectomy. Damping the systemic initiators at early stages may help to prevent the chain reaction that triggers the central inflammatory or apoptotic response. Therefore, we propose the hypothesis that exRNAs released upon stress, through acting on the peripheral and/or central receptors, may trigger a damaging cascade leading to the development of POCD. Undoubtedly, further study is urgently needed to elucidated the exact signaling mechanisms and confirm the proposed hypothesis.
Collapse
Affiliation(s)
- Chan Chen
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xu Cheng
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ji Li
- Department of Surgical Operating Room, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hai Chen
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shu Zhang
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - Lu Gan
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao Zhu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
19
|
Endothelial Dicer promotes atherosclerosis and vascular inflammation by miRNA-103-mediated suppression of KLF4. Nat Commun 2016; 7:10521. [PMID: 26837267 PMCID: PMC4742841 DOI: 10.1038/ncomms10521] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/22/2015] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs regulate the maladaptation of endothelial cells (ECs) to naturally occurring disturbed blood flow at arterial bifurcations resulting in arterial inflammation and atherosclerosis in response to hyperlipidemic stress. Here, we show that reduced endothelial expression of the RNAse Dicer, which generates almost all mature miRNAs, decreases monocyte adhesion, endothelial C–X–C motif chemokine 1 (CXCL1) expression, atherosclerosis and the lesional macrophage content in apolipoprotein E knockout mice (Apoe−/−) after exposure to a high-fat diet. Endothelial Dicer deficiency reduces the expression of unstable miRNAs, such as miR-103, and promotes Krüppel-like factor 4 (KLF4)-dependent gene expression in murine atherosclerotic arteries. MiR-103 mediated suppression of KLF4 increases monocyte adhesion to ECs by enhancing nuclear factor-κB-dependent CXCL1 expression. Inhibiting the interaction between miR-103 and KLF4 reduces atherosclerosis, lesional macrophage accumulation and endothelial CXCL1 expression. Overall, our study suggests that Dicer promotes endothelial maladaptation and atherosclerosis in part by miR-103-mediated suppression of KLF4. The RNAse III endonuclease Dicer is crucial for processing of pre-miRNAs in health and disease. Here the authors show that endothelial Dicer promotes atherosclerosis by increasing miR-103 levels leading to suppression of the anti-inflammatory transcription factor KLF4, thus suggesting a novel approach to treat this disease.
Collapse
|
20
|
Chen Z, Luo Y, Yang W, Ding L, Wang J, Tu J, Geng B, Cui Q, Yang J. Comparison Analysis of Dysregulated LncRNA Profile in Mouse Plasma and Liver after Hepatic Ischemia/Reperfusion Injury. PLoS One 2015. [PMID: 26221732 PMCID: PMC4519261 DOI: 10.1371/journal.pone.0133462] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Long noncoding RNAs (LncRNAs) have been believed to be the major transcripts in various tissues and organs, and may play important roles in regulation of many biological processes. The current study determined the LncRNA profile in mouse plasma after liver ischemia/reperfusion injury (IRI) using microarray technology. Microarray assays revealed that 64 LncRNAs were upregulated, and 244 LncRNAs were downregulated in the plasma of liver IRI mouse. Among these dysregulated plasma LncRNAs, 59-61% were intergenic, 22-25% were antisense overlap, 8-12% were sense overlap and 6-7% were bidirectional. Ten dysregulated plasma LncRNAs were validated by quantitative PCR assays, confirming the accuracy of microarray analysis result. Comparison analysis between dysregulated plasma and liver LncRNA profile after liver IRI revealed that among the 308 dysregulated plasma LncRNAs, 245 LncRNAs were present in the liver, but remained unchanged. In contrast, among the 98 dysregulated liver LncRNAs after IRI, only 19 were present in the plasma, but remained unchanged. LncRNA AK139328 had been previously reported to be upregulated in the liver after IRI, and silencing of hepatic AK139328 ameliorated liver IRI. Both microarray and RT-PCR analyses failed to detect the presence of AK139328 in mouse plasma. In summary, the current study compared the difference between dysregulated LncRNA profile in mouse plasma and liver after liver IRI, and suggested that a group of dysregulated plasma LncRNAs have the potential of becoming novel biomarkers for evaluation of ischemic liver injury.
Collapse
Affiliation(s)
- Zhenzhen Chen
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing, 100191, China
- MOE Key Lab of Molecular Cardiovascular Science, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Yanjin Luo
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing, 100191, China
- MOE Key Lab of Molecular Cardiovascular Science, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Weili Yang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing, 100191, China
- MOE Key Lab of Molecular Cardiovascular Science, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Liwei Ding
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing, 100191, China
- MOE Key Lab of Molecular Cardiovascular Science, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Junpei Wang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing, 100191, China
- Department of Biomedical Informatics, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing, 100191, China
| | - Jian Tu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing, 100191, China
- Department of Biomedical Informatics, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing, 100191, China
| | - Bin Geng
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing, 100191, China
- MOE Key Lab of Molecular Cardiovascular Science, Peking University, 38 Xueyuan Road, Beijing, 100191, China
- Center for Noncoding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Qinghua Cui
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing, 100191, China
- Department of Biomedical Informatics, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing, 100191, China
- Institute of Systems Biomedicine, Peking University, 38 Xueyuan Road, Beijing, 100191, China
- MOE Key Lab of Molecular Cardiovascular Science, Peking University, 38 Xueyuan Road, Beijing, 100191, China
- Center for Noncoding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
- * E-mail: (JY); (QC)
| | - Jichun Yang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing, 100191, China
- MOE Key Lab of Molecular Cardiovascular Science, Peking University, 38 Xueyuan Road, Beijing, 100191, China
- Center for Noncoding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
- * E-mail: (JY); (QC)
| |
Collapse
|
21
|
Jayanthy A, Setaluri V. Light-regulated microRNAs. Photochem Photobiol 2014; 91:163-72. [PMID: 25389067 DOI: 10.1111/php.12386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023]
Abstract
In addition to exposure to passive diurnal cycles of sunlight, humans are also subjected to intentional acute exposure to other types of electromagnetic radiation (EM). Understanding the molecular mechanisms involved in the physiological, pathological and therapeutic responses to exposure to radiation is an active area of research. With the advent of methods to readily catalog and identify patterns of changes in gene expression, many studies have reported changes in gene expression upon exposure of various human and mouse cells in vitro, whole experimental organisms such as mice and parts of human body. However, the molecular mechanisms underlying these broad ranging changes in gene expression are not yet fully understood. MicroRNAs, which are short, noncoding RNAs that regulate gene expression by targeting many messenger RNAs, are also emerging as important mediators of radiation-induced changes in gene expression and hence critical for the manifestation of light-induced cellular phenotypes and physiological responses. In this article, we review available knowledge on microRNAs implicated in responses to various forms of solar and other EM radiation. Based on this knowledge, we elaborate some unifying themes in the regulation and functions of some of these miRNAs.
Collapse
Affiliation(s)
- Ashika Jayanthy
- Department of Dermatology and Graduate Program in Comparative Biomedical Sciences, School of Medicine and Public Health & School of Veterinary Medicine, University of Wisconsin, Madison, WI
| | | |
Collapse
|
22
|
Song R, Liu Q, Hutvagner G, Nguyen H, Ramamohanarao K, Wong L, Li J. Rule discovery and distance separation to detect reliable miRNA biomarkers for the diagnosis of lung squamous cell carcinoma. BMC Genomics 2014; 15 Suppl 9:S16. [PMID: 25521201 PMCID: PMC4290601 DOI: 10.1186/1471-2164-15-s9-s16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Altered expression profiles of microRNAs (miRNAs) are linked to many diseases including lung cancer. miRNA expression profiling is reproducible and miRNAs are very stable. These characteristics of miRNAs make them ideal biomarker candidates. Method This work is aimed to detect 2-and 3-miRNA groups, together with specific expression ranges of these miRNAs, to form simple linear discriminant rules for biomarker identification and biological interpretation. Our method is based on a novel committee of decision trees to derive 2-and 3-miRNA 100%-frequency rules. This method is applied to a data set of lung miRNA expression profiles of 61 squamous cell carcinoma (SCC) samples and 10 normal tissue samples. A distance separation technique is used to select the most reliable rules which are then evaluated on a large independent data set. Results We obtained four 2-miRNA and three 3-miRNA top-ranked rules. One important rule is that: If the expression level of miR-98 is above 7.356 and the expression level of miR-205 is below 9.601 (log2 quantile normalized MirVan miRNA Bioarray signals), then the sample is normal rather than cancerous with specificity and sensitivity both 100%. The classification performance of our best miRNA rules remarkably outperformed that by randomly selected miRNA rules. Our data analysis also showed that miR-98 and miR-205 have two common predicted target genes FZD3 and RPS6KA3, which are actually genes associated with carcinoma according to the Online Mendelian Inheritance in Man (OMIM) database. We also found that most of the chromosomal loci of these miRNAs have a high frequency of genomic alteration in lung cancer. On the independent data set (with balanced controls), the three miRNAs miR-126, miR-205 and miR-182 from our best rule can separate the two classes of samples at the accuracy of 84.49%, sensitivity of 91.40% and specificity of 77.14%. Conclusion Our results indicate that rule discovery followed by distance separation is a powerful computational method to identify reliable miRNA biomarkers. The visualization of the rules and the clear separation between the normal and cancer samples by our rules will help biology experts for their analysis and biological interpretation.
Collapse
|
23
|
Herai RR, Stefanacci L, Hrvoj-Mihic B, Chailangkarn T, Hanson K, Semendeferi K, Muotri AR. Micro RNA detection in long-term fixed tissue of cortical glutamatergic pyramidal neurons after targeted laser-capture neuroanatomical microdissection. J Neurosci Methods 2014; 235:76-82. [PMID: 24992573 DOI: 10.1016/j.jneumeth.2014.06.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 06/18/2014] [Accepted: 06/20/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Formalin fixation (FF) is the standard and most common method for preserving postmortem brain tissue. FF stabilizes cellular morphology and tissue architecture, and can be used to study the distinct morphologic and genetic signatures of different cell types. Although the procedure involved in FF degrades messenger RNA over time, an alternative approach is to use small RNAs (sRNAs) for genetic analysis associated with cell morphology. Although genetic analysis is carried out on fresh or frozen tissue, there is limited availability or impossibility on targeting specific cell populations, respectively. NEW METHOD The goal of this study is to detect miRNA and other classes of sRNA stored in formalin or in paraffin embedded for over decades. Two brain samples, one formed by a mixed population of cortical and subcortical cells, and one formed by pyramidal shaped cells collected by laser-capture microdissection, were subjected to sRNA sequencing. RESULTS Performing bioinformatics analysis over the sequenced sRNA from brain tissue, we detected several classes of sRNA, such as miRNAs that play key roles in brain neurodevelopmental and maintenance pathways, and hsa-mir-155 expression in neurons. Comparison with existing method: Our method is the first to combine the approaches for: laser-capture of pyramidal neurons from long-term formalin-fixed brain; extract sRNA from laser-captured pyramidal neurons; apply a suite of bioinformatics tools to detect miRNA and other classes of sRNAs on sequenced samples having high levels of RNA degradation. CONCLUSION This is the first study to show that sRNA can be rescued from laser-captured FF pyramidal neurons.
Collapse
Affiliation(s)
- Roberto R Herai
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, CA 92093, MC 0695, USA
| | - Lisa Stefanacci
- University of California San Diego, Department of Anthropology, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Branka Hrvoj-Mihic
- University of California San Diego, Department of Anthropology, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Thanathom Chailangkarn
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, CA 92093, MC 0695, USA
| | - Kari Hanson
- University of California San Diego, Department of Anthropology, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Katerina Semendeferi
- University of California San Diego, Department of Anthropology, 9500 Gilman Drive, La Jolla, CA, 92093, USA.,Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093. USA.,Neuroscience Graduate Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Alysson R Muotri
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, CA 92093, MC 0695, USA.,Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093. USA.,Neuroscience Graduate Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|