1
|
Kim J, Cheong JH. Role of Mitochondria-Cytoskeleton Interactions in the Regulation of Mitochondrial Structure and Function in Cancer Stem Cells. Cells 2020; 9:cells9071691. [PMID: 32674438 PMCID: PMC7407978 DOI: 10.3390/cells9071691] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 12/16/2022] Open
Abstract
Despite the promise of cancer medicine, major challenges currently confronting the treatment of cancer patients include chemoresistance and recurrence. The existence of subpopulations of cancer cells, known as cancer stem cells (CSCs), contributes to the failure of cancer therapies and is associated with poor clinical outcomes. Of note, one of the recently characterized features of CSCs is augmented mitochondrial function. The cytoskeleton network is essential in regulating mitochondrial morphology and rearrangement, which are inextricably linked to its functions, such as oxidative phosphorylation (OXPHOS). The interaction between the cytoskeleton and mitochondria can enable CSCs to adapt to challenging conditions, such as a lack of energy sources, and to maintain their stemness. Cytoskeleton-mediated mitochondrial trafficking and relocating to the high energy requirement region are crucial steps in epithelial-to-mesenchymal transition (EMT). In addition, the cytoskeleton itself interplays with and blocks the voltage-dependent anion channel (VDAC) to directly regulate bioenergetics. In this review, we describe the regulation of cellular bioenergetics in CSCs, focusing on the cytoskeleton-mediated dynamic control of mitochondrial structure and function.
Collapse
Affiliation(s)
- Jungmin Kim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Jae-Ho Cheong
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea;
- Department of Surgery, Yonsei University Health System, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-2-2228-2094; Fax: +82-2-313-8289
| |
Collapse
|
2
|
Lynes J, Sanchez V, Dominah G, Nwankwo A, Nduom E. Current Options and Future Directions in Immune Therapy for Glioblastoma. Front Oncol 2018; 8:578. [PMID: 30568917 PMCID: PMC6290347 DOI: 10.3389/fonc.2018.00578] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is in need of innovative treatment approaches. Immune therapy for cancer refers to the use of the body's immune system to target malignant cells in the body. Such immune therapeutics have recently been very successful in treating a diverse group of cancerous lesions. As a result, many new immune therapies have gained Food and Drug Administration approval for the treatment of cancer, and there has been an explosion in the study of immune therapeutics for cancer treatment over the past few years. However, the immune suppression of glioblastoma and the unique immune microenvironment of the brain make immune therapeutics more challenging to apply to the brain than to other systemic cancers. Here, we discuss the existing barriers to successful immune therapy for glioblastoma and the ongoing development of immune therapeutics. We will discuss the discovery and classification of immune suppressive factors in the glioblastoma microenvironment; the development of vaccine-based therapies; the use of convection-enhanced delivery to introduce tumoricidal viruses into the tumor microenvironment, leading to secondary immune responses; the emerging use of adoptive cell therapy in the treatment of glioblastoma; and future frontiers, such as the use of cerebral microdialysis for immune monitoring and the use of sequencing to develop patient-specific therapeutics. Armed with a better understanding of the challenges inherent in immune therapy for glioblastoma, we may soon see more successes in immune-based clinical trials for this deadly disease.
Collapse
Affiliation(s)
- John Lynes
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States.,MedStar Georgetown University Hospital, Washington, DC, United States
| | - Victoria Sanchez
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Gifty Dominah
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Anthony Nwankwo
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Edjah Nduom
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| |
Collapse
|
3
|
Abstract
Drug resistance is a characteristic of tumor initiating cells that can give rise to metastatic disease. In this work we demonstrate the use of microbubble well arrays as a cell culture platform to enumerate and characterize drug resistant cells in a human derived tumorigenic squamous cell carcinoma cell line. The spherical architecture and compliant hydrophobic composition of the microbubble well favors single cell survival, clonal proliferation and formation of spheres that do not grow on standard tissue culture plastic and are resistant to cisplatin. Spheres form in isolation and in microbubble wells containing proliferating cells and to some degree they stain positive for common stem cell markers CD44 and CD133. Spheres are also observed in cellularized primary human tumors cultured in microbubble arrays. This proof-of-concept study illustrates the potential for microbubble array technology to enumerate cancer cells resistant to standard care drugs with the ability to test alternative drug combinations. This capability can be developed for designing patient specific treatment strategies. Recovery of drug-resistant cells will allow a more full characterization of their gene expression profile thereby expanding our fundamental knowledge and ability to develop new targets to fight metastatic disease.
Collapse
|
4
|
Voiculescu V, Calenic B, Ghita M, Lupu M, Caruntu A, Moraru L, Voiculescu S, Ion A, Greabu M, Ishkitiev N, Caruntu C. From Normal Skin to Squamous Cell Carcinoma: A Quest for Novel Biomarkers. DISEASE MARKERS 2016; 2016:4517492. [PMID: 27642215 PMCID: PMC5011506 DOI: 10.1155/2016/4517492] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/25/2016] [Indexed: 12/14/2022]
Abstract
Squamous cells carcinoma (SCC) is the second most frequent of the keratinocyte-derived malignancies after basal cell carcinoma and is associated with a significant psychosocial and economic burden for both the patient himself and society. Reported risk factors for the malignant transformation of keratinocytes and development of SCC include ultraviolet light exposure, followed by chronic scarring and inflammation, exposure to chemical compounds (arsenic, insecticides, and pesticides), and immune-suppression. Despite various available treatment methods and recent advances in noninvasive or minimal invasive diagnostic techniques, the risk recurrence and metastasis are far from being negligible, even in patients with negative histological margins and lymph nodes. Analyzing normal, dysplastic, and malignant keratinocyte proteome holds special promise for novel biomarker discovery in SCC that could be used in the future for early detection, risk assessment, tumor monitoring, and development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Vlad Voiculescu
- Department of Dermatology and Allergology, Elias Emergency University Hospital, Bucharest, Romania
| | - Bogdan Calenic
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihaela Ghita
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihai Lupu
- Department of Dermatology and Allergology, Elias Emergency University Hospital, Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, Bucharest, Romania
| | - Liliana Moraru
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, Bucharest, Romania
| | - Suzana Voiculescu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Alexandra Ion
- Department of Dermatology and Allergology, Elias Emergency University Hospital, Bucharest, Romania
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Nikolay Ishkitiev
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine, Medical University, Sofia, Bulgaria
| | - Constantin Caruntu
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
5
|
Karim BO, Rhee KJ, Liu G, Yun K, Brant SR. Prom1 function in development, intestinal inflammation, and intestinal tumorigenesis. Front Oncol 2014; 4:323. [PMID: 25452936 PMCID: PMC4231842 DOI: 10.3389/fonc.2014.00323] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/28/2014] [Indexed: 12/17/2022] Open
Abstract
Prom1/CD133 has been identified in colorectal, hepatocellular, and pancreatic cancer as a cancer stem cell marker and has been used as such to predict colon cancer recurrence in humans. Its potential molecular function as well as its role as a marker of intestinal regeneration is still not fully known. We evaluated the role of Prom1 in intestinal regeneration in inflammatory bowel disease (IBD), determined the function of Prom1, and characterized the effect of a lack of Prom1 on intestinal tumor formation in animal models. Our results suggest that Apc mutations lead to an increase in Prom1 expressing cells in the intestinal crypt stem cell compartment and in early intestinal adenomas. Also, Prom1 knockout mice are more susceptible to intestinal tumor formation. We conclude that Prom1 likely plays a role in regulating intestinal homeostasis and that these results clearly illustrate the role of Prom1 in intestinal regeneration. We further conclude that Prom1 may provide a novel therapeutic target for patients with gastrointestinal conditions such as IBD, short bowel syndrome, and colorectal cancer.
Collapse
Affiliation(s)
- Baktiar O Karim
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University , Baltimore, MD , USA
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, Yonsei University , Gangwon-do, Wonju , South Korea
| | - Guosheng Liu
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University , Baltimore, MD , USA
| | - Kyuson Yun
- The Jackson Laboratory , Bar Harbor, ME , USA
| | - Steven R Brant
- Department of Medicine, The Johns Hopkins University , Baltimore, MD , USA
| |
Collapse
|