1
|
Letafati A, Salahi Ardekani O, Karami H, Soleimani M. Ebola virus disease: A narrative review. Microb Pathog 2023:106213. [PMID: 37355146 DOI: 10.1016/j.micpath.2023.106213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/23/2023] [Accepted: 06/22/2023] [Indexed: 06/26/2023]
Abstract
Ebola virus disease (EVD), which is also referred to as Ebola hemorrhagic fever, is a highly contagious and frequently lethal sickness caused by the Ebola virus. In 1976, the disease emerged in two simultaneous outbreaks in Sudan and the Democratic Republic of Congo. Subsequently, it has caused intermittent outbreaks in several African nations. The virus is primarily spread via direct contact with the bodily fluids of an infected individual or animal. EVD is distinguished by symptoms such as fever, fatigue, muscle pain, headache, and hemorrhage. The outbreak of EVD in West Africa in 2014-2016 emphasized the need for effective control and prevention measures. Despite advancements and the identification of new treatments for EVD, the primary approach to treatment continues to be centered around providing supportive care. Early detection and supportive care can enhance the likelihood of survival. This includes intravenous fluids, electrolyte replacement, and treatment of secondary infections. Experimental therapies, for instance, monoclonal antibodies and antiviral drugs, have shown promising results in animal studies and some clinical trials. Some African countries have implemented the use of vaccines developed for EVD, but their effectiveness and long-term safety are still being studied. This article provides an overview of the history, transmission, symptoms, diagnosis, treatment, epidemiology, and Ebola coinfection, as well as highlights the ongoing research efforts to develop effective treatments and vaccines to combat this deadly virus.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Omid Salahi Ardekani
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hassan Karami
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mina Soleimani
- Department of Laboratory Medicine, Faculty of Paramedical Sciences, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran.
| |
Collapse
|
2
|
Abir MH, Rahman T, Das A, Etu SN, Nafiz IH, Rakib A, Mitra S, Emran TB, Dhama K, Islam A, Siyadatpanah A, Mahmud S, Kim B, Hassan MM. Pathogenicity and virulence of Marburg virus. Virulence 2022; 13:609-633. [PMID: 35363588 PMCID: PMC8986239 DOI: 10.1080/21505594.2022.2054760] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 12/25/2022] Open
Abstract
Marburg virus (MARV) has been a major concern since 1967, with two major outbreaks occurring in 1998 and 2004. Infection from MARV results in severe hemorrhagic fever, causing organ dysfunction and death. Exposure to fruit bats in caves and mines, and human-to-human transmission had major roles in the amplification of MARV outbreaks in African countries. The high fatality rate of up to 90% demands the broad study of MARV diseases (MVD) that correspond with MARV infection. Since large outbreaks are rare for MARV, clinical investigations are often inadequate for providing the substantial data necessary to determine the treatment of MARV disease. Therefore, an overall review may contribute to minimizing the limitations associated with future medical research and improve the clinical management of MVD. In this review, we sought to analyze and amalgamate significant information regarding MARV disease epidemics, pathophysiology, and management approaches to provide a better understanding of this deadly virus and the associated infection.
Collapse
Affiliation(s)
- Mehedy Hasan Abir
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chittagong, Bangladesh
| | - Tanjilur Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Ayan Das
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Silvia Naznin Etu
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Iqbal Hossain Nafiz
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Ahmed Rakib
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ariful Islam
- EcoHealth Alliance, New York, NY, USA
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Victoria, Australia
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Shafi Mahmud
- Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Bonlgee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Sciences, The University of Queensland, Gatton, Australia
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| |
Collapse
|
3
|
Zhang Q, Yang J, Tillieux S, Guo Z, Natividade RDS, Koehler M, Petitjean S, Cui Z, Alsteens D. Stepwise Enzymatic-Dependent Mechanism of Ebola Virus Binding to Cell Surface Receptors Monitored by AFM. NANO LETTERS 2022; 22:1641-1648. [PMID: 35108019 DOI: 10.1021/acs.nanolett.1c04677] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ebola virus (EBOV) is responsible for several outbreaks of hemorrhagic fever with high mortality, raising great public concern. Several cell surface receptors have been identified to mediate EBOV binding and internalization, including phosphatidylserine (PS) receptors (TIM-1) and C-type lectin receptors (DC-SIGNR). However, the role of TIM-1 during early cell surface binding remains elusive and in particular whether TIM-1 acts as a specific receptor for EBOV. Here, we used force-distance curve-based atomic force microscopy (FD-based AFM) to quantify the binding between TIM-1/DC-SIGNR and EBOV glycoprotein (GP) and observed that both receptors specifically bind to GP with high-affinity. Since TIM-1 can also directly interact with PS at the single-molecule level, we also confirmed that TIM-1 acts as dual-function receptors of EBOV. These results highlight the direct involvement of multiple high-affinity receptors in the first steps of binding to cell surfaces, thus offering new perspectives for the development of anti-EBOV therapeutic molecules.
Collapse
Affiliation(s)
- Qingrong Zhang
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Jinsung Yang
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Sueli Tillieux
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Zhengyuan Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Rita Dos Santos Natividade
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Simon Petitjean
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
- Walloon Excellence in Life sciences and Biotechnology (WELBIO), Wavre 1300, Belgium
| |
Collapse
|
4
|
Bhattacharyya S. Mechanisms of Immune Evasion by Ebola Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:15-22. [PMID: 34661889 DOI: 10.1007/978-3-030-67452-6_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The 2013-2016 Ebola virus epidemic in West Africa, which also spread to the USA, UK and Europe, was the largest reported outbreak till date (World Health Organization. 2016. https://apps.who.int/iris/bitstream/handle/10665/208883/ebolasitrep_10Jun2016_eng.pdf;jsessionid=8B7D74BC9D82D2BE1B110BAFFAD3A6E6?sequence=1 ). The recent Ebola outbreak in the Democratic Republic of the Congo has raised immense global concern on this severe and often fatal infection. Although sporadic, the severity and lethality of Ebola virus disease outbreaks has led to extensive research worldwide on this virus. Vaccine (World Health Organization. 2016. https://www.who.int/en/news-room/detail/23-12-2016-final-trial-results-confirm-ebola-vaccine-provides-high-protection-against-disease ; Henao-Restrepo et al. Lancet 389:505-518, 2017) and drug (Hayden. Nature, 557, 475-476, 2018; Dyall et al. J Infect Dis 218(suppl_5), S672-S678, 2018) development efforts against Ebola virus are research hotspots, and a few approved therapeutics are currently available (Centers for Disease Control and Prevention. 2021. https://www.cdc.gov/vhf/ebola/clinicians/vaccine/index.html; Centers for Disease Control and Prevention. 2021. https://www.cdc.gov/vhf/ebola/treatment/index.html). Ebola virus has evolved several mechanisms of host immune evasion, which facilitate its replication and pathogenesis. This chapter describes the Ebola virus morphology, genome, entry, replication, pathogenesis and viral proteins involved in host immune evasion. Further understanding of the underlying molecular mechanisms of immune evasion may facilitate development of additional novel and sustainable strategies against this deadly virus.
Collapse
Affiliation(s)
- Suchita Bhattacharyya
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
| |
Collapse
|
5
|
Bessières M, Plebanek E, Chatterjee P, Shrivastava-Ranjan P, Flint M, Spiropoulou CF, Warszycki D, Bojarski AJ, Roy V, Agrofoglio LA. Design, synthesis and biological evaluation of 2-substituted-6-[(4-substituted-1-piperidyl)methyl]-1H-benzimidazoles as inhibitors of ebola virus infection. Eur J Med Chem 2021; 214:113211. [PMID: 33548632 DOI: 10.1016/j.ejmech.2021.113211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/20/2020] [Accepted: 01/12/2021] [Indexed: 11/17/2022]
Abstract
Novel 2-substituted-6-[(4-substituted-1-piperidyl)methyl]-1H-benzimidazoles were designed and synthesized as Ebola virus inhibitors. The proposed structures of the new prepared benzimidazole-piperidine hybrids were confirmed based on their spectral data and CHN analyses. The target compounds were screened in vitro for their anti-Ebola activity. Among tested molecules, compounds 26a (EC50=0.93 μM, SI = 10) and 25a (EC50=0.64 μM, SI = 20) were as potent as and more selective than Toremifene reference drug (EC50 = 0.38 μM, SI = 7) against cell line. Data suggests that the mechanism by which 25a and 26a block EBOV infection is through the inhibition of viral entry at the level of NPC1. Furthermore, a docking study revealed that several of the NPC1 amino acids that participate in binding to GP are involved in the binding of the most active compounds 25a and 26a. Finally, in silico ADME prediction indicates that 26a is an idealy drug-like candidate. Our results could enable the development of small molecule drug capable of inhibiting Ebola virus, especially at the viral entry step.
Collapse
Affiliation(s)
| | | | - Payel Chatterjee
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Mike Flint
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Dawid Warszycki
- May Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Andrzej J Bojarski
- May Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Vincent Roy
- Univ. Orléans, CNRS, ICOA, UMR 7311, F-45067, Orléans, France.
| | | |
Collapse
|
6
|
Preface. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 129:xv-xix. [DOI: 10.1016/s1877-1173(14)00043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|